

page 1 of 3

Architectural Implications of Common Operator Interfaces

Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425 USA

+1 714 824 6429
{taylor, neno, peymano}@ics.uci.edu

Richard N. Taylor Nenad Medvidovic Peyman Oreizy

Abstract

If a common operator interface (COI) for satellite ground
systems is built with conventional user interface (UI)
technology, then there is substantial risk that the UI will
end up determining a significant part of the ground system’s
architecture. UI technology typically forces applications to
be constructed as a set of call-backs to the UI. To avoid this
situation an approach is required which sharply divides the
user interface part of the system from the rest of the
software. If the ground system is to run on heterogeneous
hardware platforms a second sharp separation is also
recommended: presentation and dialog decisions from
platform specific toolkits. This presentation suggests a
multi-level solution to this problem which is established at
the architecture level and maintained in the
implementation.

Introduction

The economic benefits of common (human) operator
interfaces (COIs) are easy to see: operators can move from
platform to platform and application to application with
reduced or eliminated training. Operator error rates are
reduced; “unfamiliarity” no longer is a problem. Software
maintenance expenses are reduced as well, since only a
single interface style exists.

Common operator interfaces can be obtained by isolating
user interface functionality in one part of the application
system, and then either implementing that portion of the
system directly on each chosen hardware platform or by
implementing it atop some single

1

 user interface software
substrate that has already been implemented on each target
hardware platform, such as Galaxy [1].

While “isolating user interface functionality in one part of
the application system” is clearly a good idea, the particular
way the user interface functionality is isolated can have
enormous consequences. In typical systems, whether

implemented in C++, Java, C, or Ada, most user interface
toolkits (whether platform specific or not) end up dictating
the structure of the application code. They do this by

• assuming that only a single thread of control exists and

• requiring that application code be executed as the result
of a call-back from the user interface event monitor
loop.

This constraint is a very large one, and seems a bit like the
tail wagging the dog. We argue that

• the focus of ground system design should be at the
architecture-level,

• ground systems architectures should be chosen with the
full range of ground systems domain characteristics and
evolution issues in mind, and

• implementation technologies should not constrain that
architecture.

We believe that with appropriate architectural design and
implementation techniques COIs may be achieved without
improper constraints on the architecture of the non-UI part
of the system.

An Architecture-Based Approach

The key aspects of the approach we recommend spring
from recognition of key aspects of the ground systems
domain. First, concurrency is prevalent in the domain.
Telemetry is received and must be processed very
frequently, if not continuously. Human users may at any
time request particular processing to be done, or displays to
be shown. Other application processing may need to go on
in parallel as well. Second, the ground system application
may be physically distributed. Third, the user interface
inputs and telemetry streams may be viewed as “event-
based”. With these attributes at the fore, we can recommend
the C2 architectural style as appropriate for designing
ground systems with a COI but without the architectural
constraints that result from typical user interface
technologies. Use of the C2 style in designing the
applications can permit commercial UI technologies to be
used in the implementation, but their effect on the overall
architecture is removed as a result of the particular style of
event-based communication which characterizes all inter-
component interaction in architectures designed “the C2
way”.

1.Whether the

identical

 user interface appears on each platform is
a separate question, and indeed is not necessarily a good thing. For
example, some platforms have a three-button mouse, others have
two, and others have a single-button mouse. From a human factors
perspective it may be superior to allow some platform specific
look-and-feel aspects to appear. Either strategy can be effectively
pursued from an implementation perspective, and this choice does
not affect the remainder of our presentation.

page 2 of 3

While the C2 style has been described elsewhere in the
literature, it seems appropriate to provide a synopsis of it
here. The description in the remainder of this section is
adapted from the description used in [2].

C2 is an architectural style designed to support the
particular needs of applications that have a graphical user
interface aspect. The style supports a paradigm in which UI
components, such as dialogs, structured graphics models
(of various levels of abstraction), and constraint managers,
can readily be reused. A variety of other goals are supported
as well. These goals include the ability to compose systems
in which: components may be written in different
programming languages, components may be running in a
distributed, heterogeneous environment without shared
address spaces, architectures may be changed dynamically,
multiple users may be interacting with the system, multiple
toolkits may be employed, multiple dialogs may be active,
and multiple media types may be involved.

The C2 style can be informally summarized as a network of
concurrent components hooked together by connectors, i.e.,
message routing devices. Components and connectors both
have a defined top and bottom. The top of a component may
be connected to the bottom of a single connector and the
bottom of a component may be connected to the top of a
single connector. No direct component-to-component links
are allowed. There is no bound on the number of
components or connectors that may be attached to a single
connector. When two connectors are attached to each other,
it must be from the bottom of one to the top of the other
(see Figure 1).

Figure 1. A sample C2 architecture. Jagged lines represent the
parts of the architecture not shown.

Each component has a top and bottom domain. The top
domain specifies the set of notifications to which a
component responds, and the set of requests that the
component emits up an architecture. The bottom domain
specifies the set of notifications that this component emits
down an architecture and the set of requests to which it
responds. All communication between components is
achieved by exchanging messages. This requirement is
suggested by the asynchronous nature of component-based
architectures, and, in particular, of applications that have a

GUI aspect, where both users and the application perform
actions concurrently and at arbitrary times and where
various components in the architecture must be notified of
those actions. Message-based communication is
extensively used in distributed environments for which this
architectural style is suited.

Central to the architectural style is a principle of limited
visibility or

substrate independence

: a component within
the hierarchy can only be aware of components “above” it
and is completely unaware of components which reside
“beneath” it. Notions of above and below are used in this
paper to support an intuitive understanding of the
architectural style. As is typical with virtual machine
diagrams found in operating systems textbooks, in this
discussion the application code is (arbitrarily) regarded as
being at the top while user interface toolkits, windowing
systems, and physical devices are at the bottom. The human
user is thus at the very bottom, interacting with the physical
devices of keyboard, mouse, microphone, and so forth.

Substrate independence has a clear potential for fostering
substitutability and reusability of components across
architectures. One issue that must be addressed, however, is
the apparent dependence of a given component on its
“superstrate,” i.e., the components above it. If each
component is built so that its top domain closely
corresponds to the bottom domains of those components
with which it is specifically intended to interact in the given
architecture, its reusability value is greatly diminished and
it can only be substituted by components with similarly
constrained top domains. For that reason, the C2 style
introduces the notion of event translation. Domain
translation is a transformation of the requests issued by a
component into the specific form understood by the
recipient of the request, as well as the transformation of
notifications received by a component into a form it
understands. The C2 design and development tools, are
intended to provide support for accomplishing this task.

Each component may have its own thread(s) of control, a
property also suggested by the asynchronous nature of tasks
in the GUI domain. It simplifies modeling and
programming of multi-component, multi-user, and
concurrent applications and enables exploitation of
distributed platforms. A proposed conceptual architecture is
distinct from an implementation architecture, so that it is
indeed possible for components to share threads of control.

Finally, there is no assumption of a shared address space
among components. Any premise of a shared address space
would be unreasonable in an architectural style that allows
composition of heterogeneous, highly distributed
components, developed in different languages, with their
own threads of control, internal structures, and domains of
discourse.

Conclusion

Creating a common operator interface to ground systems
software is a worthy goal and technically feasible.
Achieving it requires design of that interface and need not
involve creating a complete canonical architecture for

C C C

C C

C C C

C

Component

Legend:

Connector

Communication
Link

page 3 of 3

ground systems. Unless care is taken in the design and
implementation of a COI, however, an inappropriate
architecture can be forced upon the rest of the system,
namely structuring it as a set of routines under the control
of the user interface software. Choosing an appropriate
architectural style and supporting implementation
techniques can avoid this undesirable situation, however.
The C2 style, described above, is one suitable architectural
style. It has been demonstrated in a variety of applications
and exhibits many properties supportive of incremental
system evolution. While other architectural styles may also
be effective in the ground systems domain, we believe that
any style used must reflect the key characteristics of that
domain, namely, concurrency, distribution, heterogeneity of
components and platforms, and the need to support
continued evolution.

Acknowledgement

Effort sponsored by the Defense Advanced Research Projects
Agency, and Airforce Research Laboratory, Air Force Materiel
Command, USAF, under agreement number F30602-97-2-0021.
The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright annotation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency, Air Force Reserach
Laboratory, or the U.S. Government.

References

1. Visix Corporation. http://www.visix.com

2. Nenad Medvidovic, Richard N. Taylor. Reusing off-the-
shelf components to develop a family of applications in
the C2 architectural style. Accepted for publication in

IEE Proceedings Software Engineering.

 To appear.

