
Ch 15 Protocol Enhancements
for Thin Streams

Magda El Zarki
Prof. of CS

Univ. of CA, Irvine
Email: elzarki@uci.edu

http://www.ics.uci.edu/~magda

Two approaches both based on TCP

  Modifications to TCP parameters/thresholds to avoid
latencies caused by congestion control and
retransmission mechanisms

  Adding class distinctions to the traffic flow to identify
different packet types for preferential treatment

Thin Streams and TCP

  Why wont TCP work?
  Game packets are very small, overhead of TCP is very high

in comparison

  In-order processing of packets causes additional delays

  Congestion control unnecessary as game traffic is
application-limited

  Fast-retransmit ineffective as inter-arrival times (IAT)
between packets is very long.

Thin Streams and UDP

  Works for some traffic types that do not need high
reliability but most games other than FPS, will not use
UDP because of out of order delivery and packet losses.

  Only used by some games in conjunction with a
middleware layer that adds TCP like behavior to the
packet stream. UDT and ENet are such examples.

  Note that for some of the streams in an online game,
e.g., voice chat, UDP can be used.

  And lets not forget the Firewall issue!!!

TCP behaviors and impact on Thin
Streams

  TCP Overhead

  In-order delivery

  AIMD – Congestion Control

  Loss Recovery

TCP Overhead

  Thin streams have very small packet sizes and very high
inter packet arrivals (IAT)

  A very high percentage of the observed traffic in traces
is overhead – ACKS and headers

Thin Stream Traffic – Packet Size

Thin Streams - IAT

In-Order Delivery

  Packets wont be delivered to the application until all previous
packets have been received and delivered.

  For games, players will often perform many fast actions in
sequence. Each action is often an incremental update on on
previous state. So playing packets out of order is not so bad,
however in that case sometimes throwing away a packet
would make sense as you only want to see the present view
and not what it was a second or two ago.

  Some actions do need to be seen in succession as it could
impact laying claim to some treasure for example.

  Retransmission and re-ordering due to a loss can increase
latency.

Increased latency caused by Packet
Losses that trigger control mechanisms

Increased jitter caused by Packet Losses
that trigger control mechanisms

TCP and Congestion Control

  AIMD policy is designed for greedy traffic streams that
have to be network limited.

  By contrast, thin streams are application limited.

  When there is no action on the link, i.e., the IAT is
longer than the RTO-RTT, TCP sets the congestion
window to 2 and keeps it there so long as this condition
doesn’t change– this is called restart after idle period
policy and is used to prevent an application from
suddenly dumping a large burst of traffic into the pipe
after a period of silence when the cwnd is still at the
old value and network conditions may have changed.

Congestion Control and Thin Streams

Loss Recovery

  To detect a loss in TCP:
1.  Retransmission timer expires (RTO)
2.  Fast retransmit – 3 duplicate ACKs of same packet
3.  Selective repeat – sends ACK for each received data

packet.

  Because of high IAT, not enough traffic during RTO
period. Means that fast retransmit will never be
triggered.

IAT vs RTO-RTT

Avg. Latency of dropped packets

Is the minimum delay
for one retransmission
when IAT is very low.

Proposed TCP enhancements

  One paper proposes simple tweaks to some TCP
calculations to bypass or change some actions if a thin
stream is detected.

  The second paper is a little more elaborate, in that it
breaks down the data into different types of streams
and tailors the packet handling to attain the best
possible transport strategies for each one.

Thin Stream Detection
  The thin-stream detection mechanism must be able to

dynamically detect the current properties of a stream.

  The application should not have to be aware of the
detection mechanism, nor have to feed data about its
transmission rate to the network stack; it should be
transparent to the application.

  Preferably should not introduce any new scheme. The
chosen mechanism is based on an already existing
counter of unacknowledged packets.

in_transit ≤ (pttf r +1)

  Takes into consideration that a packet has to be lost for
a fast retransmission to be triggered (1 lost packet + 3
dupACKs = 4 in_transit

Tweaks/Enhancements – a Wrapper

If (tcp_stream_is_thin) {

apply modifications

} else {

use normal TCP

}

What enhancements do we want
for thin stream traffic?

  Removal of exponential backoff: To prevent an
exponential increase in retransmission delay for a
repeatedly lost packet, the exponential factor is
removed.

  Faster Fast Retransmit: Instead of waiting for 3
duplicate acknowledgments before sending a fast
retransmission, we retransmit after receiving only one.

  Redundant Data Bundling: Data is copied (bundle) from
the unacknowledged packets in the send buffer into the
next packet if space is available

Bundling of Data

Performance

Using content classification
  For MMORPGs, the authors classify game messages generated

by players into three types: move, attack, and talk
messages.
  Move messages report position updates when an avatar moves or

goes to a new area. Since only the latest location in the game
play matters, the server simply discards out-of-date move
messages.

  Attack messages correspond to an avatar’s combat actions when
it engages in fights with opponents. Such messages cannot be
lost because each action will have some impact on the target.
However, if several successive attack messages describe the
same combat action against the same target, out-of-order
arrivals of these messages can be tolerated.

  Talk messages convey the contents of conversations between
players. Must be transmitted in order and reliably.

Transport Options
  Multi-streaming: With this option, different types of

game messages can be put into separate streams, each
of which processes the messages independently.

  Optional Ordering: Can reduce this overhead because it
allows some types of messages to be processed as soon
as they are received without being buffered if their
preceding messages have not arrived.

  Optional Reliability: With this option, messages that do
not require reliable transmission can simply be ignored
if they are lost in the network.

Content-based transport strategies
  MRO Strategy: MRO only uses multi-streaming (M); that is,

it guarantees transmission reliability (R) as well as packet
ordering (O). Under this strategy, game messages are
classified into three types, namely move, attack, and
talk, separate streams are used to handle each.

  MR Strategy: MR implements both multi-streaming and
optional ordering. This strategy provides two kinds of
streams: ordered streams and unordered streams.

  M Strategy: M combines all three options, that is, multi-
streaming, optional ordering, and optional reliability.
Under this strategy, there are three kinds of streams:
ordered and reliable streams, unordered and reliable
streams, and unordered and unreliable streams.

Evaluate the effect of the three content-based
strategies on a live trace of Angel’s Love

  PMRO implements the MRO strategy, which puts move, attack,
and talk messages into three separate ordered and reliable
streams.

  PMR is based on the MR strategy. It transmits move and attack
messages via two unordered and reliable streams individually,
while talk messages are put into an ordered and reliable
stream.

  PM employs the M strategy, which transmits move messages via
an unordered and unreliable stream, attack messages via an
unordered and reliable stream, and talk messages via an
ordered and reliable stream.

Compare to TCP, UDP, SCTP - Latency
Used traces of Angel’s Love, a mid-scale, TCP-based MMORPG on a
test bed in a lab.

Jitter Performance

References
  ``On the challenge and design of transport protocols for

MMORPGs,’’ Chen-Chi Wu, Kuan-Ta Chen, Chih-Ming Chen,
Polly Huang, Chin-Laung Lei, Multimedia Tools and Appl.
(2009) 45:7–32.

  ``TCP Enhancements for Interactive Thin-Stream
Applications,’’ Andreas Petlund, Kristian Evensen, Carsten
Griwodz, Pål Halvorsen, in Proceedings of NOSSDAV ’08,
Braunschweig, Germany, 2008.

  ``The Fun of using TCP for an MMORPG,’’ Carsten Griwodz,
Pål Halvorsen, in Proceedings of NOSSDAV ’06 Newport, Rhode
Island, USA, 2006.

  ``Latency Evaluation of Networking Mechanisms for Game
Traffic,’’ Szabolcs Harcsik, Andreas Petlund, Carsten Griwodz,
Pål Halvorsen, in Proceedings of NetGames’07, Melbourne,
Australia, September 19-20, 2007.

