Chapter 1: The Challenges of Networked Games

Magda El Zarki
Dept. of CS
UC Irvine
elzarki@uci.edu
http://www.ics.uci.edu/~magda
There are many genres of games:
- FPS
- RPG
- Simulations
- Sports
- RTS

Each genre has different system requirements.
Common Themes in Games

- 3D virtual environment
- Real-time changes
- Collaboration with other users
 - Representation of users in the world (typically as avatars)
 - Text communication
 - Voice
- Virtual environment might mirror a real place but typically is a fantasy place
Common Themes

• One *client* is usually responsible for generating the view for *one user*

• A *set of clients* creates the *illusion* of a shared space

• “Illusion” because
 • Virtual environments can involve detailed *models*
 • Information about changes in models takes time to travel across communication links
Virtual Environment: Client and User

Client

User

Networked Virtual Environment Client

System Model

Software

Hardware

Modem

Interface

Understand

Mental Model

Sound

Actions

Image

Haptics

User
Networked Virtual Environment
Consistency and Plausibility

- **Local plausibility** is the appearance of consistency of only local actions
- **Shared plausibility** is the appearance of properties being the same as observed by users
 - *Objects that are in the background need not be consistent*
Definition of MultiPlayer Online Game (MPOG)

- By definition an online/network game must involve a network - a digital connection - that connects two or more computers.

- Multiplayer games are not necessarily networked games. Many early multiplayer games were hosted on one computer with players taking turns to make moves on a shared or split screen.

And.....

- Not all networked games are multiplayer. A user could be playing a game that is on a remote server without engaging any other players.

- Strictly speaking it is a software system that allows multiple users to interact with each other in real-time from different locations, usually remote, and preferably with immersive graphics.

Large, distributed, real-time, interactive system
MPOG by Definition MUST

Have a **Network** and Involve **Multiple players**
Characteristics of MPOGs

- A shared *sense* of *space*
- A shared *sense* of *presence*
- A shared *sense* of *time*
- *Communication channels*
- Ability to *manipulate* the *environment*
Why NVEs are not Standard Network Applications

- Unlike video/audio streaming, or web browsing, in an NVE or NG client, networking is NOT the main activity: rendering probably is.

- Some information changes very quickly and smoothly:
 - E.G. player positions

- Can incorporate other web-enabled media:
 - Audio/video

- Often require bulk download of assets
Components of MPOG Systems

- **Graphics Engines and Displays, Physical Engine**
 - Real time rendering, collision detection, opaqueness

- **Control and Communication Devices**
 - Input devices for game control - mouse, keyboard, joy stick, etc.
 - Input devices for communication - keyboard, microphone, camera, etc

- **Processing Systems**
 - System Architecture - Client - Server, P2P, Hybrid, Mobile
 - Realtime distributed system - shared dynamic space

- **Data Network**
 - Wireless vs Wireline
 - Last mile
Challenges of MPOG Design & Development

- Data Network
- Heterogeneity
- Distributed Interaction
- Real-time system design and resource management
- Failure Management
- Scalability - System Architecture
Data Network - Bandwidth

- More users means more information that needs to be communicated.
- Higher end/complex devices means more information that needs to be communicated.
- The network is a limited resource that is shared by many.
- Have to work within the constraints of the communication system.
- Control over the network resource is limited - invariably non existent unless the service is on a paid VPN (Battleping (battleping.com), WTFast (www.wtfast.com), Pingzapper (pingzapper.com)), which can give some quality of service guarantees.
Heterogeneity

- **Network heterogeneity** -
 - Not all users are connected to the network via the same access link
 - Some users may be more distant from the server than others - require more hops to send the data
 - To maintain fairness - drop to the lowest common denominator (LCD), but that could impact playability for better connected users

- **Graphics and processing heterogeneity** -
 - Users have very different systems that can compute, display and generate different types of visual data
 - Choosing what to display and what to omit is not an easy task as it could create an unfair advantage - e.g., not displaying foliage could make some players position visible in a shooting game that normally would not be
Distributed Interaction

- A networked game must support **accurate collision** detection, agreement, and resolution among participants.

- **Dynamic state** - Accurate collision detection is difficult because at any given point in time, no user has accurate information about the other users’ current positions.

- **Network delay** means that all received information is out-of-date. Messages are delayed, incur different delays, arrive out of order, lost.

- **Conflicts** - one user might conclude, based on stale information, that a collision occurred, while, in fact, the other user actually moved to avoid the collision during the network delay period.

- **Distributed acoustic** information is also impacted as position could impact the sound effects at a user’s device.
Real-Time System Design and Resource Management

- The system needs to be **responsive** - react to a user’s input - local plausability

- The system needs to process messages carrying position and action information from other users to maintain a “pseudo” **consistent view** - shared plausability

- Physics modeling and collision detection must be performed in **real-time** to provide a realistic environment for game play.
Failure Management

- **Network failures** - users are disconnected from the other players
- **Host/Server failures** - lost state and service for a multitude of players
- **Host/Server closure** - current players are OK, but new incoming players maybe prevented from joining the system
- **Part failures** - some aspect of the system is malfunctioning and may not stop play but could affect the quality of play, e.g., the audio server
Scalability

• Two forms of scalability:
 • Number of end hosts connected simultaneously to the system
 • Number of game entities that are part of the game environment that can change over time

• Both forms, when they go up in number, will require lots more processing power and network resources to communicate game state for consistent game views
Intricacy of a MPOG System

- **Very complex** - designer/developer does not have control over all aspects of the system, e.g., the data network, the end user devices, etc.

- **Engineering tradeoffs** - balance the system and make the game “playable” at all levels for a very heterogeneous environment.

- **Many components** - other than the direct gaming components - databases, security, redundancy, accounting,......