
Representation and Analysis of Software

Mary Jean Harrold Gregg Rothermel Alex Orso
Georgia Tech Oregon State University Georgia Tech

1 Introduction

This paper presents some basic techniques for representation and analysis of software. We use the term

program to refer to both procedures and monolithic programs.

2 Control Flow Graphs

A control flow graph1 (CFG) is a directed graph in which each node represents a basic block and each edge

represents the flow of control between basic blocks. To build a CFG we first build basic blocks, and then we

add edges that represent control flow between these basic blocks.

A basic block is a sequence of consecutive statements in which flow of control enters at the beginning

and leaves at the end without halt or possibility of branching except at the end. We can construct the basic

blocks for a program using algorithm GetBasicBlocks, shown in Figure 1.

algorithm GetBasicBlocks

Input. A sequence of program statements.
Output. A list of basic blocks with each statement in exactly one basic block.
Method.

1. Determine the set of leaders: the first statements of basic blocks. We use the following rules.

(a) The first statement in the program is a leader.

(b) Any statement that is the target of an conditional or unconditional goto statement is a leader.

(c) Any statement that immediately follows a conditional or unconditional goto statement is a leader.

Note: control transfer statements such as while, if-else, repeat-until, and switch statements are all
“conditional goto statements”.

2. Construct the basic blocks using the leaders. For each leader, its basic block consists of the leader and
all statements up to but not including the next leader or the end of the program.

Figure 1: Algorithm to construct basic blocks for a program.

When we analyze a program’s intermediate code for the purpose of performing compiler optimizations, a

basic block usually consists of a maximal sequence of intermediate code statements. When we analyze

source code, a basic block consists of a maximal sequence of source code statements. We often find it more

convenient in the latter case, however, to just treat each source code statement as a basic block.

1See Reference [2] for additional discussion of control flow graphs.

1

algorithm GetCFG

Input. A list of basic blocks for a program where the first block (B1) contains the first program statement.
Output. A list of CFG nodes and edges.
Method.

1. Create entry and exit nodes; create edge (entry, B1); create edges (Bk, exit) for each basic block Bk

that contains an exit from the program.

2. Traverse the list of basic blocks and add a CFG edge from each node Bi to each node Bj if and only
if Bj can immediately follow Bi in some execution sequence, that is, if:

(a) there is a conditional or unconditional goto statement from the last statement of Bi to the first
statement of Bj , or

(b) Bj immediately follows Bi in the order of the program, and Bi does not end in an unconditional
goto statement.

3. Label edges that represent conditional transfers of control as “T” (true) or “F” (false); other edges are
unlabeled.

Figure 2: Algorithm to construct the CFG for a program.

After we have constructed basic blocks, we can construct the CFG for a program using algorithm

GetCFG, shown in Figure 2. The algorithm also works for the case where each source statement is treated

as a basic block. To illustrate, consider Figure 3, which gives the code for program Sums on the left and the

CFG for Sums on the right. Node numbers in the CFG correspond to statement numbers in Sums: in the

graph, we treat each statement as a basic block. Each node that represents a transfer of control (i.e., 4 and

7) has two labeled edges emanating from it; all other edges are unlabeled.

In a CFG, if there is an edge from node Bi to node Bj , we say that Bj is a successor of Bi and that

Bi is a predecessor of Bj . In the example, node 4 has successor nodes 5 and 12, and node 4 has predecessor

nodes 3 and 11.

Figure 4 gives another example program Trivial and its CFG. Notice that Trivial contains an

if-then-else statement and a switch statement. In the CFG, we have inserted nodes J1 and J2. These

nodes, which we call “join” nodes, would not be created by algorithm GetCFG; however, we often find it

convenient to insert them, to represent places where flow of control merges following a conditional statement.

Notice that we represent the switch predicate as a node with multiple out-edges – one for each case value.

Each edge is labeled with the value to which the switch predicate must evaluate in order for that edge to be

taken.

In CFGs built from source code, where we use statements as basic blocks, we do not create blocks for

non-executable structure-delimiting statements such as “begin”, “end”, “else”, “endif”, “endwhile”, “case”,

“}”, or “{”.

2

T

F

T

endwhile;
F

exit

entry

1

2

3

4 5

6

7 8

910

11

12

end Sums

Program Sums
1. read(n);
2. i = 1;
3. sum = 0;
4. while (i<= n) do
5. sum = 0;
6. j = 1;
7. while (j <= i) do
8. sum = sum + j;
9. j = j + 1;

10. write(sum, i);
11. i = i + 1;

12. write(sum, i);

endwhile;

Figure 3: Program segment on the left, with its CFG on the right.

entry

exit

1

2

3 4

end Trivial

5

6 7 8 9

J1

J2

T F

1 default
2 3

Program Trivial

2. if (n<0) then
1. read(n);

3. write("negative");
 else

4. write("positive");
 endif;

5. switch (n)
 case 1:
6. write("one");

7. write("two");

break;
 case 2:

 case 3:
8. write("three");

break;

9. write("other");
 default:

 endswitch;

Figure 4: Program segment on the left, with its CFG on the right.

3

3 Data Flow Information

We can classify each reference to a variable in a program as a definition or a use. A definition of a variable

occurs whenever a variable gets a value. For example, in Figure 3, there is a definition of variable n in

statement 1 due to the input statement, and there is a definition of variable sum in statement 5 because of

the assignment statement. A use of a variable occurs whenever the value of the variable is fetched. Uses are

further classified as either computation uses (c-uses) or predicate uses (p-use) [11]. A computation use occurs

whenever a variable either directly affects the computation being performed or is output. A predicate-use

directly affects the control flow through the program but only indirectly affects a computation. In Figure 3,

there are c-uses of sum and j in statement 8 because their values directly affect the value of sum computed in

that statement. Likewise, there are c-uses of sum and i in statement 10 because their values directly affect

the program output at that statement. On the other hand, the uses of j and i in statement 7 directly affect

the flow of control from that statement and thus, are p-uses.

By inspecting each statement (basic block) in a program, we can identify the definitions and uses in

that statement (basic block). This identification is called local data flow analysis. Although local data flow

information can be useful for activities such as local optimization, many important compiler and software

engineering tasks require information about the flow of data across statements (basic blocks). Data flow

analysis that computes information across statements (basic blocks) is called global data flow analysis, or

equivalently, intraprocedural data flow analysis.

One well known data flow analysis problem involves the computation of reaching definitions. Given

program P with CFG G. We say that a definition d reaches a point p in G if there is a path in G from the

point immediately following d to p, such that d is not “killed” along that path. A definition of a variable v

is killed at some node n if there is a definition of v at the statement that corresponds to n. For example, in

Figure 3, there is a definition of sum in statement 5. One way to reach statement 9 is along the subpath 5,

6, 7, 8, 9. However, along this subpath, the definition of sum in statement 5 is killed by the definition of sum

in statement 8. Thus, the definition of sum in statement 5 does not reach statement 9; the definition of sum

in statement 8, however, does reach statement 9.

One way to find the points in a program that definitions reach is to consider each definition in the

program individually, and “propagate” it along all paths from the definition until either the definition is

killed or an exit from the program is reached. However, this approach may be inefficient because it may

require many traversals of the graph. A more efficient approach, and the approach that is most commonly

used, is iterative dataflow analysis.

Iterative dataflow analysis.

Iterative dataflow analysis2, computes four sets of information about each node in the CFG: these sets are

entitled GEN, KILL, IN, and OUT. Remember that a node may correspond to a statement or a basic block.

• The GEN set for a node is the set of definitions in the node that reach the point immediately after the

node. For example, the GEN set for node 8 in Figure 3 is {8:sum}, while the GEN set for node 7 in the

figure is {} (the empty set).

• The KILL set for a node is the set of definitions in the program that are killed if they reach the entry to

the node. For example, the KILL set for node 8 in Figure 3 is {3:sum,5:sum,8:sum}, while the KILL set

2See Reference [2] for additional discussion of data flow analysis.

4

algorithm ReachingDefs

Input. A flow graph for which KILL[n] and GEN[n] have been computed for each node n.
Output. IN[n] and OUT[n] for each node n.
Method. Use an iterative approach, starting with IN[n] = {} for all n, and converging to the desired values
of IN and OUT. Iterate until the sets do not change; variable change records whether a change has occurred
on any pass. Here is the algorithm:

1. for each node n do OUT[n] = GEN[n] endfor

2. change = true

3. while change do

4. change = false

5. for each node n do

6. IN[n] = ∪ OUT[P], where P is an immediate predecessor of n

7. OLDOUT = OUT[n]

8. OUT[n] =GEN[n]∪(IN[n]−KILL[n])

9. if OUT[n] 6= OLDOUT then change = true endif

10. endfor

11. endwhile

Figure 5: Algorithm for computing IN and OUT sets for reaching definitions.

for node 7 in the figure is {} (the empty set). The reason for requiring this set to be a set of definitions

in the program, rather than in the node, may not initially be clear, but should become more obvious

after you see how we use this set in our algorithm for computing reaching definitions.

• The IN set for a node is the set of definitions in the program that reach the point immediately before

the node. Notice that the IN set for a node N consists of all definitions that reach the ends of nodes

that immediately precede N : that is, IN[n] = ∪ (over all P that are predecessors of n) OUT[P].

• The OUT set for a node is the set of definitions in the program that reach the point immediately following

the node. Notice that the OUT set for a node N consists of all definitions that either (i) are generated in

N , or (ii) reach the entry to N but are not killed within N : that is, OUT[n] =GEN[n]∪(IN[n]−KILL[n]).

Figure 5 gives algorithm ReachingDefs, that computes IN and OUT sets for reaching definitions. The

algorithm inputs a CFG, with GEN and KILL sets for the nodes in that graph. The algorithm initializes

the OUT sets for each node to the GEN sets for those nodes, and then begins a loop (line 3) that repeats as

long as sets continue to change. In each iteration of the loop, the algorithm considers each node n (line 5),

calculating the IN and OUT sets for n. Line 9 detects whether some OUT set has changed and records this

information, thus controlling the iteration of the loop at line (3). When the algorithm completes, the IN sets

contain the definitions that reach nodes.

5

endwhile;

end Sums

Program Sums
1. read(n);
2. i = 1;
3. sum = 0;
4. while (i<= n) do
5. sum = 0;
6. j = 1;
7. while (j <= i) do
8. sum = sum + j;
9. j = j + 1;

10. write(sum, i);
11. i = i + 1;

12. write(sum, i);

endwhile;

OUT={1:n,2:i,3:sum,5:sum,6:j,8:sum,9:j,11:i}

T

F

T

F

exit

entry

1

2

3

4 5

6

7 8

910

11

12

GEN={};KILL={};IN={};OUT={};

GEN={1:n};KILL={1:n};IN={};OUT={1:n};

GEN={2:i};KILL={2:i,11:i};IN={1:n};OUT={1:n,2:i}

GEN={3:sum};KILL={3:sum,5:sum,8:sum};
IN={1:n,2:i};OUT={1:n,2:i,3:sum}

GEN={5:sum};KILL={3:sum,5:sum,8:sum}
IN={1:n,2:i,3:sum,5:sum,6:j,8:sum,9:j,11:i}
OUT={1:n,2:i,5:sum,6:j,9:j,11:i}

GEN={6:j};KILL={6:j,9:j}
IN={1:n,2:i,5:sum,6:j,9:j,11:i}

OUT={1:n,2:i,3:sum,5:sum,6:j,8:sum,9:j,11:i}
IN={1:n,2:i,3:sum,5:sum,6:j,8:sum,9:j,11:i}
GEN={};KILL={};

GEN={};KILL={};

GEN={};KILL={};
IN={1:n,2:i,5:sum,6:j,8:sum,9:j,11:i}
OUT={1:n,2:i,5:sum,6:j,8:sum,9:j,11:i}

IN={1:n,2:i,3:sum,5:sum,6:j,8:sum,9:j,11:i}

GEN={8:sum};KILL={3:sum,5:sum,8:sum};
IN={1:n,2:i,5:sum,6:j,8:sum,9:j,11:i}
OUT={1:n,2:i,6:j,8:sum,9:j,11:i}

GEN={9:j};KILL={6:j,9:j};
IN={1:n,2:i,6:j,8:sum,9:j,11:i};
OUT={1:n,2:i,8:sum,9:j,11:i};

GEN={};KILL={};
IN={1:n,2:i,5:sum,6:j,8:sum,9:j,11:i}
OUT={1:n,2:i,5:sum,6:j,8:sum,9:j,11:i}

GEN={11:i};KILL={2:i,11:i};
IN={1:n,2:i,5:sum,6:j,8:sum,9:j,11:i}
OUT={1:n,5:sum,6:j,8:sum,9:j,11:i}

OUT={1:n,2:i,5:sum,6:j;11:i}

Figure 6: Program segment on the left, with its CFG in the center, and the IN, OUT, GEN, and KILL sets that
algorithm ReachingDefs computes for the program.

Intuitively, algorithm ReachingDefs propagates definitions as far as they will go without being killed

– in a sense, simulating all possible executions of the program. In an implementation of this algorithm, we

can represent sets of definitions as bit vectors, and perform set operations using logical operations on these

bit vectors.

The reason for having KILL sets contain all definitions in the program can now be explained. KILL

sets are computed during initialization; at that point we do not know which definitions, in the program,

might propagate around the graph and reach the entry to the node. However, we know that any definition

of a variable defined in the node will be killed if it reaches the entry to the node; so we create KILL as the

set of definitions that, if they reach the node entry, will be killed. During propagation, only definitions that

actually reach the entry are affected by the KILL sets, and not propagated through to OUT sets.

Figure 6 shows the IN, OUT, GEN, and KILL sets that algorithm ReachingDefs computes for the example

program originally given in Figure 3.

There are many other problems that can be solved by data flow analysis, such as calculations of reachable

uses, available expressions, and live variables. Reference [2] describes some of these other problems.

6

Definition-use pairs and data dependence graphs.

A definition-use pair for variable v is an ordered pair (D,U) — where D is a statement that contains a

definition of v and U is a statement that contains a use of v — such that there is a subpath in the CFG

from D to U along which D is not killed. Given reaching definitions information, we can easily compute

definition-use pairs: algorithm ComputeDefUsePairs of Figure 7 gives an algorithm (not the most efficient).

algorithm ComputeDefUsePairs

Input. A flow graph for which the IN sets for reaching definitions have been computed for each node n.
Output. DUPairs: a set of definition-use pairs.
Method. Visit each node in the control flow graph. For each node, use upwards exposed uses and reaching
definitions to form definition-use pairs. Here is the algorithm:

1. DUPairs = {}

2. for each node n do

3. for each upwards exposed use U in n do

4. for each reaching definition D in IN[n] do

5. if D is a definition of v and U is a use of v then DUPairs = DUPairs ∪ (D,U) endif

6. endfor

7. endfor

8. endfor

Figure 7: Algorithm for computing definition-use pairs.

Line 3 of the algorithm refers to “upwards exposed” uses. An upwards exposed use in node n is a use

of some variable v that can be reached by a definition of v that reaches the node. If n contains a statement

that defines v, and then after that statement, contains a statement that uses v, the use of v is not upwards

exposed: it cannot be reached by a definition that reaches the node. Table 1 lists the definition-use pairs for

the example CFG of Figure 3, organized by the node in which the use is located.

Definition-use pairs represent data interactions between statements in a program. If (D,U) is a

definition-use pair, then the computation at U is dependent upon data computed at D. We call such a

dependence a data dependence. There are actually several types of data dependencies: data dependencies of

the type we have just described are also called flow dependencies. Other types of dependence include output

dependence and anti-dependence. We will consider only flow dependence.

We can represent data dependencies graphically, using a data dependence graph (DDG). A DDG

contains node that represent locations of definitions and uses, and edges that represent data dependencies

between the nodes. Alternatively, we can add data dependence edges to a CFG. To do this, for each

definition-use pair (D,U) that exists in the program that corresponds to the graph, we add edge (D,U) to the

graph. Figure 8 partially shows such a graph for program Sums (the figure shows only the flow dependence

edges that are related to variable i). Flow dependence edges are depicted by dotted lines, and annotated by

the name of the variable that creates the dependence.

7

Node Definition-Use Pairs

entry (none)
1 (none)
2 (none)
3 (none)
4 [1:n,4:n],[2:i,4:i],[11:i,4:i]
5 (none)
6 (none)
7 [6:j,7:j],[9:j,7:j],[2:i,7:i],[11:i,7:i]
8 [5:sum,8:sum],[8:sum,8:sum],[6:j,8:j],[9:j,8:j]
9 [6:j,9:j],[9:j,9:j]
10 [2:i,10:i],[11:i,10:i],[5:sum,10:sum],[8:sum,10:sum]
11 [2:i,11:i]
12 [2:i,12i],[11:i,12:i],[3:sum,12:sum],[5:sum,12:sum],[8:sum,12:sum]
exit (none)

Table 1: Definition-use pairs for program Sums.

endwhile;

end Sums

Program Sums
1. read(n);
2. i = 1;
3. sum = 0;
4. while (i<= n) do
5. sum = 0;
6. j = 1;
7. while (j <= i) do
8. sum = sum + j;
9. j = j + 1;

10. write(sum, i);
11. i = i + 1;

12. write(sum, i);

endwhile;

i

T

F

T

F

exit

entry

1

2

3

4 5

6

7 8

910

11

12
i

i

i

i

i

i

i
i

Figure 8: Control flow graph for Sums, with flow dependence edges for i added (dotted lines).

8

4 Program Paths

A path (or subpath) in a CFG is a finite sequence of nodes (n1, n2, ...nk) such that for i = 1, 2, ... k -1, there

is an edge from ni to ni+1. A complete path is one whose initial node is the entry node and whose final node

is the exit node. Examples of paths in Figure 3 are (entry,1,2,3,4,12,exit), which is a complete path, and

(6,7,8,9,7,8,9,7,10).

A path (i, n1, ...nm, j) is definition-clear (def-clear) with respect to a variable v from nodes i to j if there

is no definition of v in any of the ni on the path. Similarly, a path (i, n1, ...nm, j, k) is definition-clear with

respect to a variable v from node i to edge (j, k) if there is no definition of v in any of the ni on the path.

In Figure 3, (9, 7, 8) is a def-clear path with respect to variable j from node 9 to node 8, and (3,4,5,6,7,8)

is a def-clear path with respect to variable i from node 3 to edge (7, 8). On the other hand, (5,6,7,8,9,7,10)

is not a def-clear path with respect to sum from node 5 to node 10 because sum is defined in node 8.

For a definition of variable v in n1 and a c-use of variable v in nj , a path (n1, ..., nj) that is def-clear

with respect to v in which all nodes except possibly n1 and nj are distinct is a du-path with respect to v. For

a definition of variable v in n1 and a p-use of variable v in (nj , nk), a path (n1, ..., nj , nk) that is def-clear

with respect to v, in which all nodes n1, ..., nj are distinct is a du path with respect to v. Examples of du

paths in Sums are (3,4,12) for sum and (11,4,5,6,7,10) for i.

A path through the CFG which, due to conditional statements, can not be executed by any input to

the program, is called infeasible. Consider path (entry,1,2,3,4,5,6,7,10) through the CFG of Figure 3. For

node 5 to execute, n must be at least 1; assume that this is the case. When node (statement) 2 executes, i

is assigned the value 1 and the while loop at node (statement) 4 is entered. When the while loop at node

(statement) 4 is entered, j is always assigned the value 1. Thus, when node (statement) 7 is reached during

the first iteration of the outer while loop, the inner while loop is always executed. Since no input can cause

path (entry,1,2,3,4,5,6,7,10) to be executed, it is infeasible.

5 Postdominator Trees

A postdominator tree (PDT) describes the postdominance relationship between nodes in a CFG (statements

in a program). A node D in CFG G is postdominated by a node W in G if and only if every directed path

from D to exit (not including D) contains W. A postdominator tree is a tree in which the initial node is the

exit node, and each node postdominates only its descendants in the tree. Figure 9 shows the CFG and PDT

for Sums.

We can also define a dominator relationship: a node D in CFG G dominates a node W in G if and only

if every directed path from entry to W (not including W) contains D. A dominator tree is a tree in which

the initial node is the entry node, and each node dominates only its descendants in the tree.

Figure 10 gives an algorithm, ComputeDom, for computing dominators for a control flow graph G, based

on the algorithm presented in [2]. A key to this algorithm is step 3, where, for each node n except the entry

node, we initialize the set of dominators to the set of all nodes in G. We then iterate through the nodes

(except the entry node), and for each node n, at step 3, we use the intersection operator to reduce the set

of nodes listed as dominating n to those that actually dominate predecessors of n. Thus, we start with an

overestimate of the dominators and reduce the sets to get the actual set of dominators. It will help if you

try this algorithm on the CFG for Sums.

To compute postdominators for a control flow graph G, obtain the reverse control flow graph for G by

reversing the directions on all edges, and use ComputeDom on that reverse control flow graph.

9

5

4

11

8

9

7

10

entry

1

2

3

T

F

T

F

exit

entry

1

2

3

4 5

6

7 8

910

11

12

exit

12

6

Figure 9: CFG (left) and PDT (right) for Sums.

algorithm ComputeDom

Input. A control flow graph G with set of nodes N and initial node n0.
Output. D(n), the set of nodes that dominate n, for each node n in G

Method. Use an iterative approach similar to the data flow analysis algorithm ReachingDefs given in Figure
5. Here is the algorithm.

1. D(n0) = {n0}

2. for each node n in N− {n0} do D(n) = N

3. while changes to any D(n) occur do

4. for n in N−{n0} do

5. D(n) ={n} ∪ (∩ D(p) for all immediate predecessors p of n

6. endfor

7. endwhile

Figure 10: Algorithm for computing dominators.

10

algorithm BuildDtree

Input. A set of nodes N for CFG G, with n0 the entry node for G, and D(n), the set of nodes that dominate
n, for each node n in N .
Output. Dominator tree DT for G.
Method. Here is the algorithm:

1. let n0 be the root of DT ;

2. put n0 on queue Q;

3. for each node n in N do D(n) = D(n) − n enddo;

4. while Q is not empty do

5. m = the next node on Q (remove it from Q);

6. for each node n in N such that D(n) is nonempty do

7. if D(n) contains m

8. D(n) = D(n) − m;

9. if D(n) is now empty

10. add n to DT as a child of m;

11. add n to Q;

12. endif

13. endif

14. endfor

15. endwhile

Figure 11: Algorithm for building a dominator tree.

Figure 11 gives algorithm BuildDtree, an algorithm for computing a dominator tree. Applying this

algorithm to a set of postdominators yields a postdominator tree.

6 Control Dependence Graphs

Another useful graph is a control dependence graph (CDG).3 A CDG encodes control dependencies. Assume

that nodes do not postdominate themselves. Let X and Y be nodes in CFG G. Y is control dependent on X

iff (1) there exists a directed path P from X to Y with any Z in P (excluding X and Y) postdominated by

Y and (2) X is not postdominated by Y. If Y is control dependent on X then X must have two exits where

one of the exits always causes Y to be reached, and the other exit may result in Y not being reached.

The nodes in a CDG represent statements, or regions of code that have common control dependencies.

We can construct a CDG using algorithm GetCDG, which is shown in Figure 12. To illustrate, Figure 13 shows

3CDGs are treated more formally in [3].

11

algorithm GetCDG

Input. The control flow graph, CFG, for a program
Output. The CDG for the program.
Method.

1. Augment the CFG with a start node, and a “T” edge (start, entry) and a “F” edge (start, exit); call
this augmented CFG ACFG

2. Construct the postdominator tree, PDT, for ACFG.

3. Determine the control dependencies for the program, using the following steps.

(a) Find S, a set of edges (A,B) in ACFG such that B is not an ancestor of A in PDT.

(b) For each edge (A,B) in S, find L, the least common ancestor of A and B in PDT.

(c) Consider each edge (A,B) in S and its corresponding L. Traverse backwards in PDT from B to L,
marking each node visited; mark L only if L = A.

(d) Statements representing all marked nodes are control dependent on A with the label that is on
edge (A,B).

4. Optionally, add region nodes to summarize common control dependencies. (We discuss this step later.)

Figure 12: Algorithm to construct a CDG.

the CDG for Sums, without region nodes. Node numbers in the CDG correspond to statement numbers in

Sums. A CDG contains several types of nodes. Statement nodes, shown as circles in Figure 13, represent

simple statements in the program. Predicate nodes, from which labeled edges originate, are represented as

rounded boxes.

An alternative form of CDG adds an additional node type called region nodes. Region nodes summarize

the control dependencies for statements in the region. Each region node summarizes a unique set of control

dependence conditions, that contains dependencies that must hold in order for the statements associated

with children nodes of the region node to be executed. Figure 14 gives a version of the CDG from Figure 13

to which region nodes, represented as 6-side figures (someone, what’s the word for that?), have been added.

Statement nodes 5, 6, 10, and 11 and predicate node 7 are all control dependent upon predicate 4 being true:

region node R2 summarizes this dependence. However, predicate node 7 is also control dependent upon itself

being true, so region node R3 summarizes dependence on 4-true or 7-true. For historical reasons, the start

node and edge (start,R0) are usually omitted from CDGs that have region nodes, making R0 serve as the

entry node. The process of adding region nodes to graphs is complex to describe: see [3] for details.

7 Program Dependence Graphs

Another important program representation is the program dependence graph (PDG), which represents both

control dependencies and data dependencies for a program [3]. A PDG consists of a control dependence

graph (called a control dependence subgraph when part of a PDG), to which data dependence edges (which,

together with the PDG nodes, form a data dependence subgraph) have been added.

12

start

8 9

5 6 7 10 11

entry 1 2 3 4 12

T

end Sums

Program Sums
1. read(n);
2. i = 1;
3. sum = 0;
4. while (i<= n) do
5. sum = 0;
6. j = 1;
7. while (j <= i) do
8. sum = sum + j;
9. j = j + 1;

10. write(sum, i);
11. i = i + 1;

12. write(sum, i);

endwhile;

endwhile;

T T T T T T

T
TTT

T

T TT

Figure 13: Program Sums on the left and its CDG without region nodes on the right. Circles represent
statements in the program, and rounded rectangles represent predicates.

4

R2

8 9

5 6 10 11R3

7

R4
end Sums

Program Sums
1. read(n);
2. i = 1;
3. sum = 0;
4. while (i<= n) do
5. sum = 0;
6. j = 1;
7. while (j <= i) do
8. sum = sum + j;
9. j = j + 1;

10. write(sum, i);
11. i = i + 1;

12. write(sum, i);

endwhile;

endwhile;

T

entry 1 2 3 12R1

RO

T

start

T

Figure 14: Program Sums on the left and its CDG with region nodes on the right.

13

PDG node control dependence data dependence
successors predecessors successors predecessors

entry none R0 none none
1 none R0 4 none
2 none R0 4,7,10,11,12 none
3 none R0 12 none
4 R2 R1 none 1,2,11
5 none R1 8,10,12 none
6 none R1 7,8,9 none
7 R4 R3 none 2,6,9,11
8 none R4 8,10,12 5,6,8,9
9 none R4 7,8,9 6,9
10 none R2 none 2,5,8,11
11 none R2 4,7,10,11,12 2,11
12 none R0 none 2,3,5,8,11
exit none R0 none none
R0 entry,1,2,3,R1,12,exit none none none
R1 4 R0,R2 none none
R2 3,6,R3,10,11,R1 4 none none
R3 7 R2,R4 none none
R4 8,9,R3 7 none none

Table 2: PDG nodes corresponding to the PDG for program Sums of Figure 3, and the control dependence
and data dependence edges.

8 Slicing

The concept of a program slice was originally developed by Weiser [12] for debugging. A slice of a program

with respect to a program point P and set of program variables V consists of all statements and predicates in

the program that may affect the values of variables in V at P. Weiser used the CFG and data flow analysis

algorithms for slicing. Subsequent research [3, 10] presents techniques for computing slices using the PDG.

We illustrate slicing using the PDG.

Given a PDG that contains both a control dependence subgraph and a data dependence subgraph, a

slice at a program point P with respect to a variable v can be obtained using a backward walk from P that

includes all nodes in the PDG reachable from P. To illustrate the concept of slicing, consider program Sums

given in Figure 3. For ease in traversing the PDG, Figure 8 lists the PDG edges for Sums.

Suppose we want to determine all statements in Sums that affect the value of j in statement (node)

9. We initially add node 9 to a worklist used to record the nodes that remain to be visited and initialize

slice to empty. Then, we remove a node N from worklist, mark it as visited, and add N’s unvisited control

dependence and data dependence predecessors to worklist and slice; we repeat this step until worklist

is empty. The resulting slice contains statements 1, 2, 4, 6, 7, 9, and 11, which are all statements in Sums

that affect the value of j in statement 9.

There have been several useful extensions to slicing algorithms. One problem with the static backward

slice that was developed by Weiser is that it contains all statements that may affect a given statement

14

during any program execution. A refinement of this static slice that eliminates the problem of additional

statements is a dynamic slice [1, 5]. Whereas a static slice is computed for all possible executions of the

program, a dynamic slice contains only those statements that affect a given statement during one execution

of the program. Thus, a dynamic slice is associated with each test case for the program. One technique for

computing a dynamic slice marks those nodes and edges in the PDG that are traversed during one execution

of a program and then takes a static slice for the statement restricted to the marked nodes.

Another type of slice that is useful is a forward slice[4]. A forward slice for a program point P and a

variable v consists of all those statements and predicates in the program that might be affected by the value

of v at P. A forward slice is computed by taking the transitive closure of the statements directly affected by

the value of v at P.

9 Alias Analysis

An alias is a name referring to the same memory location as another name, at a given program point.

In such a case, that memory locations can be accessed through any of these two names. Alias analyses

are concerned with the identification of such aliases within a program. Aliases are introduced by the use

of language constructs (e.g., pointers and reference parameters in C, references in Java). As an example,

consider the C code provided in Figure 15.

1. void main() {

2. int x, , y, *p;

3. read(x);

4. read(y);

5. p = &x;

6. *p = 0;

7. print(y/x);

8. }

Figure 15: An example of alias.

On line 6, pointer p points to the memory location that contains x. As a consequence, name ∗p and

name x refer to the same entity. In such a case, we say that ∗p is an alias for x at statement 6. Alias

analysis results are conveniently represented in terms of points-to sets (or graphs). Given a point n in the

program, and a name of a non-fixed location (i.e., a pointer) p, the points-to set for p at n contains all

the fixed-locations (i.e., the non-pointer variables) that p may refer to when the execution reaches n. For

example, in the code of Figure 15 the points-to set for ∗p at statement 6 would contain the only element x.

Taking into account aliasing allows for identifying side-effects in a program (i.e., effects due to indirect

modifications of the state of the program). In the example of Figure 15, the division by zero occurring at

statement 7 is due to the indirect modification of x through ∗p (i.e., it is due to a side effect of statement 6

related to the presence of aliases.)

A further example is provided in Figure 16. At statement 9, the name ∗p could refer to any of the two

variables x and y, depending on the path followed by the program during its execution (i.e., depending on

the execution path). In such a case, the points-to set for ∗p would include both x and y, as shown in the

comment associated with statement 9.

In general, the points-to information is a MAY kind of information. MAY information, as opposed to

MUST information, refers to some statically identified fact which may or may not hold during the execution

of the program. Referring to the previous example, name ∗p at statement 9 may or may not refer to

variable x (resp. y), depending on whether the specific execution path traverses statement 6 (resp., 8) or

15

1. void main() {

2. int x, y, *p;

3. x = read();

4. y = read();

5. if(x > y)

6. p=&x;

7. else

8. p=&y;

9. *p = read(); /* points-to set for *p = {x, y} */

10. print(x);

11. }

Figure 16: A further example of alias.

not. Moreover, also when the points-to set contains only one element, the information provided could still

be a MAY information, if the algorithm used for alias analysis is not precise enough. 4 A possible example

of that is provided in Figure 17.

1. void main() {

2. int x, y, *p;

3. x = read();

4. y = read();

5. if(x > y)

6. p=&x;

7. *p = read(); /* points-to set for *p = {x} */

8. print(x);

9. }

Figure 17: A single element, still imprecise, points-to set.

In this example, pointer p can either point to the address of variable x or be undetermined. Therefore,

we cannot safely assume that ∗p always refers to x. Further details on the different ways of computing alias

information and the description of a specific algorithm can be found in Reference [6].

10 Data-flow analysis in the presence of structures and pointers

Traditional data-flow analyses, as proposed for simple Pascal-like languages, have to be modified to be

applicable to languages as C. In fact, extensive use of pointers and complex structures renders the traditional

definition of DUA inadequate.

10.1 Data-flow analysis and pointers

The presence of pointers introduces an additional dimension to the problem of identifying DUAs. To see

how the traditional definition of DUA falls short in the presence of pointers, consider again the example of

C code provided in Figure 16. The first problem there is how to identify definitions and uses. For example,

how do we consider the assignment “∗p = read();”? According to the traditional definition, the statement

contains a definition of ∗p and no uses. If we take into account aliases this is not enough, since the execution

of the statement may also modify the value of either x or y, depending on the execution path. This means

that there is a DUA 〈x, n9, n10〉 in the program that has to be considered. Unfortunately, we cannot solve

the problem by simply adding x and y to the def set for statement 9. Doing so, we would kill any definition

4Due to the complexity of alias analysis, algorithms for computing alias information are usually approximated (i.e., imprecise),
but conservative (i.e., safe).

16

of x reaching statement 9, so we would miss the DUA 〈x, n3, n10〉. Note that both DUA 〈x, n9, n10〉 and

DUA 〈x, n3, n10〉 are actual DUAs for the program: the former occurs for every input to the program such

that x > y; the latter occurs for every input to the program such that x ≤ y.

One of the proposed solutions for this problem is to consider two different kinds of definitions and uses:

DDEF (Definite DEFinition) Traditional definition.

PDEF (Possible DEFinition) Definition of a variable through the dereference of a pointer. Such a defi-

nition is in general only possible, being alias information a MAY information.

DUSE (Definite USE) Traditional use.

PUSE (Possible USE) Use of a variable through the dereference of a pointer. Such an use is in general

only possible, being alias information a MAY information.

Figure 18 shows the DDEF, PDEF, DUSE, and PUSE sets for the example in Figure 16.

1. void main() {

2. int x, y, *p; // DDEF={} PDEF={} DUSE={} PUSE={}

3. x = read(); // DDEF={x} PDEF={} DUSE={} PUSE={}

4. y = read(); // DDEF={y} PDEF={} DUSE={} PUSE={}

5. if(x > y) // DDEF={} PDEF={} DUSE={x, y} PUSE={}

6. p=&x; // DDEF={p} PDEF={} DUSE={} PUSE={}

7. else // DDEF={} PDEF={} DUSE={} PUSE={}

8. p=&y; // DDEF={p} PDEF={} DUSE={} PUSE={}

9. *p = read(); // DDEF={*p} PDEF={x, y} DUSE={} PUSE={}

10. print(x); // DDEF={} PDEF={} DUSE={x} PUSE={}

11. }

Figure 18: DDEFs, PDEFs, DUSEs, and PUSEs.

The above sets can be used to tailor traditional data-flow algorithms to the case of languages with

pointers. Algorithms are modified as follows: (1) both definite and possible definitions and both definite and

possible uses are considered when identifying the definition and the use within a DUA, and (2) only definite

definitions are considered to be able to kill other definitions.

An additional concern is whether to consider a dereference of a pointer as a use of the pointer variable.

For example, for statement 9 of the previous example, we might want to consider “∗p = ...” as both a

definite definition of ∗p (and a possible definitions of ∗p’s aliases) and a definite use of p. If so, the data-flow

information shown in Figure 18 should be modified to include a definite use of p in statement 9. This would

lead to the identification of two additional DUAs: 〈p, n6, n9〉 and 〈p, n8, n9〉. Further details on data-flow

analysis for languages with pointers can be found in References [7, 8, 9].

10.2 Data-flow analysis and structures

As for pointers, the presence of structures in a program adds an additional dimension to the problem of

evaluating DUAs. The main issue here is whether a structure should be considered as a whole or its fields

should be distinguished, when performing data-flow analysis. In the former case, a definition (resp., use) of

any of the fields of a structure would be treated as a definition (resp., use) of the structure itself. Referring to

the example shown in Figure 19, statement 10 would be considered a definition of s, and statement 11 would

be considered a use of s. Therefore, the DUA 〈s, n10, n11〉, which is a spurious DUA, would be identified.

17

1. struct Bar {

2. int x;

3. int y;

4. };

8. main() {

9. struct Bar b;

10. b.x = read();

11. print(b.y);

12. }

Figure 19: A DUA involving a structure.

This approach allows for a faster analysis, and is still safe, but is less precise than the approach that

treats the different fields of a structure as distinguished entities. Applying this latter approach on the last

example, we would not have identified the spurious DUA: the definition at statement 10 would have been

considered a definition of s.x, and the use at statement 11 would have been considered a use of s.y.

When pointers and structures are both present at the same time, as it usually happens in C programs,

the different issues related to both aspects have to be considered. The example shown in Figure 20 provides

some evidence of the complexity of DUAs identification even for a very small-sized C program.

1. struct Bar {

2. int x;

3. int y;

4. };

5. struct Foo {

6. struct Bar* p_to_bar_in_foo;

7. }

8. main() {

9. int i, l;

10. struct Foo* p_to_foo, foo;

11. struct Bar bar;

12 l = read();

13. p_to_foo = &foo;

14. foo.p_to_bar_in_foo->p_to_y_in_bar = &i;

15. bar.p_to_y_in_bar = &l;

16. foo.p_to_bar_in_foo = &bar;

17. print(*p_to_foo->p_to_bar_in_foo->p_to_y_in_bar);

18. }

Figure 20: C code containing pointers and structures.

Consider for example statement 17. What is actually, or even possibly, defined when such statement is

executed? And what is used? The answers to those and similar questions highly depend on several factors,

among which the most relevant are the precision of the alias information available and the precision/efficiency

of the data-flow analysis we want to perform. Further details about the issues related to pointers and

structures when program analysis is concerned can be found in References [7, 13].

References

[1] H. Agrawal and J. R. Horgan. Dynamic program slicing. In Proceedings of the ACM SIGPLAN ’90

Conference on Programming Language Design and Implementation. SIGPLAN Notices, pages 246–56,

June 1990.

18

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-Wesley,

Reading, MA, 1986.

[3] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph and its use in opti-

mization. ACM Transactions on Programming Languages and Systems, 9(3):319–349, July 1987.

[4] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. ACM Transac-

tions on Programming Languages and Systems, 12(1):26–60, January 1990.

[5] B. Korel and J. Laski. Dynamic program slicing. Information Processing Letters, 29(3):155–63, October

1988.

[6] D. Liang and M. J. Harrold. Efficient points-to analysis for whole-program analysis. In Proceedings of

ESEC/FSE ’99, volume 1687 of LNCS, pages 199–215. Springer-Verlag, September 1999.

[7] A. Orso, D. Liang, S. Sinha, and M. J. Harrold. A framework for understanding data dependences.

Technical Report GIT-CC-02-13, College of Computing, Georgia Institute of Technology, March 2002.

[8] Alessandro Orso, Saurabh Sinha, and Mary Jean Harrold. Effects of pointers on data dependences. In

Proceedings of the 9th International Workshop on Program Comprehension (IWPC 2001), pages 39–49,

Toronto, Ontario, Canada, May 200.

[9] Alessandro Orso, Saurabh Sinha, and Mary Jean Harrold. Incremental slicing based on data-dependence

types. In Proceedings of the IEEE International Conference on Software Maintenance, pages 158–167,

Firenze, Italy, November 2001.

[10] K. J. Ottenstein and L. M. Ottenstein. The program dependence graph in a software development

environment. In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on

Practical Software Development Enviornments, pages 177–184, March 1984.

[11] S. Rapps and E. J. Weyuker. Selecting software test data using data flow information. IEEE Transactions

on Software Engineering, SE-11(4):367–375, April 1985.

[12] M. Weiser. Program slicing. IEEE Transactions on Software Engineering, 10(4):352–357, July 1984.

[13] Suan Hsi Yong, Susan Horwitz, and Thomas Reps. Pointer analysis for programs with structures and

casting. ACM SIGPLAN Notices, 34(5):91–103, May 1999.

19

