
Ch 17 Application Issues
Prof. Magda El Zarki

Dept. of CS
Univ. of CA, Irvine

Email: elzarki@uci.edu
http://www.ics.uci.edu/~magda

Overview

  Security and Cheating

  Geometry and Animation

  Tiered Systems

  Thin Clients

Security and Cheating

  Security is support within a system to protect against
faults and attacks
  Prevents unauthorized use of the system
  Prevents users from disrupting service

  Cheating is the exploitation of some aspect of the
system to gain an advantage in an environment
  Cheating might exploit security problems – getting

unauthorized access to a system
  Cheating might be legal from a system’s perspective but

illegal from a social angle – virtual money?!?!?

Cheating

  Client side: attacker compromises client software

  Server side: attacker subverts server software

  Network level: attacker accesses the network traffic

  Social: players collude or use multiple clients

Types of Cheating

Client Side Attacks
  Player changes client side software to effect some advantage

for the player.
  Most common attack is to change the software to make walls/

objects invisible so that the client can see the enemy. So even
though the server filters the data so that it doesn’t send
information about objects the client isnt supposed to see,
with invisible walls, the client can still see them.

  Another attack is “lookahead” cheat, where a player’s
response is purposefully delayed, thus lying about its latency
and so it receives updates from other players in plenty of
time to respond (server tries to compensate for the client’s
latency).
  There are some mechanisms that can detect cheating in dead-

reckoning protocols.

  Another type of hack involves the graphics cards on a players
system. The hacks change the way the image is rendered. The
graphics command stream can be intercepted and changed.

Client Side Cheating – contd.

  Another attack it so augment a player’s skill. It does this
by changing the control input that the player is sending.
E.g., correct the player’s aim or fire when it is the right
time. We call this an “aimbot.”

  The are other bots that actually will play for you and
complete actions and tasks, e.g., after you have left the
persistent world. They are called bots. (see next slide)

  Detecting this type of attacks is difficult.

An example of a bot – Glider –
Taken form Wikipedia

  Blizzard Entertainment created and operates a popular online world game
known as World of Warcraft (WoW). WoW is a
massively multiplayer online role-playing game, in which players control
characters and complete a variety of tasks, such as exploring the landscape and
performing quests. As players continue to play and succeed in their tasks, their
characters gain various talents and skills.

  Michael Donnelly, the founder of MDY Industries, LLC, created a software bot
called Glider to play WoW for its users. Thus, Glider users were able to advance
their WoW characters unattended.

  In its ruling on Blizzard's contributory copyright infringement claims, the district
court first considered whether purchasers of WoW were legal "owners" of the
client software. According to 17 U.S.C. § 117, owners of computer programs are
allowed to create copies or adaptations of the computer program if it is an
essential step towards utilization of the program.[2]

  The Court agreed with Blizzard's arguments that WoW purchasers were not legal
owners of the game software but instead licensees. As licensees, players are
required to make use of the software within the scope of the End User License
Agreement. In the terms of that agreement, Blizzard specifically prohibited "the
use of bots or third-party software to modify the WoW experience."[1] Thus, the
Court found that players who use the Glider program violated the TOU and were
not licensed to use WoW.

From a Player’s perspective (Consalvo 2009):
  Developed by Michael Donnelly and MDY Industries, the glider

is a small program or mod for WoW that lets the user program
one of her avatars to travel along a preset path, killing
whatever is found, skinning, looting, and gaining experience
points from the looped activity. The makers of the program/
mod stress on their Web site that the mod is designed to
eliminate the tedious aspects associated with leveling a
character (the grind), especially for players who may have
already done so with several other characters—in other
words, this is for alts or very experienced players to ‘‘fast-
forward’’ through undesirable parts of the game.

  Fast-forwarding is a common reason people will cheat in a
game (Consalvo, 2007), although in multiplayer games such as
WoW, the developers usually consider such activities as in
violation of the game’s terms of service (ToS). It is thus
illegal,and the creators of the glider are currently being sued
by Blizzard for their creation (Markee, 2007).

Contd.
  We can consider the potential activities associated with the WoW glider in

several ways. Some individuals might use the glider to level avatars that they
intend to sell to other players for (real) currency and thus profit off the fast-
forwarding mod. Some players may wish to level their second, third, or fourth
avatar through either some or all of the grind in the game, to achieve higher
levels, but keep those avatars as part of their account to play with in the future.
Some players (admittedly few) may find the WoW glider before even beginning
the game and use it to level their avatar to get to the content they assume is
most valuable—such as end game raiding. Although the developers have deemed
all those activities as cheating and violations of the ToS, they obviously have
different meanings for the players involved. Likewise, they have different
meanings and outcomes for players who do not use the WoW glider but who are
nonetheless affected by its presence as a mod.

  Nonglider using players may consider the opportunity to purchase such a leveled
avatar as a bargain, rather than leveling an avatar on their own. Nonglider-using
players may feel that avatars running automatically on preset paths in certain
areas are unfairly hogging resources in game, which they may need and feel more
legitimate claim to, being in actual control of their avatar. Finally, nonglider
using players may feel fiscal ramifications of glider-using players, if glider users
also gather large amounts of consumable resources to sell via auction houses and
either flood markets (driving prices down) or control the sale of certain items
(driving prices up).

Controlling Client Side Cheating

  Two approaches:
  Client Verification

  Examine client memory and disk to verify the code and data. Not a
very popular solution as it infringes on privacy.

  Behaviour Tracking
  Looks at characteristic patterns in user and compare it to new

patterns such as generated by bots. Bots tend to do repetitive,
monotonously times actions.

  Client server systems can track this behavior. Some of it in real
time – such as zero response time that a bot would have. Others
might need offline analysis. Some work has shown that 200 secs of
game play can be sufficient to detect foul play.

  Some bots are intelligent and try to simulate human behavior but
turns and movement rate anomalies and frequency and patterns of
actions can be detected if long enough traces are collected.

Server Side Attacks

  Exploitation of bugs
  A bug that lets people enter a privileged location or obtain

an object (e.g., money or armor)
  A bug that allows duplication of an object, e.g.,

duplicating wealth (e.g., Sony’s experience with Everquest
II)

  Brute force attacks - DoS
  SYN flooding – opens many TCP connections and leaves

them hanging.
  ICMP flooding using a modified ping
  Sending messages that cause buffer overflow at receiver

Network Level
  Eavesdropping on packets

  Change the content of the packets – the angle of aim or
the timing of an action, or even the target of the aim, etc.

  Can be tackled by using secure network messages:
  IPSec – VPNs and gateways

  Secure sockets (SSL) – both sides have to agree

  Application or middleware level security
  Disadvantage consumes CPU cycles

Social

  Collusion – where players agree to a strategy that allows
one player to gain advantage and then split the spoils

  Player behavior and ethics – the whole bot usage and
the Glider example

  What is ethical and what isnt???

Repercussions

  Identify cheaters – beware of false positives

  How to police communities

  Banning cheaters – ineffective in environments where
you can create a new identity

  On consoles – identities are tied to the console and so
can be tracked. Also harder to hack software on a
console – altogether a much safer environment.

Geometry and Animation

  Complex animations: character animation
  Use keyframe animation – only the keyframe identifier and

the time needs to be sent
  An action is defined by a number of keyframes describing the

action over a period of time.
  Interpolation is used to give smooth action. If frames exist for

every .1s the,n e.g., angles are interpolated for the in
between motion

  If bandwidth is low, keyframes can be skipped, picking which
ones is an art to maintain smooth action/motion

  Keyframes can also be cached on a client.

Character Animation

Large complex systems

  The models are stored on the server

  Downloaded incrementally depending on player interest
  Geometry selection phase
  Geometry transmission phase

  Environments stored in such a way that it is easy to find what
next needs to be sent.
  Client can decide – pull system
  Server decides – push system

  Compression of meshes to reduce BW

  Progressive meshes (similar to video compression and layers)

  Using images of an object instead of a mesh - impostors

New Arhcitectures

  Instead of augmenting number of servers

  Instead of clustering clients

  Instead of using peer to peer

  Use a different tiered system that is split along
functions

A possible architecture

Thin Clients

  Not a new idea

  Has existed for awhile

  Proposed for online games because of the increased
complexity of the virtual environments

  Mostly to keep costs down for clients – graphics cards
and high end CPUs not cheap

  Drawback – bandwidth requirements – streaming of
audio and video – high resolution > 5Mbps

What is next???

  Now its your turn!

  Presentation Guidelines
  Maximum 10-15 slides
  State goal
  Explain problem(s)
  Describe/illustrate solution(s)
  Examples great idea
  Pictures/video worth a thousand words
  Conclude
  Give references
  Leave time for 2-3 questions

