
Ch 14 Understanding
Transport Protocols

Magda El Zarki
Prof. of CS

Univ. of CA, Irvine
Email:elzarki@uci.edu

http://www.ics.uci.edu/~magda

Overview
 The most common end-to-end transport protocols

today are: 	

  Transmission Control Protocol (TCP) 	

  User Datagram Protocol (UDP) 	

 TCP is the prime choice for applications that need	

  reliability and in-order delivery of data 	

  provides congestion control and emphasizes fairness and sharing of

resources	

 UDP is common choice for	

  time-dependent applications with no need for reliability	

  exercises no control over flows and as such is blocked by some firewalls

New Protocols and Services
  Protocols that seek to extend the range of services and

versatility of the transport layer:
  Stream Control Transmission Protocol (SCTP) – developed to

transport SIP
  Datagram Congestion Control Protocol (DCCP) – TCP like

congestion control, no re-ordering or reliability
  Game Transport Protocol – very similar to TCP, with some

minor modifications and QOS bits added for traffic classes.

  Application level frameworks that use UDP for low latency but
provide the reliability and other functionality lacking in UDP
are:
  Enet – goal to provide a flexible, minimalist framework to add

functionality to UDP for apps that need low latency and some
of the features that TCP has to offer such as reliability.

  UDP-based data transfer (UDT), specifically designed for high
speed nets

Thin Streams

  Characterized by
  Small packet sizes
  Low packet inter-arrival times

  Need low end to end latency and some (for a subset of
the packets) reliability.

  TCP and most of its variants not suitable due to
retransmission latencies.

  Use UDP but no reliability for any of the data and
firewall issue forcing the apps to fall back on TCP.

Thin Stream Traffic C/Cs

Problem Statement

  Reliable transport of thin streams with low latency
requirement

  TCP with no congestion control ->

What we know:
  Thin streams are very often a product of time-

dependent and/or interactive applications.

  Retransmission mechanisms and congestion control
mechanisms have been developed to maximize
throughput, and may therefore cause higher
retransmission latency when the transported stream is
thin – not greedy.

Goal:

  Adapt existing retransmission and congestion control
mechanisms to achieve lower latency for thin streams
without jeopardizing performance for greedy streams.

  Take advantage of the thin stream properties to achieve
lower delivery latencies for the corresponding
applications.

  Make modifications to improve thin-stream latency in
such a way that unmodified receivers may benefit from
them too.

Latency Analysis of a Thin Stream (Anarchy
Online Game)

Choosing a transport protocol

  Use established transport protocols (like TCP) that provide a
range of desirable services, but that can be modified to meet
the low latency requirement.

  Use unreliable protocols (like UDP or DCCP) and implement
reliability and in order delivery on the application layer.
Problem with firewalls will not go away!

  Design new reliable protocol that is tailored for the needs of
time-dependent applications - not a popular approach with
commercial developers.

  Use of quality of service (QoS) options –not widely adopted by
network providers

TCP Developments
  Timeline of TCP

Nagle’s Algorithm – not suited for Thin Streams
  Aim to conserve bandwidth. Data only delayed if there

are unACKed segments for the connection

Congestion Control
  Slow start, congestion avoidance (additive increase,

multiplicative decrease AIMD)

  Exponential Backoff – increase the retransmission timer

  Fast Restransmit – don’t wait for timer, retransmit after 3
duplicate ACKs, set ssthresh1 to half the congestion window
size, and initiate slow start

  TCP Reno – same as above but don’t go into slow start. Continue
as before until all segments recovered then jump to window
size set before going into Fast Recovery

  TCP New Reno – same as above but allows retransmissions of
segments that are still unacknowledged by a partial ACK – fills
the holes in a sequence of outstanding packets with losses.

Fast Recovery and RTO

AIMD, Slow Start and Fast recovery+

Reno, New Reno

More TCP Mechanisms

  SACK – Selective ACK. Seq. no. of received segments
listed in option field. When used with New Reno,
improves latency.

  Delayed ACK – Wait for a short duration to piggyback
ACK on a data packet being sent out. Also results in
larger group ACKs (more data arrived during the wait
interval) but it messes up RTO calculations as the RTT is
now inflated by the delay.

Delayed ACK

UDP and Application Level Reliability

  Two approaches:
  A simple library of low level network functions and basic

services – e.g., ENet
  A comprehensive library giving many options – e.g., UDT

UDT – UDP based Transfer

  It is built on the top of UDP with reliability control and
congestion control. Designed for high speed links.

  The congestion control algorithm is the major internal
functionality to enable UDT to effectively utilize high
bandwidth links.

  Also implemented a set of APIs to support easy
application implementation, including both reliable
data streaming and partial reliable messaging.

UDT Architecture
Congestion Control

UDT Flow

UDT Operation
  A two way handshake is used for connection set up. A client

sends a request with sequence numbers, window and message
size.

  The server ACKs the request and sends its own parameters to
the client.

  Data transfer starts once client has received the ACK.

  It uses timer-based selective acknowledgment, which
generates an acknowledgment at a fixed interval. If there are
new continuously received data packets, this saves BW.

  At very low bandwidth, UDT acts like protocols that
acknowledge every data packet.

  Negative acknowledgment (NAK) is used to explicitly feed
back packet loss. NAK is generated once a loss is detected so
that the sender can react to congestion as quickly as possible.

ENet
  Designed for online gaming support. It was developed for the Cube game

engine and was later used by other networked games.

  ENet provides a relatively thin, simple and robust network
communication layer on top of UDP that supports optional, reliable, in-
order delivery of packets

  The services include a connection interface for communicating with the
remote host.

  Delivery can be configured to be stream oriented or message oriented.

  The state of the connection is monitored by pinging the target, and
network conditions such as RTT and packet loss are recorded.

  Retransmissions are triggered using timeouts based on the RTT, much like
the TCP mechanisms.

  The congestion control implements exponential backoff like TCP.

  ENet also applies bundling of queued data if the maximum packet size is
not reached.

Comparison of UDP and TCP based schemes

Challenges of Thin Streams
  Thin-streams suffer from high latencies when using reliable transport

protocols.

  Implementations of reliability and in-order delivery on top of UDP are
modeled on the principles from TCP.

  The foremost tool used by TCP to recover without triggering a
timeout is the fast retransmit mechanism.

  This is also the key to understanding the high latencies that can be
observed for thin streams.
  Thin streams often have no more than one packet in flight per RTT. As

a fast retransmit needs three dupACKS to be triggered, this seldom (or
never) happens for such streams. The effect is that recovery for thin
streams is limited almost entirely to timeouts.

  A retransmission by timeout triggers exponential backoff, thus
delaying further retransmission attempts. Subsequent lost
retransmissions increases the delay until we can observe extreme
values, e.g., 67secs delay for 6 retransmissions (taken from a trace of
Anarchy Online)

References

  A. Petlund,
Improving latency for interactive, thin-stream
applications over reliable transport, PhD thesis, Simula
Research Laboratory / University of Oslo, Unipub,
Kristian Ottosens hus, Pb. 33 Blindern, 0313 Oslo, 2009.

  Yunhong Gu and Robert L. Grossman, UDT: UDP-based
Data Transfer for High-Speed Wide Area Networks,
Computer Networks (Elsevier). Volume 51, Issue 7. May
2007.

