
Ch 3: Networking
Services: NAT, DHCP, DNS,

Multicasting, NTP
Magda El Zarki

Prof. of CS
Univ. of CA, Irvine

Email: elzarki@uci.edu
http: www.ics.uci.edu/~magda

Network Address Translation - NAT

Translation from internal, hidden, IP addresses to valid
external Internet addresses.

Saves costs

Increases the number of available addresses

Secure – devices behind a firewall

3

Private Network
�  Private IP network is an IP network that is not accessible to the

Internet. It is closed and self contained.

�  IP addresses in a private network can be assigned arbitrarily.
�  Not registered and not guaranteed to be globally unique

�  Generally, private networks use addresses from the following
experimental address ranges (non-routable addresses):
�  10.0.0.0 – 10.255.255.255
�  172.16.0.0 – 172.31.255.255
�  192.168.0.0 – 192.168.255.255

�  Private networks can be connected to the Internet via a router
but the devices are not directly accessible from the outside.

4

Private Addresses

H1

R1

H2

10.0.1.3

10.0.1.1

10.0.1.2

H3

R2

H4

10.0.1.310.0.1.2

Private network 1

Internet

H5

10.0.1.1
Private network 1

 213.168.112.3

128.195.4.119 128.143.71.21

5

Network Address Translation
(NAT)

�  NAT is a router function where IP addresses (and
possibly port numbers) of IP datagrams are replaced at
the boundary of a private network

�  NAT is a method that enables hosts on private networks
to communicate with hosts on the Internet

�  NAT is run on routers that connect private networks to the
public Internet, to replace the IP address-port pair of an
IP packet with another IP address-port pair.

6

Basic operation of NAT

�  NAT device has address translation table

�  One to one address translation

H1

private address: 10.0.1.2
public address: 128.143.71.21

H5

Private
network

Internet

Source = 10.0.1.2
Destination = 213.168.112.3

Source = 128.143.71.21
Destination = 213.168.112.3

public address: 213.168.112.3
NAT
device

Source = 213.168.112.3
Destination = 128.143.71.21

Source = 213.168.112.3
Destination = 10.0.1.2

Private
Address

Public
Address

10.0.1.2 128.143.71.21

7

Pooling of IP addresses

�  Scenario: Corporate network has many hosts but only a
small number of public IP addresses

�  NAT solution:
�  Corporate network is managed with a private address space
�  NAT device, located at the boundary between the corporate

network and the public Internet, manages a pool of public IP
addresses

�  When a host from the corporate network sends an IP
datagram to a host in the public Internet, the NAT device
picks a public IP address from the address pool, and binds
this address to the private address of the host

7

Pooling of IP addresses

H1

private address: 10.0.1.2
public address:

H5

Private
network

Internet

Source = 10.0.1.2
Destination = 213.168.112.3

Source = 128.143.71.21
Destination = 213.168.112.3

public address: 213.168.112.3
NAT
device

Private
Address

Public
Address

10.0.1.2

Pool of addresses: 128.143.71.0-128.143.71.30

128.143.71.21

9

Supporting migration between network service
providers

�  Scenario: In CIDR, the IP addresses in a corporate network are
obtained from the service provider. Changing the service provider
requires changing all IP addresses in the network.

�  NAT solution:
�  Assign private addresses to the hosts of the corporate network
�  NAT device has static address translation entries which bind the

private address of a host to the public address.
�  Migration to a new network service provider merely requires an

update of the NAT device. The migration is not noticeable to the
hosts on the network.

Note:
�  The difference to the use of NAT with IP address pooling is that

the mapping of public and private IP addresses is static.

10

Supporting migration between network service
providers

H1

private address: 10.0.1.2
public address: 128.143.71.21

128.195.4.120

Source = 10.0.1.2
Destination = 213.168.112.3

NAT
device

Private
Address

Public
Address

10.0.1.2 128.143.71.21
128.195.4.120

128.143.71.21

128.195.4.120

Source = 128.143.71.21
Destination = 213.168.112.3

Source = 128.195.4.120
Destination = 213.168.112.3

ISP 2
allocates address block

128.195.4.0/24 to private
network:

Private
network

ISP 1
allocates address block

128.143.71.0/24 to private
network:

11

IP masquerading

�  Also called: Network address and port translation
(NAPT), port address translation (PAT).

�  Scenario: Single public IP address is mapped to multiple
hosts in a private network.

�  NAT solution:
�  Assign private addresses to the hosts of the corporate

network
�  NAT device modifies the port numbers for outgoing traffic

12

IP masquerading

H1

private address: 10.0.1.2

Private network

Source = 10.0.1.2
Source port = 2001

Source = 128.143.71.21
Source port = 2100

NAT
device

Private
Address

Public
Address

10.0.1.2/2001 128.143.71.21/2100

10.0.1.3/3020 128.143.71.21/4444

H2

private address: 10.0.1.3

Source = 10.0.1.3
Source port = 3020

Internet

Source = 128.143.71.21
Destination = 4444

128.143.71.21

13

Load balancing of servers

�  Scenario: Balance the load on a set of identical servers,
which are accessible from a single IP address

�  NAT solution:
�  Here, the servers are assigned private addresses
�  NAT device acts as a proxy for requests to the server from

the public network
�  The NAT device changes the destination IP address of

arriving packets to one of the private addresses for a server
�  A sensible strategy for balancing the load of the servers is to

assign the addresses of the servers in a round-robin fashion.

14

Load balancing of servers

Private network

Source = 213.168.12.3
Destination = 128.143.71.21

NAT
device

Private
Address

Public
Address

10.0.1.2 128.143.71.21

Inside network

10.0.1.4 128.143.71.21

Internet
128.143.71.21

S1

S2

S3

10.0.1.4

10.0.1.3

10.0.1.2

Source
= 128.195.4.120

Destination = 10.0.1.2

Public
Address

 128.195.4.120

Outside network

 213.168.12.3

Source = 128.195.4.120
Destination = 128.143.71.21

Source
= 128.195.4.120

Destination = 10.0.1.4Source: 213.168.12.3
Destination: 10.0.1.4

Public Source
Address

This is a situation where one public address is shared by several machines
inside a private network for the sole purpose of load balancing.

Here we see that IP address 128.143.71.21 is shared by several machines.
The NAT device uses a round robin technique to distribute the incoming
requests to the servers. The source addresses of incoming requests are used to
distinguish between the traffic streams connected to the internal servers.

NAT: Public Services and P2P
�  NAT does not allow outside (public) access to any

machine behind the NAT device if there is no unique
public IP address associated (directly mapped) with a
specific internal IP address.
�  In other words, it can bypass traffic that is addressed to a

device that is behind the NAT device if it has a public IP
address allocated to it (i.e., mapped to its internal
address).

�  Services such as Web hosting, FTP, can be addressed by
the one to one mapping of a specific IP address.

�  P2P services (Skype, Spotify, etc.) cannot be hosted
unless a specific server called a moderator/tracker/
relay is used to serve as a go between.

Possible NAT Scenarios

Hole Punching: UDP and TCP
�  One of the most effective methods of establishing peer-

to-peer communication between hosts on different
private networks is known as “hole punching.”

�  Hole punching enables applications to function within
the default security policy of most NATs, effectively
signaling to NATs on the path that peer-to-peer
communication sessions are “solicited” and thus should
be accepted.

�  Unfortunately, no traversal technique works with all
existing NATs, because NAT behavior is not standardized.

�  We will focus on the simplest hole punching technique
that works cleanly and robustly in the presence of
“well-behaved” NATs in any reasonable network
topology.

NAT Terminology
�  The notion of session:

“A session endpoint for TCP or UDP is an (IP address, port number) pair, and a
particular session is uniquely identified by its two session endpoints.”

�  From the perspective of one of the hosts involved, a session is
effectively identified by the 4-tuple (local IP, local port, remote IP,
remote port).

�  The direction of a session is normally the flow direction of the packet
that initiates the session: the initial SYN packet for TCP, or the first user
datagram for UDP.

�  The most common type of NAT is traditional or outbound NAT, which
provides an asymmetric bridge between a private network and a public
network.

�  Outbound NAT has two sub-varieties: Basic NAT, which only translates IP
addresses, and Network Address/Port Translation (NAPT), which
translates entire session endpoints.

�  Hole punching uses NAPT.

Understanding the Problem
�  The key to the NAT puzzle lies in the fact that in order for

machines behind a NAT gateway to interact with the public
Internet, NAT devices necessarily have to allow inbound
traffic—that is, replies to requests originating from behind
the NAT device.

�  NAT devices allow traffic through to a particular host behind a
NAT device, provided the traffic is a reply to a request sent
by the NAT device.

�  NAT devices vary widely in operation, and they let through
replies coming from other hosts and port numbers, depending
on their own notion of what a reply means.

�  So instead of connecting directly to the host behind NAT
(impossible), we need to mimic a scenario in which the target
host originates a connection to us and then we connect to it
as though we are responding to the request. In other words,
our connection request to the target host should seem like a
reply to the NAT device.

Approach
�  First is the issue of how to get the private host to originate

traffic so we can send our connection request to it
masquerading as a reply.

�  BUT, NAT devices also have an idle timer, typically of around
60 seconds, they stop waiting for replies once a request
originates and no reply comes within 60 seconds. So, it is not
enough that the private host originate traffic, but also we
have to act fast—we have to send the “reply” before the NAT
device removes the “association” with the private host,
which will frustrate the connection attempt.

�  This solution works fine if the other PEER is on a public
network. So if timing is not an issue, i.e., response comes
back fast enough, we are set.

Relaying Using an Intermediate
Server – P2P both behind NAT
�  Relaying - A reliable, but least efficient method for P2P

communication across NAT is simply to make the communication
look to the network like standard client/server communication,
through relaying.

�  Two client hosts, A and B, each initiate TCP or UDP connections
to a well-known “rendezvous” server S, at S’s global IP address
YY and a predetermined port number XX.

�  The two clients simply use the server S to relay messages
between them along along their already-established client/
server connections, and server S forwards the messages.

�  Connections (TCP and UDP) have to be persistent. NAT times out
UDP NAPT connections, so it has to happen fast or host has to
continue sending “keep alive” UDP packets to the server to
maintain the connection. TCP session has to be kept alive too.

�  Disadvantage: uses server processing power and network
bandwidth.

Relaying

Traversal By Connection Reversal
Using a Server – Public to Private

�  Going from a host/peer on the public IP internet to a host/
peer on a private network with no dedicated public IP
address.

�  Use a “rendezvous” server, listening on a global IP address
through a persistent TCP or UDP connection.

�  If A on a private network wants to initiate a connection to B
on a public network, then a direct connection attempt works
automatically, because B is not behind a NAT and A’s NAT
interprets the connection as an outgoing session.

�  If B wants to initiate a connection to A, however, any direct
connection attempt to A is blocked by A’s NAT.

�  B can instead relay a connection request to A through a well-
known server S, asking A to attempt a “reverse” connection
back to B.

Connection Reversal

UDP Hole Punching - Basic Idea

�  UDP hole punching enables two clients to set up a direct P2P
UDP session with the help of a well-known “rendezvous”
server, even if the clients are both behind NATs. I.e,
eliminates the “Server” function after connection setup.

�  Hole punching assumes that the two clients, A and B, already
have active UDP sessions with a “rendezvous” server S.

�  When a client registers with S, the server records two
endpoints for that client: the (IP address, UDP port) pair that
the client is using to talk with S, and the (IP address, UDP
port) pair that the server observes the client to be using to
talk with it. (private pair and public pair)

�  We refer to the first pair as the client’s private endpoint and
the second as the client’s public endpoint.

Obtaining the Clients’ Private
Addresses
�  The server might obtain the client’s private endpoint from

the client itself in a field in the body of the client’s
registration message, and obtain the client’s public endpoint
from the source IP address and source UDP port fields in the
IP and UDP headers of that registration message.

�  A few NATs are known to scan the body of UDP datagrams for
4-byte fields that look like IP addresses, and translate them
as they would the IP address fields in the IP header.

�  To be robust against such behavior, applications may wish to
obfuscate IP addresses in message bodies, for example:
�  by transmitting the one’s complement of the IP address

instead of the IP address itself. Or
�  if the application is encrypting its messages, then this

behavior is not likely to be a problem.

Establishing P2P Sessions
1.  A initially does not know how to reach B, so A asks S for help

establishing a UDP session with B.

2.  S replies to A with a message containing B’s public and private
endpoints. At the same time, S uses its UDP session with B to
send B a connection request message containing A’s public and
private endpoints. Once these messages are received, A and B
know each other’s public and private endpoints.

3.  When A receives B’s public and private endpoints from S, A
starts sending UDP packets to both of these endpoints, and
subsequently “locks in” whichever endpoint first elicits a valid
response from B.

4.  Similarly, when B receives A’s public and private endpoints in
the forwarded connection request, B starts sending UDP
packets to A at each of A’s known endpoints, locking in the first
endpoint that works.

5.  The order and timing of these messages are not critical as long
as they are asynchronous.

Before Hole Punching

Hole Punching Process

After Hole Punching

Hole Punching Scenarios
�  Three possible scenarios:

1.  Two clients reside behind the same NAT, on one private
network (example above)

2.  The clients reside behind different NATs, different private
networks

3.  The clients each reside behind two levels of NAT: a common
“first-level”NAT deployed by an ISP for example, and distinct
“second-level” NATs such as consumer NAT routers for home
networks

�  It is in general difficult or impossible for the application itself
to determine the exact physical layout of the network, and
thus which of these scenarios (or the many other possible
ones) actually applies at a given time.

�  Nevertheless, hole punching works automatically in all of
these scenarios without the application having to know the
specific network organization, as long as the NATs involved
behave in a “reasonable” fashion, i.e., don’t overwrite IP
addresses and port numbers in bodies of messages.

More complicated examples

TCP Hole Punching
�  Sockets and TCP Port Re-use: The main practical challenge to

applications wishing to implement TCP hole punching is not a
protocol issue but an application programming interface (API)
issue.
�  the API allows a TCP stream socket to be used to initiate an

outgoing connection via connect(), or to listen for incoming
connections via listen() and accept(), but not both.

�  TCP sockets usually have a one-to-one correspondence to TCP
port numbers on the local host: after the application binds
one socket to a particular local TCP port, attempts to bind a
second socket to the same TCP port fail.

�  For TCP hole punching to work, however, we need to use a
single local TCP port to listen for incoming TCP connections
and to initiate multiple outgoing TCP connections
concurrently, i.e, DO BOTH.

Sockets versus Ports for Hole Punching

Opening P2P TCP Streams

�  Client A wishes to set up a TCP connection with client B. We
assume as usual that both A and B already have active TCP
connections with a well-known “rendezvous” server S. The
server records each registered client’s public and private
endpoints, just as for UDP. At the protocol level, TCP hole
punching works almost exactly as for UDP:
1.  Client A uses its active TCP session with S to ask S for help

connecting to B.

2.  S replies to A with B’s public and private TCP endpoints, and at
the same time sends A’s public and private endpoints to B.

3.  From the same local TCP ports that A and B used to register with
S, A and B each asynchronously make outgoing connection
attempts to the other’s public and private endpoints as reported
by S, while simultaneously listening for incoming connections on
their respective local TCP ports.

Contd.
4.  A and B wait for outgoing connection attempts to

succeed, and/or for incoming connections to appear. If
one of the outgoing connection attempts fails due to a
network error such as “connection reset” or “host
unreachable,” the host simply re-tries that connection
attempt after a short delay (e.g., one second), up to
an application-defined maximum timeout period.

5.  When a TCP connection is made, the hosts
authenticate each other to verify that they connected
to the intended host. If authentication fails, the
clients close that connection and continue waiting for
others to succeed. The clients use the first successfully
authenticated TCP stream resulting from this process.

Properties of P2P Friendly NATs
1.   Consistent Endpoint Translation

�  NAT “focuses” all sessions originating from a single private
endpoint through the same public endpoint on the NAT. E.g.,
When client A initially contacted the well-known server S, NAT A
chose to use port 62000 at its own public IP address,
155.99.25.11, as a temporary public endpoint to representing A’s
private endpoint 10.0.0.1:4321.

�  When A later attempts to establish a peer-to-peer session with B
by sending a message from the same local private endpoint to B’s
public endpoint, A depends on NAT A preserving the identity of
this private endpoint, and re-using the existing public endpoint of
155.99.25.11:62000, because that is the public endpoint for A to
which B will be sending its corresponding messages.

�  A NAT that is only designed to support client/server protocols will
not necessarily preserve the identities of private endpoints in this
way. E.g., after the NAT assigns the public endpoint
155.99.25.11:62000 to client A’s session with server S, the NAT
might assign a different public endpoint, such as
155.99.25.11:62001, to the P2P session that A tries to initiate
with B. In this case, the hole punching process fails to provide
connectivity, because the subsequent incoming messages from B
reach NAT A at the wrong port number.

Contd.
2.   Handling Unsolicited TCP Connections

�  When a NAT receives a SYN packet on its public side for
what appears to be an unsolicited incoming connection
attempt, it is important that the NAT just silently drop the
SYN packet.

�  Some NATs instead actively reject such incoming
connections by sending back a TCP RST packet or even an
ICMP error report, which interferes with the TCP hole
punching process.

3.   Leaving Payloads Alone
�  A few existing NATs are known to scan “blindly” through

packet payloads for 4-byte values that look like IP
addresses, and translate them as they would the IP address
in the packet header, without knowing anything about the
application protocol in use. This bad behavior fortunately
appears to be uncommon, and applications can easily
protect themselves against it by obfuscating IP addresses
they send in messages.

41

Concerns about NAT

�  Performance:
�  Modifying the IP header by changing the IP address requires

that NAT boxes recalculate the IP header checksum
�  Modifying port number and IP address requires that NAT

boxes recalculate TCP and UDP checksum (pseudo header)

�  Fragmentation
�  Care must be taken that a datagram that is fragmented

before it reaches the NAT device, is not assigned a different
IP address or different port numbers for each of the
fragments.

42

Concerns about NAT

� End-to-end connectivity:
�  NAT destroys universal end-to-end reachability of hosts on

the Internet.
�  A host in the public Internet often cannot initiate

communication to a host in a private network.
�  The problem is worse, when two hosts that are in a private

network need to communicate with each other.

43

Concerns about NAT

�  IP address in application data:
�  Applications that carry IP addresses in the payload of the

application data generally do not work across a private-
public network boundary.

�  Some NAT devices inspect the payload of widely used
application layer protocols and, if an IP address is detected
in the application-layer header or the application payload,
translate the address according to the address translation
table.

Dynamic Host Control Protocol - DHCP

Mostly to facilitate the management of mobile devices.

Allows an active device to obtain a temporary IP address
that is valid on the local IP subnet.

IP address is released when device moves to another
subnet.

45

Dynamic Assignment of IP
addresses

�  Dynamic assignment of IP addresses is desirable for
several reasons:
�  IP addresses are assigned on-demand
�  Avoid manual IP configuration
�  Support mobility of laptops

46

DHCP Message Types
Value Message Type

1 DHCPDISCOVER

2 DHCPOFFER

3 DHCPREQUEST

4 DHCPDECLINE

5 DHCPACK

6 DHCPNAK

7 DHCPRELEASE

8 DHCPINFORM

47

Message Types

�  DHCPDISCOVER: Broadcast by a client to find available DHCP
servers.

�  DHCPOFFER: Response from a server to a DHCPDISCOVER and
offering IP address and other parameters.

�  DHCPREQUEST: Message from a client to servers that does one of
the following:
�  Requests the parameters offered by one of the servers and

declines all other offers.
�  Verifies a previously allocated address after a system or network

change (a reboot for example).
�  Requests the extension of a lease on a particular address.

48

Contd.
�  DHCPACK: Acknowledgement from server to client with parameters, including

IP address.

�  DHCPNACK: Negative acknowledgement from server to client, indicating that
the client's lease has expired or that a requested IP address is incorrect.

�  DHCPDECLINE: Message from client to server indicating that the offered
address is already in use.

�  DHCPRELEASE: Message from client to server canceling remainder of a lease
and relinquishing network address.

�  DHCPINFORM: Message from a client that already has an IP address
(manually configured for example), requesting further configuration parameters
from the DHCP server.

49

DHCP Interaction (simplified)
Argon

00:a0:24:71:e4:44 DHCP Server

DHCP Request
00:a0:24:71:e4:44
Sent to 255.255.255.255

Argon
128.143.137.144

00:a0:24:71:e4:44 DHCP Server
DHCP Response:
IP address: 128.143.137.144
Default gateway: 128.143.137.1
Netmask: 255.255.0.0

50

DHCP Operation – First search for
DHCP servers

�  DCHP DISCOVER

DHCP Client
00:a0:24:71:e4:44 DHCP Server

DHCPDISCOVER
Sent to 255.255.255.255

DHCP Server

DHCP Client
00:a0:24:71:e4:44 DHCP Server

DHCP Server

DHCPOFFER

DHCPOFFER•  DCHP OFFER

51

Client-Server Interactions

�  The client broadcasts a DHCPDISCOVER message on its local
physical subnet.
�  The DHCPDISCOVER message may include some options such

as network address suggestion or lease duration.

�  Each server may respond with a DHCPOFFER message that includes
an available network address (your IP address) and other
configuration options.
�  The servers record the address as offered to the client to prevent

the same address being offered to other clients in the event of
further DHCPDISCOVER messages being received before the first
client has completed its configuration.

52

DHCP Operation - accepts offer
from one server

DHCP Client
00:a0:24:71:e4:44 DHCP Server

DHCP Server

DHCPREQUEST

DHCPACK•  DCHP REQUEST
Accepts one offer

At this time, the DHCP
client can start to use the IP
address

DHCP Client
00:a0:24:71:e4:44 DHCP Server

DHCP Server

DHCPREQUEST

DHCPACK

•  Renewing a Lease (sent
when 50% of lease has
expired)

•  If DHCP server sends
DHCPNACK, then address
is released when timer
expires

53

Contd.

�  If the client receives one or more DHCPOFFER messages
from one or more servers.
�  The client chooses one based on the configuration

parameters offered and broadcasts a DHCPREQUEST
message that includes the server identifier option to indicate
which message it has selected and the requested IP
address option, taken from your IP address in the selected
offer.

�  In the event that no offers are received, if the client has
knowledge of a previous network address, the client may
reuse that address if its lease is still valid, until the lease
expires.

54

Contd.
�  The servers receive the DHCPREQUEST broadcast from the client.

�  Those servers not selected by the DHCPREQUEST message use
the message as notification that the client has declined that
server's offer.

�  The server selected in the DHCPREQUEST message commits
the binding for the client to persistent storage and responds with a
DHCPACK message containing the configuration parameters for
the requesting client.

55

Contd.

�  The combination of client hardware and assigned
network address constitute a unique identifier for the
client's lease and are used by both the client and server
to identify a lease referred to in any DHCP messages.

�  The your IP address field in the DHCPACK messages
contains/confirms the selected network address.

56

Contd.

�  The client receives the DHCPACK message with configuration
parameters.
�  The client performs a final check on the parameters, for

example with ARP for allocated network address, and notes
the duration of the lease and the lease identification cookie
specified in the DHCPACK message. At this point, the client
is configured.

�  If the client detects a problem with the parameters in the
DHCPACK message (the address is already in use on the
network, for example), the client sends a DHCPDECLINE
message to the server and restarts the configuration
process.

57

Contd.

�  The client should wait a minimum of ten seconds before
restarting the configuration process to avoid excessive network
traffic in case of looping.

�  On receipt of a DHCPDECLINE, the server must mark the
offered address as unavailable (and possibly inform the system
administrator that there is a configuration problem).

�  If the client receives a DHCPNAK message, the client restarts
the configuration process.

58

DHCP Operation - Release

DHCP Client
00:a0:24:71:e4:44 DHCP Server

DHCP Server

DHCPRELEASE
•  DCHP RELEASE

At this time, the DHCP
client has released the IP
address

59

Contd.

�  The client may choose to relinquish its lease on a
network address by sending a DHCPRELEASE message
to the server.

�  The client identifies the lease to be released by including
its network address and its hardware address.

60

Lease Renewal

�  When a server sends the DHCPACK to a client with IP address
and configuration parameters, it also registers the start of the
lease time for that address.

�  This lease time is passed to the client as one of the options in
the DHCPACK message, together with two timer values, T1
and T2.

�  The client is rightfully entitled to use the given address for the
duration of the lease time.

61

Contd.

�  On applying the receive configuration, the client also starts the
timers T1 and T2. At this time, the client is in the BOUND state.

�  Times T1 and T2 are options configurable by the server but T1
must be less than T2, and T2 must be less than the lease time.

�  According to RFC 2132, T1 defaults to (0.5 * lease time) and
T2 defaults to (0.875 * lease time).

62

Contd.

�  When timer T1 expires, the client will send a DHCPREQUEST
(unicast) to the server that offered the address, asking to extend the
lease for the given configuration. The client is now in the RENEWING
state

�  The server would usually respond with a DHCPACK message
indicating the new lease time, and timers T1 and T2 are reset at the
client accordingly.

�  The server also resets its record of the lease time.

�  Under normal circumstances, an active client would continually renew
its lease in this way indefinitely, without the lease ever expiring.

63

Contd.

�  If no DHCPACK is received until timer T2 expires, the
client enters the REBINDING state.

�  Client now broadcasts a DHCPREQUEST message to
extend its lease.

�  This request can be confirmed by a DHCPACK message
from any DHCP server on the network.

64

Contd.

�  If the client does not receive a DHCPACK message after
its lease has expired, it has to stop using its current TCP/
IP configuration.

�  The client may then return to the INIT state, issuing a
DHCPDISCOVER broadcast to try and obtain any valid
address.

65

DHCP Pros
�  It relieves the network administrator of a great deal of manual

configuration work.

�  The ability for a device to be moved from network to network and to
automatically obtain valid configuration parameters for the current
network can be of great benefit to mobile users.

�  Because IP addresses are only allocated when clients are actually
active, it is possible, by the use of reasonably short lease times and
the fact that mobile clients do not need to be allocated more than one
address, to reduce the total number of addresses in use in an
organization.

66

DHCP Cons

�  Uses UDP, an unreliable and insecure protocol.

�  DNS cannot be used for DHCP configured hosts.

67

Domain Name Service - DNS

Mostly to facilitate the management and accessibility
of hosts on the Internet.
Allows users to access a host using a name instead of
an IP address.
Names are mapped onto a valid IP address for routing
through the Internet.

68

What is DNS?
�  DNS is a host name to IP address translation service

�  DNS is
�  a distributed database implemented in a hierarchy of

name servers
�  an application level protocol for message exchange

between clients and servers

69

Why DNS?
�  It is easier to remember a host name than it is to

remember an IP address.

�  A name has more meaning to a user than a 4 byte
number.

�  Applications such as FTP, HTTP, email, etc., all require
the user to input a destination.

�  The user generally enters a host name.

�  The application takes the host name supplied by the user
and forwards it to DNS for translation to an IP address.

70

How does it work?
�  DNS works by exchanging messages between client

and server machines.

�  A client application will pass the destination host
name to the DNS process (in Unix referred to as the
gethostbyname() routine) to get the IP address.

�  The application then sits and waits for the response
to return.

71

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS servers yahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

Distributed, Hierarchical Database

Client wants IP for www.amazon.com; 1st approx:

�  client queries a root server to find “com” DNS server

�  client queries “com” DNS server to get “amazon.com”
DNS server

�  client queries “amazon.com” DNS server to get IP
address for “www.amazon.com”

Top Level Domain
Servers Authorative Domain Servers

74

DNS: Root name servers
�  contacted by local name server that cannot resolve name

�  root name server:
�  contacts authoritative name server if name mapping not known
�  gets mapping
�  returns mapping to local name server

 limited number of
root name server
operators
worldwide

USC-ISI Marina del Rey, CA
ICANN Los Angeles, CA

NASA Mt View, CA
Internet Systems Consortium. Palo Alto, CA

Autonomica, Stockholm

RIPE London

WIDE Tokyo

Verisign Dulles, VA
Cogent Comm. Herndon, VA
U Maryland College Park, MD
US DoD Vienna, VA
ARL Aberdeen, MD
Verisign

75

TLD and Authoritative Servers
� Top-level domain (TLD) servers:
�  responsible for com, org, net, edu, etc, and all

top-level country domains uk, fr, ca, jp.
�  Network Solutions maintains servers for com

TLD
�  Educause for edu TLD

� Authoritative DNS servers:
�  organization’s DNS servers, providing

authoritative hostname to IP mappings for
organization’s servers (e.g., Web, mail).

�  can be maintained by organization or service
provider

76

Local Name Server
�  does not strictly belong to hierarchy

�  each ISP (residential ISP, company, university) has
one.
�  also called “default name server”

�  when host makes DNS query, query is sent to its
local DNS server
�  acts as proxy, forwards query into hierarchy

77

DNS Queries

�  Recursive:
�  The client machine sends a request to the local name

server, which, if it does not find the address in its
database, sends a request to the root name server,
which, in turn, will route the query to an intermediate
or authoritative name server. Note that the root name
server can contain some hostname to IP address
mappings. The intermediate or Top Level name server
always knows who the authoritative name server is.

local DNS
server

dns.poly.edu

requesting host
cis.poly.edu

authoritative DNS server
dns.cs.umass.edu

78

destination host
gaia.cs.umass.edu

root DNS
server

1

2

4 5

6 7

8

TLD DNS
server

3

•  Host at cis.poly.edu
wants IP address
for:
gaia.cs.umass.edu

recursive query:
❒  puts burden of

name resolution on
contacted root
name server

❒  heavy load

DNS name resolution example

79

DNS Queries (cont’d)
�  Iterative:

�  The local server queries the root server. If address not
in its database, will have the name/address of an
intermediate or authoritative name server and forward
that information to the local name server so that it can
directly communicate with the intermediate or
authoritative name server. This is to prevent the
overloading of the root servers that handle millions of
requests.

requesting host
cis.poly.edu

authoritative DNS
server

dns.cs.umass.edu

80

destination
gaia.cs.umass.edu

root DNS
server

local DNS server
dns.poly.edu

1

2
3

4
5

6 7 8

TLD DNS server

DNS name resolution example
�  Host at cis.poly.edu

wants IP address for
gaia.cs.umass.edu

iterated query:
❒  contacted server

replies with name of
server to contact

->“I don’t know this
name, but ask this
server”

81

DNS: caching and updating
records

�  once (any) name server learns a mapping, it
caches mapping
�  cache entries timeout (disappear) after some time
�  TLD servers typically cached in local name servers

�  Thus root name servers not often visited

82

Operation of DNS
�  The DNS data is stored in the database in the form

of resource records (RR). The RRs are directly
inserted in the DNS messages.

�  The RRs are a 4 tuple that consist of: {name, value,
type, TTL}.

83

RRs
�  TTL: time to live, used to indicate when an RR can

be removed from the DNS cache.

�  Type =
�  A - then NAME is a hostname and Value its IP address
�  NS - then NAME is a domain name and Value is the IP

address of an authoritative name server
�  CNAME - then NAME is an alias for a host and Value is the

canonical (actual) name for the host
�  MX - then NAME is an alias for an email host and Value is

the canonical (actual) name for the email server

84

DNS records
DNS: distributed db storing resource records (RR)

o  Type=NS
o  name is domain (eg.,

foo.com)

o  value is hostname of
authoritative name
server for this domain

RR format: (name, value, type, ttl)

o  Type=A
o  name is hostname
o  value is IP address

o  Type=CNAME
o  name is alias name for

some “canonical” (the
real) name, eg.,
www.ibm.com is really
servereast.backup2.ibm.com

o  value is canonical name

o  Type=MX
o  value is canonical

name of mailserver
associated with name

85

Summary
�  DNS provides a mechanism for maintaining the user

friendliness of the Internet by hiding some of the
operational details.

�  DNS servers have to be created manually. Recently
an update protocol was introduced that allows DNS
to exchange data for additions and deletions.

86

IP Multicasting

The ability to send a message from one device to multiple (N)
devices without having to send to each device individually.
The Internet manages the duplication at splitting points in the
network

87

Multicasting
�  Multicast communications refers to one-to-many or many-to-

many communications.

IP Multicasting refers to the implementation of multicast communication in the Internet

Unicast Broadcast Multicast

88

Multicasting over a Packet
Network

•  Without support for multicast at the network layer:

Multiple copies
of the same
message are
transmitted on
the same link

89

Multicasting over a Packet
Network

•  With support for multicast at the network layer:

Requires a set of mechanisms:

•  Fewer copies of packet are sent over the links

•  Multicast routing algorithm which builds a
spanning tree (dynamically)

•  Packet forwarding can send multiple copies of
same packet where necessary

90

Semantics of IP Multicast

IP multicast works as follows:
�  Multicast groups are identified by IP addresses in the range

224.0.0.0 - 239.255.255.255 (OLD class D address)
�  Every host (more precisely: interface) can join and leave a

multicast group dynamically
�  no access control

�  Every IP datagram sent to a multicast group is transmitted to
all members of the group

�  The IP Multicast service is unreliable

91

Network Interface

IP IP Multicast

UDP TCP

Socket Layer

 Stream Sockets Datagram Sockets Multicast Sockets

User Layer

The IP Protocol Stack
�  IP Multicasting only supports UDP as higher layer

�  There is no multicast TCP !

Application Layer

Class D 1 multicast group id
28 bits

01 1

92

Multicast Addressing

Class From To

D 224.0.0.0 239.255.255.255

•  Multicast addresses are dynamically assigned.

•  An IP datagram sent to a multicast address is forwarded to everyone
who has joined the multicast group

•  If an application is terminated, the multicast address is (implicitly)
released.

93

Types of Multicast addresses
�  The range of addresses between 224.0.0.0 and 224.0.0.255,

inclusive, is reserved for the use of routing protocols and
other low-level topology discovery or maintenance protocols

�  Multicast routers should not forward any multicast datagram
with destination addresses in this range.

�  Examples of special and reserved multicast addresses:

224.0.0.1 All systems on this subnet
224.0.0.2 All routers on this subnet
224.0.1.1 NTP (Network Time Protocol)
224.0.0.9 RIP-2 (a routing protocol)

94

Multicast Address Translation

�  In Ethernet MAC addresses, a multicast address is identified
by setting the lowest bit of the “left most byte”

-------1-------- -------- -------- -------- --------

Not all Ethernet cards can filter multicast addresses in hardware
Then: Filtering is done in software by device driver.

95

Multicast Address Mapping

0000000100000000 01011110 0------- Ethernet
Address

1110xxxx x------- -------- -------- Class D
IP Address

Identifes
Class D

Ignored 23-bit
address

-------- --------

Ethernet Addresses
with 01:00:5e in the
first 3 bytes are
reserved for IP
multicast

Multicast

Multicast
Address

96

IGMP

�  The Internet Group Management Protocol (IGMP) is a simple
protocol for the support of IP multicast.

�  IGMP is defined in RFC 1112.

�  IGMP operates on a physical network (e.g., single Ethernet
Segment.

�  IGMP is used by multicast routers to keep track of
membership in a multicast group.

�  Support for:
�  Joining a multicast group
�  Query membership
�  Send membership reports

Network Time Protocol - NTP

�  An application protocol designed to allow network
devices to synchronize their clocks

�  Critical for delay sensitive applications

To Synchronize or not to synchronize

�  Criticality of the situation – how does timing affect the
outcome of an action or sequence of actions

�  Synchronization of events calls for a common time
reference

�  The ordering of events is done using a common clock

�  Network Time Protocol (NTP) allows for timing exchange
to synchronize clocks.

NTP

�  NTP is a protocol

�  NTP uses a set of time servers

�  The time servers are organized in a hierarchy
(stratums).
�  Stratum “0” being the top and they are atomic clocks
�  Stratum “1” are time servers connected to stratum “0”
�  And Stratum “2” are connected to stratum “1” etc.
�  Clients get information from their local time server at

stratum “N”

NTP Daemon - ntpd

�  On most systems, there is an ntpd daemon that
synchronizes the local clock to a time server in the
area. Often a person will pick which time server they
want to have their machine use, e.g.,
�  apple.time.com

�  NTP operates by getting the time from the local time
server and estimating a clock offset to adjust its own
clock.

NTP calculation

�  Client A sends a packet to time server at time t0.

�  Client A receives a response from time server at time t3

�  Server receives request at time t1

�  Server sends response at time t2

�  Network latency estimate = ((t3 – t0) - (t2 – t1))/2

�  Clock offset estimate = (t1 – t0) – Network latency estimate

�  Packet from Server to Client contains t0, t1, t2

NTP Packet Exchange

�  UDP port 123

�  Packets sent:
�  Client request with timestamp – t0
�  Server response with 3 timestamps

�  Echo of client timestamp – t0
�  Receipt of client request – t1
�  Time of response to client – t2

�  Client can have several servers

�  Client chooses one to sync with

�  Uses feedback loop to keep running estimate of RTT and
offset.

