
CREW: A Gossip-based Flash-Dissemination System

Mayur Deshpande, Bo Xing, Iosif Lazardis, Bijit Hore, Nalini Venkatasubramanian & Sharad Mehrotra
University of California, Irvine

{mayur,bxing,iosif,bhore,nalini,sharad}@ics.uci.edu

Abstract

In this paper, we explore a new form of dissemination called
Flash Dissemination that involves dissemination of fixed, rich in-
formation to a large number of recipients in as short a time as
possible. Key characteristics of Flash Dissemination include un-
predictability in its need, scalability to large number of recipients
and autonomic performance in highly heterogenous and failure-
prone environments. Previous work either addresses large content
delivery in heterogenous networks or fault-tolerant dissemination
of (streaming) events. We investigate a peer-based approach us-
ing foundations from broadcast networks, gossip theory and ran-
dom networks. In this paper, we propose CREW (Concurrent Ran-
dom Expanding Walkers), a scalable, lightweight, and autonomic
gossip-based protocol. CREW is also explicitly designed to maxi-
mize the speed of dissemination using adaptive and intelligent in-
tra and inter node concurrency. We implemented CREW on top of
a scalable middleware environment and compared it to optimized
implementations of popular gossip and peer-based systems. Our
experiments show that CREW outperforms both traditional gos-
sip and current large content dissemination systems, across a wide
range of comparative metrics, even though its design is counter-
intuitive from a systems perspective.

Keywords: Gossip, Broadcast, Peer-to-Peer, Fault Resilience,
Autonomic Adaptation, Middleware.

1 Introduction
Dissemination consists of the transmission of a data object from a
source to a group of intended recipients. In this paper, we deal
with a particularly useful (and often ignored) form of dissemi-
nation that arises in time-critical applications called Flash Dis-
semination. Such a scenario consists of rapid dissemination of
varying amounts of information to a large number of recipients
in a very short period of time. We motivate flash dissemination
with an example from the emergency management domain. Con-
sider “Shake-Cast”, a service from the Advanced National Seismic
System (http://www.anss.org) which aims to provide accurate and
timely information about seismic events. Sensor data about the
earthquake is collected in real-time and then processed to gener-
ate a “Shake-Map”: this is a GIS file that can be ‘layered’ on a
city map, for example, to assess which structures might be most
affected. This information is sent to various subscribers, e.g., city,
county and state emergency management organizations, for imme-
diate assessment of the impact of the earthquake and to support
triaging, co-ordination and resource allocation decisions. Sub-
scribers register a machine ahead of time to receive the informa-
tion; such machines may use widely different networks (T1, DSL,
Microwave, etc). In such a setting, speedy delivery of information
is critical because this will enable more informed and timely de-

cision making resulting in better response. A flash dissemination
scenario entails the following characteristics:

Unpredictability: Flash Dissemination events (e.g. disasters)
are unpredictable and are not known in advance. A flash dissemi-
nation system, must be ready to work at very short notice and can-
not be scheduled or optimized in advance. Further, the underlying
network infrastructure may also be unpredictable.

Scalability: The number of end receivers may vary from thou-
sands to hundreds of thousands depending upon the nature of flash
dissemination and the receivers that must be contacted.

Network and Content Heterogeneity: When end receivers
are geographically distributed, network heterogeneity in latency
is natural. Additionally, different receivers may possess different
bandwidth capacities resulting in bandwidth heterogeneity. Con-
tent heterogeneity arises since rich information such as pictures,
small voice/video clips, GIS files etc. range in size from hundreds
of KB to a couple of MB.

A naive solution for the problem of flash dissemination would
be to dedicate substantial resources (e.g., large network pipes and
fast servers) on a continuous basis. Such a solution is not cost-
effective because these resources will be wasted except in the in-
frequent and unpredictable event of a disaster. A more pragmatic
solution can be achieved if we recast the dissemination problem
to a peer-based setting. The basic idea is to tap the resources of
the end receivers and shift dissemination load to the set of clients
organized as a large Peer-To-Peer (P2P) dissemination system.

Dissemination systems today are tailored to two ends of a spec-
trum: dissemination of small data (events) and dissemination of
large (possibly streaming) content. For small data, the focus is on
low-latency delivery of data in the range of tens of kilobytes; for
example, delivery of stock prices or updates in a multiplayer online
game [16]. It is not obvious how these systems would scale with
data size because they don’t exploit high-bandwidth nodes; con-
versely, such nodes are exploited in large content delivery systems,
which can thus sustain high throughput to deliver content of the
order of hundreds of MBs to GBs. We explore the latter systems
in more detail in Sec-2. Again, it is not obvious if large content
delivery systems can achieve very fast dissemination for medium
amounts of data. Additionally, these systems are not designed to
handle unpredictable faults but are tailored assuming certain net-
work and host behavior, e.g., a constant ‘churn’ rate ([19, 22]). On
the other hand, gossip-based broadcast systems are designed to ac-
commodate unpredictable faults. However, gossip-based protocols
face scalability issues on many fronts and do not usually take into
account large network heterogeneity. For small amounts of data,
this is usually not much of a concern. However, for medium and
large content, the overhead due to the redundant messages makes
traditional gossip based approaches considerably slower.

Our goal in building CREW (for Concurrent Random Expand-
ing Walkers) is to take the best of both worlds – fast dissemina-
tion over heterogeneous networks and under unpredictable condi-

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

tions. CREW is a new, fully decentralized, gossip-based proto-
col, designed from the ground up, focussed on reducing data over-
head and increasing both inter and intra node concurrency. We
implemented CREW using a scalable middleware platform and
added optimizations without compromising its stateless nature. In-
creased concurrency and reduced overhead allows CREW to dis-
seminate data very fast and to scale in terms of both network and
content size. Additionally, CREW adapts to network heterogene-
ity while degrading gracefully in the presence of heterogeneous
packet losses. The primary contributions of this paper are:

1. Design, implementation and evaluation of CREW, a decen-
tralized, stateless, gossip-based protocol for fast dissemination of
rich information. CREW is almost twice as fast as current, op-
timized dissemination systems (such as BitTorrent and Bullet) for
flash dissemination and imposes order of magnitude less data over-
head than traditional gossip.

2. A thorough and systematic evaluation of CREW as well as
various dissemination systems demonstrating the effectiveness of
CREW for flash dissemination.

3. A gossip protocol that has a deterministic termination prop-
erty and autonomically adjusts to both heterogenous bandwidth
and fault rates, at runtime.

4. A new approach to gossip sampling service using random
walks on overlays. This approach reduces data overhead of gossip
messages and provides a lightweight, scalable, and near real-time
view management.

The rest of the paper is as follows. In Sec-2 we outline the
rationale for the CREW protocol. In Sec-3 we describe the full
CREW protocol. Implementation of CREW is described in Sec-4
and we analyze its real world performance in Sec-5. Finally, we
conclude in Sec-6

2 Rationale for CREW
1 At an abstract level, flash dissemination is the canonical broad-
cast problem in networks – how to distribute data, split into M
chunks, from one source to N other receivers, as fast as possi-
ble. An optimal solution[11] exists for homogenous network but
this problem is NP-hard for a heterogenous network [15]. Ap-
proaches for fast dissemination in heterogenous networks center
around identifying and exploiting the high-bandwidth nodes with-
out overwhelming the low-bandwidth nodes [9, 18, 1, 25]. Com-
mon overlay data structures used to implement these systems in-
clude trees/forests [9], pure meshes [1] and hybrid tree/mesh [18].
Empirical evidence suggests that meshes, in general, offer higher
throughput and better fault tolerance. These systems are designed
for content that is fixed and large or long-lasting (10s of mins and
more) streams. Thus, either time is spent in pre-optimizing the
overlay [9] or moving the overlay towards high throughput [18, 1].
For flash dissemination, we cannot pre-optimize since the network
can change dramatically after a disaster. Neither is there time to
move towards a good overlay at runtime since flash dissemination
is usually concerned with medium amounts of data (hundreds of
KBs to couple of MBs) and thus dissemination finishes within a
couple of minutes (at most).

Additionally, during disasters, systems and networks become
unstable and unpredictable; therefore, a primary objective is to
achieve dissemination in less-than-perfect network conditions.
Gossip [14] based broadcast protocols are an almost perfect fit
for this scenario due to their stateless and fault-tolerance prop-
erties. They can be roughly divided into ‘pure’ or ‘hybrid’ ap-
proaches. In hybrid approaches [7], the primary dissemination is

1A more detailed examination can be found in [10]

in a non-gossip manner (e.g., along an overlay tree) with gossip
being used to deal with faults and lost messages. In pure gossip-
protocols, all or most of dissemination occurs via gossip. For e.g.
in lpbcast [21], each message (or data chunk) is gossiped (usually
blindly forwarded in a ‘fire and forget’ manner) to ‘fanout’ num-
ber of other nodes, chosen at random. This blind forwarding is key
to gossip’s fault-tolerance property but adds a significant overhead
resulting in slow dissemination speed (as shown in experiments
in [18]). Dissemination speed can be improved by reducing the
fanout but his results in decreased reliability. Additionally, fixing a
constant fanout under-utilizes high-bandwidth nodes and may also
overwhelm low-bandwidth nodes in a heterogenous setting. Re-
cently researchers have started to examine how fanout can be au-
tonomically and dynamically changed at runtime [26, 20]. Apart
from autonomic adaptation in heterogenous networks, gossip pro-
tocols also face other challenges with regard to decentralized and
scalable ‘view’ and memory buffer management [13, 23] . Finally,
the use of UDP as underlying primitive creates problems of net-
work congestion, especially in wide-area heterogenous networks
and has to be dealt with explicitly [8].

The deficiencies listed above are not intrinsic to gossip behav-
ior. As noted, pieces of research exist that (partially) address one
or more of these issues individually. However, there is no work
that addresses all these challenges in a simple, unified manner for
the purpose of flash dissemination. The rationale for CREW is to
show that gossip based protocols can in fact overcome these defi-
ciencies and achieve extremely fast flash dissemination of medium
sized data in unpredictable and heterogeneous environments.

3 The CREW Protocol
Our goal is to maintain the inherent stateless, scalable and fault-
resilient properties of gossip while achieving (1) fast dissemination
(2) over heterogeneous networks. We employ two main techniques
to make CREW fast: reducing redundant data and providing low-
overhead concurrency. Then, to tackle heterogeneity, we introduce
concurrency within a node and adapt it to local and global band-
width availability. We begin by describing the techniques to sup-
port fast gossip in CREW, followed by introducing the extensions
to support heterogeneity.

3.1 Basic CREW: Making Gossip Fast
As note in Sec-2, the basic bottleneck in gossip is the high data
overhead due to redundant messages leading to decreased through-
put and slow dissemination time. To tackle redundant messages,
we use a metadata-based pull mechanism to give nodes “content
awareness”. Nodes use the metadata to pull only messages that
they do not have. Further the metadata is broadcast as fast as
possible, so that all nodes can be “up and pulling” in the short-
est time, leading to very high concurrency. We also provide a low
overhead mechanism for concurrency, based on random walks on
overlays. This low overhead mechanism is essential to prevent the
concurrency from initially congesting the system. Decentralized
construction of good overlays is a challenge in itself. We address
this by designing Bounce, a protocol that can efficiently construct
overlays with good properties, requiring no state maintenance at
any node. Bounce protocol is described in detail in [10].

3.1.1 Reducing Redundant Messages

First, we introduce the concept of “content awareness”. The orig-
inal content is divided into multiple chunks and each chunk is as-

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

INITIALIZE:
RecvdChunksIds ← {∅}
RecvdChunks ← {∅}
ChunksToGet ← {c1.id, c2.id, ...cM .id}

BEGIN
1) While |ChunksToGet| > 0
2) Node X ← get next random node
3) Chunk ck ← RPC (X , GossipPull, RecvdChunksIds)
4) RecvdChunks ← RecvdChunks ∪ ck
5) RecvdChunksIds ← RecvdChunksIds ∪ ck.id
6) ChunksToGet ← ChunksToGet − ck.id
END

Figure 1. Basic CREW Protocol

BEGIN
1) While |ChunksToGet| > 0
2) While Spare bandwidth exists
3) Node X ← get next random node
4) Do Concurrently With Main Thread:
5) ChunkId id ← RPC(X , IntentToPull, RecvdChunksIds)
6) Acquire Mutex Lock
7) If (id ∈ RecvdChunksIds)
8) Release Mutex Lock
9) Else
10) RecvdChunksIds ← RecvdChunksIds ∪ id
11) ChunksToGet ← ChunksToGet − id
12) Release Mutex Lock
13) Chunk ck ← RPC (X , GetChunk, id)
14) RecvdChunks ← RecvdChunks ∪ ck
END

Figure 2. CREW for Heterogeneous Networks

signed a unique chunk-id2. The list of all chunk-ids is termed as
metadata3. Metadata information about the chunks (and their ids)
are known by all nodes before they start gossiping (we will de-
scribe how this is achieved shortly). Next, we invert the “fanout
push” logic of traditional gossip into a “pull-based” mechanism.
A pull-initiator node sends out the list of the ids of the chunks that
it has already received to a target node, selected uniformly at ran-
dom. The target node then sends, one chunk at random, that the
initiator does not have. If the target node has no “missing” chunks,
it sends an error message. Thus, nodes never pull duplicate chunks.
This basic protocol is described in Fig-1. Once a node receives all
chunks that are listed in the metadata, it immediately stops gossip-
ing. Thus, CREW has a deterministic termination-delivery prop-
erty – when all nodes terminate (stop gossiping), all nodes have
all chunks. This is unlike push-based gossip that guarantees only
probabilistic delivery at termination.

3.1.2 Enabling Low Overhead Concurrency

Metadata is small and is received by all nodes very fast. Thus,
all nodes are active rapidly and trying to pull chunks aggressively.
Initially, very few nodes have chunks to give, most nodes receive
error messages in the pulls and immediately seek other nodes to
contact. To support this high level of concurrency at a low cost,
pull messages must be as small as possible. The list of received-ids
is close to zero, so this is not too much of an overhead. If we em-
ploy traditional gossip mechanism of sending a node’s view in each
message, each gossip message unnecessarily increases in size. We

2A discussion on optimal chunk size can be found in [11]
3similar in concept to a “.torrent” file in BitTorrent that has the metadata for the

actual file

therefore designed a new approach for implementing view mainte-
nance and sampling service. Our sampling service is based on the
theory of random walks on overlays. [12] showed that the nodes
visited during a random walk of X steps on an expander network,
is an approximation of a random subset of size X (with a larger X
leading to a better approximation). Finding the next random node
to gossip with, is now as trivial as getting the next random node
in a random walk. The overhead for each gossip is now one ex-
tra node address. The target node returns the address of one of its
random neighbor, in the pull reply message. Thus, the overhead
is one instead of “view size” for each gossip message. In CREW,
we maintain an explicit overlay among the nodes (using open TCP
connections) for doing the random walk.

3.2 Extending CREW for Heterogeneity
Wide area networks are seldom homogeneous. There is varying
latency and nodes have varying bandwidths, sometimes in the or-
der of magnitudes. For example, inter-node latency can vary be-
tween 2 - 700 milliseconds and bandwidth can vary from 64Kbps
to 10Mbps. This raises both challenges and opportunities. In par-
ticular, how to (1) reduce the detrimental effects of high latency?
(2) exploit high bandwidth nodes? and (3) adapt high bandwidth
nodes, at runtime, from overwhelming (and congesting) low band-
width nodes? We explore these questions and propose additions to
the basic CREW protocol to tackle these issues.

3.2.1 Latency Amortization

In the basic CREW protocol, a node waits for the current pull to
finish before starting on the next one. When a node initiates a pull
message to another random node, it must wait at least for Round
Trip Time (RTT), between the two nodes, before hearing back any
reply (error or chunk reception). If the RTT between two nodes is
500ms, for example, then nothing useful happens for almost half
a second, during which, a node “wastes” its bandwidth entirely. If
the reply was an error message, the node has to start again. More-
over, to preserve the gossip-nature of CREW, there is no straight-
forward way to amortize this long setup time – a node moves away
to another random node after a pull. In other protocols (such as
BitTorrent, Bullet, SplitStream, etc.), connections once open, are
used to transfer multiple chunks. Changing CREW to do multiple
transfers with one node would be against the basic gossip model.
This, therefore, seems like a fundamental clash between theory
and practice – sticking to pull-based gossip would make CREW
extremely slow in any network where nodes had large latencies.

However, high latency cost can be amortized in another way –
not by transacting multiple chunks with a node, but by transact-
ing a single chunk with multiple nodes, concurrently. We call this
the concurrent pull optimization. CREW protocol enhanced to
deal with concurrency is shown in Fig-2. Doing concurrent pulls
naively may result in a node receiving duplicate chunks. To pre-
vent this, we split the gossip step into two phases. In the first phase
an “intent to pull” message is sent to the target node (Fig-2 Line
5). The target node replies with the chunk-id of the chunk, which
it would have actually given back had this been basic CREW. The
received id is then compared to check if some other concurrent pull
is already trying to get this chunk. If not, the chunk is really pulled
in the second phase (Fig-2 Lines 7-14).

Since nodes are contacted at random, some nodes have may
low latency while others have high latency. Chunk transfers from
lower-latency nodes can overlap with the setup to higher-latency
nodes – thereby masking setup cost. The problem then is deciding

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

a good concurrency factor. Too low a factor might result in under-
utilized bandwidth and too high a factor results in bandwidth being
unnecessarily split across many transactions, thus delaying all the
transactions. Additionally, we would like the concurrency factor
to be autonomic and dynamically adaptive at runtime. To achieve
this, a node keeps track of its “spare bandwidth”. Whenever spare
bandwidth exists, a node immediately starts a new pull (Fig-2, line-
2).

3.2.2 Bandwidth Estimation

Estimating the spare bandwidth of a node is not trivial, with the
very notion of ”relative maximum bandwidth” being tricky to de-
fine precisely (See [10] for more details). Current systems, like
BitTorrent and Bullet′ use heuristics to calculate a node’s maxi-
mum bandwidth. In general, the idea is for each node to evolve
towards the subset of nodes that give it its maximum bandwidth.
When the content to be disseminated is large, there is significant
time for nodes to stabilize and maximize their bandwidth utiliza-
tion. In flash dissemination, the content is usually small and hence
there is relatively little time to evolve to maximum utilization. The
gossip nature of CREW, however, allows us to estimate maximum
bandwidth rapidly. In CREW a node is constantly establishing new
connections; this allows it to guess its relative maximum band-
width very fast. In contrast, say BitTorrent, nodes evaluate other
nodes in the network quite slowly. More details on CREW’s band-
width estimation can be found in [10]. Once maximum band-
width is calculated, calculating of spare bandwidth is straightfor-
ward. Nodes also use the estimate of maximum bandwidth to de-
cide whether to allow other peers to download chunks from them.
If a peer is using up all its bandwidth, then it will return an error
message for all pull requests. This is used by the puller node to
estimate global congestion as we explain next.

3.2.3 Congestion Adaptation

If a low bandwidth node is already at its peak bandwidth utiliza-
tion, then it rejects any new pull requests, irrespective of whether
it has missing chunks or not. In the pathological case where most
nodes have no spare bandwidth, we would like nodes with spare
capacity not to contact these “busy” nodes. If nodes with spare
bandwidth try to do pulls, they end up generating redundant data
(in the form of pull requests) and slowing down the dissemination
process. The gossip nature of CREW, however, allows us to ele-
gantly tackle this problem. When a node makes a pull, the target
node estimates if it has spare bandwidth. If not, it replies back
with a special error message, saying that it is “busy”. If the ini-
tiator hears many such “busy” messages in a short period of time,
then it can be fairly certain that most nodes are near capacity (and
can then take appropriate action like backing off). This is due to
the uniform random property of gossip. The replies from the tar-
get nodes are representative of the replies of a random sample from
the total population. Thus, if most nodes in the random sample are
busy, then most nodes in the total population will also be busy.
More generally, the reply message from the target node may con-
tain any local state and the initiator can quickly glean global state
information from these individual replies. Pull replies are there-
fore, a powerful mechanism that can be used to estimate global
properties about the system.

3.3 Autonomic Fault Tolerance in CREW
Changing push-based gossip to a metadata-based pull model offers
many benefits from a fault tolerance point of view, but it also in-

Network OS Layer

Connection Management

Bandwidth
Manager Asynchronous

Transfer Handling

Neighbors
Monitor

Neighbor
Seeker

Neighbors

Neighbor Manager

Node
Lookahead Buffer

GetRandomNeighbor()
GetRandomNode()

Random Walker

Alive
Neighbors

Pull / Push Managers

Content
Chunks

Middleware

Figure 3. CREW System: Main Modules

troduces a new challenge. We describe the benefits first followed
by the challenge. The pull logic of CREW completely eliminates
the need for deciding optimum fanout. A node does as many pulls
as necessary to get all chunks. If faults occur when it is pulling,
it just pulls more number times. This simple mechanism therefore
leads to an elegant, autonomic fault-tolerance property – depend-
ing upon the fault rate, nodes do less or more pulls, autonomically.
The simplicity of this property is hard to overstate.

CREW also benefits from a near real-time view management
property. The “view” of a node in CREW, is its list of neighbors.
If a node dies, its neighbors remove it from their neighbor-list,
and do not forward any random walks to it. Thus, the dead node
vanishes from all nodes’ view immediately. Thus, using random
walks in overlay for view management allows for near real-time
updates to views of all nodes. Additionally, nodes do not spend
resources trying to contact dead nodes and this in turn speeds up
the dissemination process.

Content-aware pulling in CREW introduces a fault tolerance
challenge that is absent in push-based gossip. The list of chunk-ids
that a node sends to the target pull node may get lost, in which case
the target node will never reply back. Additionally, if chunks are
sent as smaller data packets, then, even if one data packet is lost,
the entire chunk is “corrupted”. When packet loss rate increases,
the performance of CREW can degrade exponentially fast. This
challenge can be addressed by using an underlying transport pro-
tocol that does packet loss detection and recovery. Thus, we use
TCP as the underlying transport for all inter-node communication
in CREW which allows CREW’s performance to degrade linearly,
instead of exponentially, as a function of packet loss rate. Using
TCP also provides other important benefits – such as automatic
congestion control at the network level. However, using TCP in-
troduces other challenges such as higher setup cost (due to 3-way
handshake) and dealing with slow-starts. These are addressed by
the concurrency extensions (as described in Sec-3.2) and the opti-
mizations in CREW implementation which we describe next.

4 CREW: Implementation
Our goal was to design and implement CREW so that it would
perform well in real world heterogeneous networks. The design
and implementation was an iterative process with valuable insights
provided by the Modelnet testbed (we describe the testbed setup in
Sec-5). In building the actual system, our overriding philosophy
was to make the system as modular and easy to maintain as pos-
sible. Rather than develop it from scratch, we choose an Object-
based middleware, ICE [2], as our fundamental software platform
which allows us to leverage all the benefits of a cross-platform
middleware platform. CREW is implemented as a set of interact-
ing modules, as shown in Fig-3. We provide a brief overview of

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

these modules and then describe them in detail. The actual CREW
protocol is executed by the Pull/Push threads. A Pull/Push thread
uses various supporting modules. The Bandwidth Manager calcu-
lates and estimates spare bandwidth on a node and the Pull thread
uses this to figure out if it should do more concurrent pulls. The
Random Walker is responsible for traversing the overlay and col-
lecting random nodes to gossip with. The Random Walker is in
turn dependent upon the Neighbor Manager which makes sure that
a node is always connected into the overlay. We now describe two
of the modules in greater detail. For a description of the other
modules please see [10].

Pull Manager: The Pull manager is initialized as soon as
Metadata is received through a neighbor and remains alive until
all chunks (for particular content) are collected. Depending upon
spare bandwidth (information received from the Bandwidth Man-
ager), the pull manager initiates gossip pulls. Concurrent pulls
can be naturally handled in separate threads but ICE allows for
a more efficient mechanism, Asynchronous Method Invocation
(AMI)[6]. The advantage with AMI is that a single application
thread can initiate multiple concurrent RPCs. Further, the ICE sub-
system handles the concurrent AMI calls efficiently using a leader-
followers[24] thread pool based on the select I/O system call.

Random Walker: By implementing Random Walker as a sep-
arate module, we abstracted out the sampling service functionality.
This allowed us to make an interesting optimization that is fully
transparent to the pull thread. The Random Walker visits a certain
number of nodes ahead of time and maintains open connections to
them in a data structure called the Node Lookahead Buffer (NLB).
When the pull thread asks for the next random node, the Random
Walker returns one open connection from the NLB (and removes
it from the NLB). Having a connection already open saves on TCP
connection setup time. While the pull thread is busy setting up
gossip pulls, the Random Walker is concurrently preopening con-
nections. Connections are opened until a high ‘water mark’ is hit
and the Random Walker is then stopped. When the NLB size falls
below a ‘low water mark’, the Random Walker is restarted. The
Random walker is initially started from a random neighbor of the
node. During a random walk on the overlay, if there are any net-
work failures or timeouts, the Random Walker resets back to a
random neighbor and continues. Connection management is cru-
cial for CREW since many connections are opened and ‘discarded’
(not needed) rapidly. Here again, the Automatic Connection Man-
agement (ACM) feature of the middleware comes in handy. ACM
can be thought of as a garbage collector for socket connections. If
there is no traffic (in/out) on a socket for a certain period of time,
the middleware automatically closes the connection, freeing up OS
resources. Thus, CREW does not need to worry about managing
socket connections explicitly.

5 Performance Evaluation
5.1 Experimental Framework
In our experiments, we test CREW in terms of (1) How fast it can
disseminate information to a set of receivers over spread across a
wide area network, (2) How it scales with increasing system size
and increasing content size, (3) What is its data overhead, (4) How
well it adapts and exploits heterogeneity in the networks and (5)
How gracefully it scales in presence of heterogenous network er-
rors. To measure these factors, and be confident that the results
would be a good indication of what one could expect in a real
deployment, we setup a testbed using Modelnet [5], which is a
real-time network traffic shaper and provides an ideal base to test
various systems without modifying them. Further, Modelnet al-

lows for customized setup of various network topologies. Using
Modelnet, we compare CREW with actual optimized implemen-
tations of BitTorrent, Bullet, SplitStream and Asynchronous TCP
Gossip under different conditions. Next, we describe our experi-
mental testbed and the network topologies that we used.

5.1.1 Testbed

The testbed consists of a FreeBSD machine (emulator) and four
Linux hosts. All machines have Gigabit ethernet and are con-
nected by a dedicated Gigabit router. The emulator is a dual
2.6Ghz machine with 2GB RAM while the hosts are single proces-
sor (2.8Ghz) machines with 500MB RAM. The emulator machine
runs a custom FreeBSD Kernel with a system clock at 1000Hz (as
required by Modelnet). The hosts run Linux with a customized 2.6
version kernel 4. The hosts support Java version 1.5, Python ver-
sion 2.3.5 and GCC version 3.3.5. All hosts are synchronized to
within 2 msec through NTP (Network Time Protocol).

To model the vagaries of the underlying Internet, we used the
Inet [3] topology generator tool to generate Internet router topolo-
gies of 5000 routers. Inet generates topologies on a XY plane
which Modelnet then uses to emulate inter-router (and hence inter-
node) latencies. Bandwidth constraints and network packet loss
rates are specified separately. Primarily, we used two main net-
work topologies: (1) a homogeneous network where all end nodes
have equal bandwidth of 200Kbps and (2) a heterogeneous net-
work with end nodes at three levels of bandwidth: 200Kbps,
800Kbps and 3200Kbps. Additionally, we generated homoge-
neous networks with varying packet loss rates, from 1% to 20%.
For all network topologies, however, the latency between nodes is
always heterogenous.

5.1.2 Comparison Systems

Our choice of comparison systems is not to exhaustively com-
pare CREW to all dissemination systems but to compare it
to well-known “sample points” in the application-layer broad-
cast/multicast systems space. The primary motivation is to test if
CREW, and hence a gossip-based approach, can perform compara-
bly to optimized overlay dissemination systems. BitTorrent, fully
mesh-based system, is the current defacto system for distributing
large content in the Internet today. Bullet is a hybrid tree/mesh sys-
tem, while SplitStream is primarily a tree/forest based system (for
content delivery paths). To compare these various systems, we ran
actual implementations of them over Modelnet. It should be noted
that some of the comparison systems are not designed for fixed
size content delivery. However, for these systems, we have given
optimistic interpretation of how they would disseminate fixed size
content. Specifics of the comparison systems are given below.

BitTorrent: We downloaded and used the python source code
for BitTorrent (ver-4.0.2). We changed the source code to instru-
ment the total bytes sent/received by a BitTorrent client.

Bullet: For bullet, we used the source code of Macedon
version-1.2.1 [4]. This version did not contain Bullet′[17], an op-
timized system designed explicitly for large content distribution.
Bullet is inherently a streaming protocol. To compare it to other
content dissemination systems, we made a minor change to the
source code of the appmacedon driver. During streaming, a Bullet
node logs the time when it first receives data, to the time when it
receives data that corresponds to a particular file/content size. This

4This version supports NPTL (New Posix Threading Library), to efficiently sup-
port multiple threads.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

is a simplification because there is no explicit logic in each node to
get ‘missing data’. This is representative of the best case scenario
if Bullet were used for disseminating fixed content.

SplitStream: The Macedon framework provides built-in sup-
port for various P2P protocols, including SplitStream. We used
the same appmacedon driver as before but changed the underlying
protocol to SplitStream.

Asynchronous TCP Gossip: We also developed a sophisti-
cated Gossip system based on lpbcast. Our primary goal was to
test dissemination speed and hence we removed the sampling ser-
vice logic of lpbcast, replacing it with an “ideal” one. Each node
is supplied with the list of all other nodes and does not need to
send its view. Hence, the overhead from sampling service is zero
and is a best case scenario. Gossip is implemented asynchronously
with each node sending every unique gossip message, as soon as it
gets it, to 4 other nodes. Further, we send the gossip message via
TCP due to the problems of congestion with UDP. A sophisticated
communication substrate was also designed for sending the gossip
messages. Each node maintains a thread-pool (of size 10) to send
gossip messages. Many gossip messages can therefore overlap, if
necessary, for increased concurrency. We added error handling as
well, sending a gossip message multiple (4) times (with increas-
ing backoff time), in case the receiver is currently overwhelmed.
This was designed as a means of congestion control. Our goal was
to take the basic idea of lpbcast and then implement concurrency,
heterogeneity and congestion adaptation into it.

5.1.3 Testing Methodology and Metrics

Each of our experimental runs consists of one “server” and multi-
ple peers. The server is a node that initially has all the content. A
test starts when the first peer receives the first piece of content and
ends when all peers have all the content. The different nature of
the systems introduces slight variations to the tests. Before a test
starts, we want all nodes to be “up” and already started. In BitTor-
rent, the .torrent file (metadata) is already present in each node. We
start the seeder last so that there is no node startup latency. When
the seeder enters the system, all nodes have already formed the
mesh. For Bullet and SplitStream, we wait 30 sec before stream-
ing, so that any optimization that they need to perform can take
place. For CREW, we introduce the “server” last. Unlike BitTor-
rent, though, a run in CREW includes the metadata broadcast time
as well. The server is always a 200Kbps node, irrespective of the
network topology. We run each experiment five times and plot the
average value of the five runs. We measure three major metrics:

1. Complete Dissemination Time (or Completion Time in
short). Completion time is the amount of time from when the dis-
semination process is started at the seeder until all (100% of) the
nodes in the network receive all the content.

2. Dissemination Coverage Speed (or Coverage Speed in
short). Coverage speed captures how fast data dissemination pro-
ceeds over the network. It indicates how many nodes have received
all the content at a certain point of time.

3. Dissemination Data Overhead Percentage (or Data Over-
head in short). Data overhead measures the average extra data
bytes that are transmitted at each node for dissemination. It is de-
fined as: Data Overhead = total data bytes transmitted

num nodes×file size − 1

5.2 Experimental Results
The experimental results are presented in several aspects: network
size scalability, content size scalability, adaptability to both band-
width heterogeneity and lossy links. Unless otherwise specified,

the default settings for the experiments are (1) homogeneous net-
works, (2) 1% upper loss rate, (3) 100K content size and (4) 60
nodes. We use an optimized version of CREW when comparing
with other systems. At the end of the section, we present results
that show why we selected this particular version of CREW.

5.2.1 Network Size Scalability

We first analyze the time and data overhead to disseminate a 100K
file among an increasing set of recipients. A homogeneous net-
work of 200Kbps nodes (latency is heterogenous) is used and the
total number of recipients is varied. As Fig-4(a) shows, when
the number of recipients is greater than 10, CREW disseminates
faster than all the other systems; and for 60 nodes, CREW is
almost twice as fast the next best system, BitTorrent. CREW,
therefore achieves extremely rapid dissemination. As previously
stated (Sec-3.1), metadata propagation is extremely fast and initi-
ates all nodes almost simultaneously into the dissemination pro-
cess (CREWMETA line in Fig-4(a)).

TCPGossip also scales well, with dissemination time close to
that of BitTorrent. Bullet and SplitStream, however, seem to scale
poorly and rather erratically. To examine why this was so, we
plotted the dissemination spread of the various systems, as shown
in Fig-4(b) where the completion times of 60 nodes for a particular
run of the 5 systems is plotted. In Bullet, it takes a very long
time for the last fraction of nodes to get all the data; a worst case
is plotted in Fig-4(c). We conjecture that Bullet and SplitStream
take longer to stabilize and involve all nodes in the dissemination
process. While disseminating large content, this is masked but
becomes apparent when disseminating small amounts of data. Fig-
4(b) also shows that at any given point of time, nodes in CREW
get the content faster than any of the other systems. The fast ramp-
up speed of CREW and significant concurrency contribute to its
superior performance.

Fig-4(d) plots the comparison of data overhead with varying
number of nodes for BitTorrent and CREW. TCPGossip incurs a
constant 400% data overhead (due to the fanout of 4, every node
transmits each chunk 4 times), and hence is not plotted. For Bullet
and SplitStream, the API provided did not allow us to instrument
data transmitted and received and hence we were unable to mea-
sure their overhead. Hence, they too have not been plotted. As
Fig-4(d) shows, the overhead for CREW is much lesser than that
of BitTorrent (and both are orders of magnitude less than TCPGos-
sip). Additionally, the overhead in CREW seems to grow more
slowly than that of BitTorrent, with increasing network size.

5.2.2 Content Size Scalability

In this experiment (Fig-5), we examine the time and data over-
head to disseminate content of varying size, from 25K to 800K,
among 60 peers with homogeneous bandwidth. The dissemination
time increases almost linearly for all systems. However, the dif-
ferent systems display interesting and characteristic behavior de-
pending upon the content to be disseminated. TCPGossip does
extremely fast dissemination when the content is small (as seen in
Fig-5(b) but the time for complete dissemination increases more
rapidly than other systems, when content size increases. Thus, it
takes the longest time to disseminate 800K. This is characteristic
and shows why gossip-based protocols are well suited for fast dis-
semination of small content but unsuitable for large content. Split-
Stream has the highest dissemination time for small content but
scales extremely well. The remaining systems (CREW, BitTorrent
and Bullet) exhibit similar behavior – suggesting that CREW may

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

10 20 30 40 50 60
0

50

100

150

200

Number of Nodes

C
om

pl
et

io
n

T
im

e
(s

)
CREW
TCPGossip
BitTorrent
Bullet
SplitStream
CREW

META

(a) Time Vs Network Size

50 100 150
0

10

20

30

40

50

60

Time (s)

N
um

be
r o

f N
od

es
 F

in
is

he
d

CREW
TCPGossip
BitTorrent
Bullet
SplitStream

(b) Coverage Speed

50 100 150 200 250 300
0

10

20

30

40

50

60

Time (s)

N
um

be
r o

f N
od

es
 F

in
is

he
d

Bullet
BEST

Bullet
WORST

SplitStream
BEST

SplitStream
WORST

(c) Coverage (Best and Worst Case)

10 20 30 40 50 60
0

50

100

150

200

250

300

350

400

450

Number of Nodes

D
at

a
O

ve
rh

ea
d

P
er

ce
nt

ag
e

(%
)

CREW
TCPGossip
BitTorrent

(d) Data Overhead Vs Network Size

Figure 4. Network Size Scalability in Homogeneous Networks

25 50 100 200 400 800
0

50

100

150

200

250

300

350

400

450

File Size(KB)

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
)

CREW
TCPGossip
BitTorrent
Bullet
SplitStream

(a) Time Vs Size

25 50 100
20

30

40

50

60

70

80

File Size(KB)

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
)

CREW
TCPGossip
BitTorrent

(b) Small Content

25 50 100 200 400 800
10

20

30

40

50

60

70

80

90

100

File Size (KB)

D
a
ta

 O
v
e
rh

e
a
d
 P

e
rc

e
n
ta

g
e
 (

%
)

CREW
BitTorrent

(c) Data Overhead

Figure 5. Content Size Scalability

in fact perform quite well with very large content too. Fig-5(c)
shows CREW’s data overhead in disseminating different content
size compared to BitTorrent. Both CREW and BitTorrent use less
extra data to disseminate larger content with data overhead of Bit-
Torrent decreasing more than that of CREW.

5.2.3 Adaptation to Heterogeneous Networks

We evaluate how different systems can adapt to, and exploit vary-
ing node bandwidths. We maintained a constant ratio of one
high-bandwidth node of 800Kbps per 4 low-bandwidth nodes of
200Kbps. Thus, while testing the dissemination time for 40 nodes,
there are 32 low-bandwidth nodes and 8 high-bandwidth nodes.
Additionally, when more than 45 nodes are present, we intro-
duce an even higher-bandwidth node – 3200Kbps. We manually
changed the homogeneous network topology file of Modelnet to
generate this heterogenous network, using the same latencies as
the homogeneous network. The dissemination times are plotted in
Fig-6(a). The spread times are shown in Fig-6(b).

CREW, Bullet and SplitStream are all able to exploit hetero-
geneity to achieve faster dissemination time (as shown in Figs-
6(c)(d)). However, BitTorrent seems unable to exploit heteroge-
nous bandwidths and the dissemination time is not reduced com-
pared to that in a homogeneous network. This is probably due to
the small content size and BitTorrent nodes do not get enough time
to form a good mesh. The time for BitTorrent to ramp-up to a good
mesh therefore seems to affect its ability to exploit heterogeneity
fast enough. TCPGossip’s behavior is seemingly counterintuitive
– it performs worse in a heterogenous network. We conjecture that
this is due to high-bandwidth nodes overwhelming low-bandwidth
ones, thus making chunk transfers to low-bandwidth take longer
time. The effect of introducing high bandwidth nodes for Bullet is
striking, reducing dissemination time considerably.

1 3 5 7 10 20
0

50

100

150

200

250

300

350

400

Loss Rate (%)

C
om

pl
et

io
n

T
im

e
(s

)

CREW
TCPGossip
BitTorrent
Bullet
SplitStream

(a) Time Vs Pkt. Loss Rate

0 50 100 150 200 250
0

10

20

30

40

50

60

Time (s)

N
um

be
r o

f N
od

es
 F

in
is

he
d

CREW
TCPGossip
BitTorrent
Bullet
SplitStream

(b) Coverage @ 20% Loss Rate

Figure 7. Adaptability to Network Faults

5.2.4 Adaptability to Network Faults

We now analyze the effect of packet loss rate on dissemination
time. Our aim is to emulate an unpredictable network whose
fault rate is not known in advance. To emulate this, we generated
various topologies with Modelnet by specifying lower and upper
bound packet drop rates. For example, by specifying an upper loss
rate of 5% and a lower loss rate of 0%, Modelnet assigns a packet
loss rate at random from 0-5% to each of the 5000 routers. The
packet loss between any two end nodes is therefore different and
heterogenous. We generated 6 different topologies with upper loss
rates varying from 1% to 20% and lower loss rates fixed at 0%. The
20% loss rate topology is particularly pathological and extremely
heterogenous in terms of the packet loss rates. The throughput of
the systems are plotted in Fig-7.

CREW uses TCP for all its communication and intuitively its
performance must degrade sharply as the packet loss increases
However, as can be seen in Fig-7(a), the degradation, in reality,
is graceful. The concurrency in CREW is an extremely power-
ful mechanism that prevents rapid degradation of throughput un-
der unstable network conditions. The degradation, however, still
seems sharper as compared to BitTorrent. This is true if one con-
siders 100% completion time of all peers. If the actual finish times
of the various peers are compared, as in Fig-7(b), it is clear that
most peers using CREW actually finish much faster than those in
BitTorrent. It is the “tail”, the last 10-15 peers, that actually make
the total completion time for CREW longer (An explanation of this
anomaly can be found in [10]).

Performance Evaluation Summary

Despite the optimizations and concurrency, CREW is still a gos-
sip protocol and counter intuitive from a systems perspective. A
node contacts another nodes at random, does gossip, and then, im-
mediately moves away to another node. Thus, there is very little

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

Number of Nodes

C
om

pl
et

io
n

T
im

e
(s

)
CREW
TCPGossip
BitTorrent
Bullet
SplitStream

(a) Time Vs Network Size

0 50 100 150
0

10

20

30

40

50

60

Time (s)

N
um

be
r o

f N
od

es
 F

in
is

he
d

CREW
TCPGossip
BitTorrent
Bullet
SplitStream

(b) Coverage Speed

10 20 30 40 50 60
0

20

40

60

80

100

120

Number of Nodes

C
om

pl
et

io
n

T
im

e
(s

)

CREW
HOM

CREW
HET

BitTorrent
HOM

BitTorrent
HET

(c) Crew & BitTorrent: Heterogeneous
Vs Homogeneous

10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

Number of Nodes

C
om

pl
et

io
n

T
im

e
(s

)

TCPGossip
HOM

TCPGossip
HET

Bullet
HOM

Bullet
HET

(d) TCPGossip & Bullet: Heteroge-
neous Vs Homogeneous

Figure 6. Network Size Scalability with Heterogenous Bandwidth Adaptation

scope to amortize the connection setup cost. Making chunk sizes
larger only increases the dissemination time. Further, combined
with the fact that we use TCP, we cannot achieve immediate full
usage of bandwidth due to TCP slow-start. By the time full us-
age is reached, the chunk transfer may be over. However, as the
results show, CREW not only performs well, but clearly outper-
forms the other dissemination systems. High intra and inter- node
concurrency, combined with fast estimate of bandwidth by each
node makes CREW an extremely fast protocol.

6 Concluding Remarks
Gossip based broadcast is extremely appealing for flash dissem-
ination because it is scalable and resilient to faults. However,
pure gossip entails redundant transmission of messages and its
performance becomes poorer as the size of the disseminated con-
tent increases. In this paper we introduced CREW, a new gossip-
based protocol for flash dissemination that scales extremely well,
achieving fast dissemination irrespective of network or content
size. While current experimental results show CREW to be highly
scalable, we would like to verify this both analytically and exper-
imentally for an even larger number of nodes. Currently, we are
setting up a testbed to test for thousands of nodes. Even though we
designed CREW with flash dissemination in mind, its good perfor-
mance may be useful for other applications as well. For example,
it could be used to make web-servers scalable. Images or large
html pages fit perfectly with the data size that CREW is very good
at disseminating fast.

Acknowledgements
Our work was supported by NSF (Award Numbers 0331707 and
0331690). We are grateful to the Los-Angeles Emergency Pre-
paredness (LA-EPD) department for allowing one of the authors
to observe and learn about emergency preparedness; from which
the primary motivation for this work emerged. We would also like
to thank Prof. Kathleen Tierney of U. Colorado and Prof. Carter
Butts for their guidance and insights.

References
[1] Bittorrent: http://bitconjurer.org/bittorrent/.
[2] Ice middleware: http://www.zeroc.com/.
[3] Inet: http://topology.eecs.umich.edu/inet/.
[4] Macedon: http://macedon.ucsd.edu/.
[5] Modelnet: http://issg.cs.duke.edu/modelnet.html.
[6] A. B. Arulanthu, C. O’Ryan, D. C. Schmidt, M. Kircher, and J. Par-

sons. The design and performance of a scable orb architecture for
cobra asynchronous messaging. In International Conference on Dis-
tributed systems platforms, 2000.

[7] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and
Y. Minsky. Bimodal multicast. In ACM TOCS, 1999.

[8] M. Brahami, P.Th.Eugster, R. Guerraoui, and S. Handurukande.
Bgp-based clustering for scalable and reliable gossip broadcast. In
Proceedings of the LNCS Global Computing Workshop, 2004.

[9] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh. Splitstream: High-bandwidth multicast in a coopera-
tive environment. In SOSP, 2003.

[10] M. Deshpande, B. Xing, I. Lazardis, B. Hore, N. Venkatasubrama-
nian, and S. Mehrotra. Crew: A gossip-based flash-dissemination
system, http://www.ics.uci.edu/∼mayur/crew ics tr 2005.pdf, 2005.

[11] A. M. Farley. Broadcast time in communication networks. In SIAM
Journal on Applied Mathematics, volume 39, 1980.

[12] C. Gkantsidis, M. Mihail, and A. Saberi. Random walks in peer-to-
peer networks. In IEEE INFOCOM, 2004.

[13] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van Steen.
The peer sampling service: Experimental evaluation of unstruc-
tured gossip-based implementations. In 5th International Middle-
ware Conference, 2004.

[14] R. Karp, C. Schindelhauer, S.Shenker, and B. Vocking. Randomized
rumor spreading. In IEEE Symposium on Foundations of Computer
Science (FOCS) 2000., 2000.

[15] S. Khuller and Y.-A. Kim. On broadcasting in heterogeneous net-
works. In ACM-SIAM Symposium on Discrete algorithms, 2004.

[16] B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-peer support
for massively multiplayer games. In IEEE INFOCOM, 2004.

[17] D. Kostic, R. Braud, C. Killian, E. Vandekieft, J. W. Anderson, A. C.
Snoeren, and A. Vahdat. Maintaining high bandwidth under dynamic
network conditions. In USENIX Annual Technical Conference, 2005.

[18] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High
bandwidth data dissemination using an overlay mesh. In Usenix Sym-
posium on Operating Systems Principles (SOSP), 2003.

[19] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of the
evolution of peer-to-peer systems. In PODC, pages 233–242, 2002.

[20] J. Pereira, L. Rodrigues, and A. Pinto. Low latency probabilistic
broadcast in wide area networks. In IEEE SRDS, 2004.

[21] P.Th.Eugster, R. Guerraoui, S. Handurukande, A.-M. Kermarrec,
and P.Kouznetsov. Lightweight probabilistic broadcast. In DSN,
2001.

[22] D. Qiu and R. Srikant. Modeling and performance analysis of
bittorrent-like peer-to-peer networks. In SIGCOMM, 2004.

[23] L. Rodrigues, S. Handurukande, J. Pereira, R. Guerraoui, and A.-
M. Kermarrec. Adaptive gossip-based broadcast. In Conference on
Dependable Systems and Networks, 2003.

[24] D. C. Schmidt, C. O’Ryan, I. Pyarali, M. Kircher, , and
F. Buschmann. Leader/followers a design pattern for efficient multi-
threaded event demultiplexing and dispatching. In PLoP, 2000.

[25] K. Shen. Structure management for scalable overlay service con-
struction. In NSDI, 2004.

[26] S. Verma and W. T. Ooi. Controlling gossip infection pattern using
adaptive fanout. In ICDCS, 2005.

8

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

