Ch 14 Understanding

Transport Protocols

Magda El Zarki

Prof. of CS

Univ. of CA, Irvine
Email:elzarki®@uci.edu
http://www.ics.uci.edu/~magda

Overview

® The most common end-to-end transport protocols
today are:

® Transmission Control Protocol (TCP)
e User Datagram Protocol (UDP)

® TCP 1s the prime choice for applications that need

® reliability and in-order delivery of data

® provides congestion control and emphasizes fairness and sharing of
resources

® UDP is common choice for
® time-dependent applications with no need for reliability

® exercises no control over flows and as such is blocked by some firewalls

New Protocols and Services

e Protocols that seek to extend the range of services and
versatility of the transport layer:

e Stream Control Transmission Protocol (SCTP) - developed to
transport SIP

e Datagram Congestion Control Protocol (DCCP) - TCP like
congestion control, no re-ordering or reliability

e Game Transport Protocol - very similar to TCP, with some
minor modifications and QOS bits added for traffic classes.

e Application level frameworks that use UDP for low latency but
provide the reliability and other functionality lacking in UDP
are:

e Enet - goal to provide a flexible, minimalist framework to add
functionality to UDP for apps that need low latency and some
of the features that TCP has to offer such as reliability.

e UDP-based data transfer (UDT), specifically designed for high
speed nets

Thin Streams

Characterized by
e Small packet sizes
e | ow packet inter-arrival times

Need low end to end latency and some (for a subset of
the packets) reliability.

TCP and most of its variants not suitable due to
retransmission latencies.

Use UDP but no reliability for any of the data and
firewall issue forcing the apps to fall back on TCP.

payload size packet interarrival time (ms) avg bandwidth
application (bytes) percentiles used

avg|min| max| avg|med|min|{ max|1%| 99%| (pps)| (bps)
1Casa ($ensor network) 1 17571 937 5727172871 3071305126898 13051 298981 0O.1377 269
Windows remote desktop 111 81417} 318|159 1[12254| 2| 3892| 3.145| 4497
VNC (from client) 81 1] 106f 34| 8|<1| 5451|<1 517} 29412 17K
VNC (from server) 8271 211448} 38| <1|<1] 3557|<1 571 26.316] 187K
Skype (2 users) (UDP) 111] 11} 316} 30| 24| <1{20015] 18 44| 33333 37K
Skype (2 users) (TCP) 236] 1411267} 34| 40|<1| 1671 4 80| 294121 69K
SSH text session 48| 161 752} 323| 159{<1{76610] 32| 3616] 3.096] 2825
Anarchy Online 98| 811333} 632|449 7117032| 83} 4195| 1.582| 2168
World of Warcraft 261 611228} 314] 133|<1{14855|{< 1| 3785| 3.185| 2046
Age of Conan 01 5114601 861 S71< 11 13751 24 3861 11.628 12K
BZFlag 30| 411448} 241 <1|<1] 540|<1 151] 41.667 31K
Halo 3 - high intensity (UDP) | 247 32{1264} 36| 33|<1| 1403| 32 182 27.778| 60K
Halo 3 - mod. intensity (UDP) | 270| 321 280{ 67{ 66{ 32| 716{ 64 69| 14.925] 36K
World in Conflict (from server)| 365| 411361] 104 100|<1{ 315|<1 300] 9.615 31K
Wworld in Conilici (from clieni) 41 4y 11337 10511001 167 1022 44 2991 9.524; 4443
YouTube stream 1446111211448 91 <1|<1] 1335|<1 127]111.111] 1278K
HTTP download 1447 64114481 <1| <1|<1] 186(<1 8| > 1000 14M
FTP download 1447] 40114481 <1 <1|<1} 339i<1 <1]|>1000| 82M

Problem Statement

e Reliable transport of thin streams with low latency
requirement

e TCP with no congestion control ->

What we know:

e Thin streams are very often a product of time-
dependent and/or interactive applications.

e Retransmission mechanisms and congestion control
mechanisms have been developed to maximize
throughput, and may therefore cause higher

retransmission latency when the transported stream is
thin - not greedy.

Goal:

e Adapt existing retransmission and congestion control
mechanisms to achieve lower latency for thin streams
without jeopardizing performance for greedy streams.

Take advantage of the thin stream properties to achieve
lower delivery latencies for the corresponding

applications.

Make modifications to improve thin-stream latency in
such a way that unmodified receivers may benefit from

them too.

Latency Analysis of a Thin Stream (Anarck

Online Game)

100

T M' ‘-1:__ T ¥ '.2 _—
wwwbndm - - Quadrant A ‘
avg RTT - [_
500ms mark —— ! . d
i
I l
0t] E — i
r i - T i
§ : : il
/ B
06 F
s | 1 i
£ T - g 04t i ”uiulﬁ’l |E| HH 4
i-q T i{uu&zu}ﬁ1 |Iunuuijlﬂ
o2 | "11"‘ ,]H ! l
0.1 N N . . iy L ‘ ‘ 0 ' \ R . N
0 20 40 6 80 100 120 140 180 180 0 20 40 60 80 100 120 140 160 180
connections sorted by max values connection RTTs sorted by packets/RTT
{a) RTT versus maximum application delay. (b) Packets per RTT with standard deviation
100 —_
g 10 1
P 1
g ot b
001 1 Y N N) BEn kil
o 20 40 60 80 100 120 140 160 180

connections sorted by max values

(¢) Per-stream loss rate.

Choosing a transport protocol

Use established transport protocols (like TCP) that provide a
range of desirable services, but that can be modified to meet
the low latency requirement.

Use unreliable protocols (like UDP or DCCP) and implement
reliability and in order delivery on the application layer.
Problem with firewalls will not go away!

Design new reliable protocol that is tailored for the needs of
time-dependent applications - not a popular approach with
commercial developers.

Use of quality of service (QoS) options -not widely adopted by
network providers

TCP Developments

e Timeline of TCP

1986: Jacobsen proposes AIMD, 1994: TCP Vegas introduces detection
exponential backoff and fast ofcongestion by fine-grained timers and
retransmit (TCP Tahoe). RTT measurement analysis.

1984: Nagle describes l 1989: “Fast recovery"” 1995: TCP "New Reno"

“congestion collapse® introduced with TCP Reno.

Nagie's algorithm™

introduced.

Nagle’s Algorithm - not suited for Thin Streams

e Aim to conserve bandwidth. Data only delayed if the
are unACKed segments for the connection

- -
Sender Receiver ; Sender Receiver
l Data from application 1 Data from application
B < 5T o mmm Ay
Waiting for segment >
to fill up.
- -
| Data from application | Data from application
10 2 3 4' 5 6 4! 5, 6

» I, >
>‘ | |

Time Time

(a) With Nagle’s algorithm. (b) Without Nagle’s algorithm.

Congestion Control

Slow start, congestion avoidance (additive increase,
multiplicative decrease AIMD)

Exponential Backoff - increase the retransmission timer

Fast Restransmit - don’t wait for timer, retransmit after 3
duplicate ACKs, set ssthresh1 to half the congestion window

size, and initiate slow start

TCP Reno - same as above but don’t go into slow start. Continue
as before until all segments recovered then jump to window
size set before going into Fast Recovery

TCP New Reno - same as above but allows retransmissions of
segments that are still unacknowledged by a partial ACK - fills
the holes in a sequence of outstanding packets with losses.

Fast Recovery and RTO

Sender Receiver
1

2
(S)ACK1 3
4 -
dupACK 1 gle=—™
minRTO : 3
dupACK 1 —
dupACK 1

Fast retransmission of 2

AIMD, Slow Start and Fast recove

36 when all lost segments
& 32 se—are recovered, restore
g ssthresh + original cwnd
< 28 J
3 Lo
-§ 24| Lk,.ﬁ«”"

E 20 ssthresh

o 16|

0

§, 121 loss —

S 8L Reno, New Reno
4L slow-start slow-start

0 N) O O 0 G S O N N N I A |

0 2 4 6 8 10 12 14 16 18 20 22 24

More TCP Mechanisms

e SACK - Selective ACK. Seq. no. of received segments
listed in option field. When used with New Reno,
improves latency.

e Delayed ACK - Wait for a short duration to piggyback
ACK on a data packet being sent out. Also results in
larger group ACKs (more data arrived during the wait
interval) but it messes up RTO calculations as the RTT is
now inflated by the delay.

Delayed ACK

Sender Receiver
seq=1
2
3 —
4
ke ——————
2 - —
3 j—
4 [
\
Time Time
(a) Without delayed ACKs. Every received data seg-
ment is ACKed.
Sender Receiver
seq=1 Sender Receiver
% _— seq=1
4 —
:’—3<
ack=2 —1 delay
4 fe—
ack=1j<—
v \J l Y
Time Time Time Time

(b) With delayed ACKs. Bandwidth is saved on the up- (¢c) With delayed ACKs. If no further segments arrive,

stream path.

the ACK is triggered by a timer.

UDP and Application Le

e Two approaches:

e Asimple library of low level network functions and basic
services - e.g., ENet

e A comprehensive library giving many options - e.g., UDT

UDT - UDP based Transfer

It is built on the top of UDP with reliability control and
congestion control. Designed for high speed links. |

The congestion control algorithm is the major internal
functionality to enable UDT to effectively utilize high
bandwidth links.

Also implemented a set of APIs to support easy
application implementation, including both reliable
data streaming and partial reliable messaging.

UDT Architecture

Application CC
O
T I T O
UDT Socket ©
& s
3 T 3T) o
w
f, uDT
S
 — 3
B - OS Socket Interface
@ 5
UDP

UDP Channel

<
|

Sender's

Sender's

7~

Loss List

|
|
|
|
’_
|
|
N
Receiver

Congestion noaa_mHL—‘l
_

T NAK
TSR e 1

|

|

|

|
*.__

|

|

Rmoodva’ms I(_I

k ~ 7 7 T TCCTConfig

UDT Operation

e A two way handshake is used for connection set up. A clie
sends a request with sequence numbers, window and messe
size.

The server ACKs the request and sends its own parameters to
the client.

Data transfer starts once client has received the ACK.

It uses timer-based selective acknowledgment, which
generates an acknowledgment at a interval. If there are
new continuously received data packets, this saves BW.

At very low bandwidth, UDT acts like protocols that
acknowledge every data packet.

Negative acknowledgment (NAK) is used to explicitly feed
back packet loss. NAK is generated once a loss is detected so
that the sender can react to congestion as quickly as possible.

E

Net

Designed for online gaming support. It was developed for the Cube
engine and was later used by other networked games.

ENet provides a relatively thin, simple and robust network
communication layer on top of UDP that supports optional, reliable, in-
order delivery of packets

The services include a connection interface for communicating with the
remote host.

Delivery can be configured to be stream oriented or message oriented.

The state of the connection is monitored by pinging the target, and
network conditions such as RTT and packet loss are recorded.

Retransmissions are triggered using timeouts based on the RTT, much like
the TCP mechanisms.

The congestion control implements exponential backoff like TCP.

ENet also applies bundling of queued data if the maximum packet size is
not reached.

ms

I 5 g 3%
wD_%
3 8
=
o
o
=
RTT SOms

(a) Latency vs. RTT. Loss=0.5%. Packet IAT=100 ms.

SCTP [

ENet

ms

5 2 2 & = o a = L2 &
s §2§ 28E825 2si2g 2
$ 2 i 2
= < =
8 8 8
RATT 100 ms RTT 200 ms 50 ms interarrival

ENet E
uoT
TCP new reno E:
ENet
uoT
TCP new reno E:
TCP bic
SCTP &

0.1% loss 0.5% loss

(c) Latency vs. loss rate. RTT=100 ms.

E g £
b= = o
3 B
=
o
o
=
100 ms interarrival

35 §3E
2.9% loss
TIAT=100 ms.

SCTP

(b) Latency vs. packet IAT. Loss=0.5%.

ENet
uoT
TCP bie
SCTP

TCP new reno

200 ms interarrival

RTT=200 ms.

Challenges of Thin Streams

Thin-streams suffer from high latencies when using reliable t
protocols.

Implementations of reliability and in-order delivery on top of UDI
modeled on the principles from TCP.

The foremost tool used by TCP to recover without triggering a
timeout is the fast retransmit mechanism.

This is also the key to understanding the high latencies that can be
observed for thin streams.

¢ Thin streams often have no more than one packet in flight per RTT. As
a fast retransmit needs three dupACKS to be triggered, this seldom (or
never) hap[Jens for such streams. The effect is that recovery for thin
streams is limited almost entirely to timeouts.

A retransmission by timeout triggers exponential backoff, thus
delaying further retransmission attempts. Subsequent lost
retransmissions increases the delay until we can observe extreme
values, e.g., 67secs delay for 6 retransmissions (taken from a trace of
Anarchy Online)

References

e A. Petlund,
Improving latency for interactive, thin-stream
applications over reliable transport, PhD thesis, Simula
Research Laboratory / University of Oslo, Unipub,
Kristian Ottosens hus, Pb. 33 Blindern, 0313 Oslo, 2009.

¢ Yunhong Gu and Robert L. Grossman, UDT: UDP-based
Data Transfer for High-Speed Wide Area Networks,
Computer Networks (Elsevier). Volume 51, Issue 7. May

2007.

