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Abstract

Within Valiant's model of learning as formal-
ized by Kearns, we show that computable to-
tal predicates for two formally uncomputable
problems (the classical Halting Problem, and
the Halting Problem relative to a speci�ed
oracle) are formally learnable from examples,
to arbitrarily high accuracy with arbitrarily
high con�dence, under any probability dis-
tribution. The Halting Problem relative to
the oracle is learnable in time polynomial in
the measures of accuracy, con�dence, and the
length of the learned predicate. The classi-
cal Halting Problem is learnable in expected
time polynomial in the measures of accuracy,
con�dence, and the (1 � �=16)th percentile
length and run-time of programs which do
halt on their inputs (these quantities are al-
ways �nite). Equivalently, the mean length
and run-time may be substituted for the per-
centile values in the time complexity state-
ment. The proofs are constructive. While
the problems are learnable, they are not poly-
nomially learnable, even though we do derive
polynomial time bounds on the learning algo-
rithm.

1 INTRODUCTION

Can we learn what we cannot compute? We will show
that in at least some cases the answer is \yes." The
widely accepted formal model for computation is the
Turing machine (TM), and the Halting Problem is the
canonical uncomputable task (Turing 1936). Valiant
(Valiant 1984) proposed a formal analysis of learning
as the phenomenon of knowledge acquisition in the

absence of explicit programming. The methodology
was systematically organized into a consistent and rig-
orous framework by Kearns (Kearns 1990), which we
follow. We consider two uncomputable problems and
show that they are learnable within this formal model
of learnability. While the problems are learnable, they
are not polynomially learnable, even though we do de-
rive polynomial time bounds on the learning algorithm.

1.1 ORGANIZATION

Section 2 introduces some mathematical preliminaries.
Section 3 states a problem that incorporates an oracle
and is uncomputable because the Halting Problem re-
duces to it. We present a learning algorithm, and prove
that it formally learns a predicate for this problem.
The algorithm runs in time polynomial in the mea-
sures of accuracy (1=�), con�dence (1=�), and the size
of the learned predicate. Section 4 presents a learn-
ing algorithm for the classical Halting Problem. We
prove that the learning algorithm always terminates,
and with arbitrarily high con�dence produces an ar-
bitrarily accurate total predicate, under any probabil-
ity distribution. The algorithm runs in expected time
polynomial in the measures of accuracy, con�dence,
and the (1� �=16)th percentile length and run-time of
programs which do halt on their inputs (these quan-
tities are always �nite). If desired, the mean length
and run-time may be substituted for the percentile
values in the time complexity statement. Finally, sec-
tion 5 states some important limitations on our results.
Major limitations are an impoverished knowledge rep-
resentation capability, and the fact that positive in-
stances are a priori known to be classi�ed relative
to the Halting Problem (these correspond to severe
restrictions on what Kearns (Kearns 1990) terms the
hypothesis class and the target class, respectively).



1.2 BACKGROUND

Let C (the target class) and H (the hypothesis class)
be representation classes over X (the domain, or in-
stance space). Then C is learnable from examples by
H (Kearns 1990, p. 11) if there is an algorithmA with
access to POS and NEG, taking inputs � (the accu-
racy parameter, 0 < � < 1) and � (the con�dence
parameter, 0 < � < 1), such that for any c 2 C, any
probability distributionsD+ andD�, and any inputs �
and �, algorithmA halts and outputs a representation
hA 2 H that with probability greater than (1� �) has
an accuracy greater than (1 � �). C is learnable from
examples if there exists a representation class H such
that C is learnable from examples by H. In this paper,
then, when we say that an uncomputatable problem
(such as the Halting Problem) is learnable from exam-
ples, we mean that there exists a representation class
C that is learnable from examples, and some c 2 C
represents the uncomputatable problem's characteris-
tic set. Thus the learned total predicate probably ap-
proximates the uncomputable predicate.

If, further, C and H are polynomially evaluatable,
and if A runs in time polynomial in ��1, ��1, and
jcj, then C is polynomially learnable from examples
by H. By separating the de�nition of learnabil-
ity from statements about time complexity, Kearns
is able to formally discuss and compare algorithms
across a spectrum of complexities (for example, his
analysis encompasses the super-polynomial but sub-
exponential learning algorithm by Ehrenfeucht and
Haussler (Ehrenfeucht and Haussler 1988) for deci-
sion trees with at most a �xed polynomial number of
nodes). Note that by de�nition no uncomputable prob-
lem can possibly be polynomially learnable, because an
uncomputable target representation cannot possibly be
polynomially evaluatable.

1.3 INTUITION

How can something that is not even computable be
learnable? Isn't there a contradiction here?

The key insight exploits the \probably approximately"
aspect of the formal learning model. The learned
hypothesis need not compute the Halting Problem
(which of ocurse would be impossible). Rather, it
need compute only a total predicate that, with high
likelihood, agrees with the Halting Problem on a high
percentage of instances.

For any distribution and any desired accuracy (1� �),
there are in�nitely many total predicates that agree

with the Halting Problem on at least (1 � �) of
the probability-weighted instances (program-instance
pairs). In order to succeed, the learner need �nd only
one of them, and the proofs below show that this is
possible. Thus, the learner learns a computable hy-
pothesis that only approximates the Halting Problem.

The basic proof strategy exploits the fact that the
probability distribution D+ on positive instances in-
duces a probability distribution on their run-times.
For any distribution there is some (appropriately
large) threshold such that at least (1 � �) of the
probability-weighted instances terminate before the
threshold. The proofs below show how to estimate the
threshold by samplingPOS. Of course, the learner may
be unlucky enough to draw short-running instances
during training or long-running instances during test-
ing. For any desired con�dence (1� �), the threshold
can be chosen high enough that the probability of such
an unlucky case is at most �. Thus, the learned com-
putable hypothesis probably approximates the Halting
Problem.

1.4 RELATED WORK

The literature in both computability and learnabil-
ity spans decades (Blum and Blum 1975; Gold 1967;
Herken 1988; Turing 1936). The reader is referred to
references (Cutland 1980; Hopcroft and Ullman 1979;
Lewis and Papadimitriou 1981; Minsky 1967) for the-
ory of computation and to references (Angluin and
Smith 1983; Kearns 1990; Valiant 1984; Pitt 1990)
for formal machine learning, among others. The for-
mal approach has been widely explored by the ma-
chine learning community (Pitt 1990), and a great
deal is known about necessary conditions, limitations,
and bounds (Blumer et al. 1989; Blumer et al. 1987;
Ehrenfeucht et al. 1989; Kearns and Valiant 1994;
Linial et al. 1991; Pitt and Valiant 1988; Shvaytser
1990). Amsterdam (Amsterdam 1988) discusses lim-
itations of the framework. The problem of language
identi�cation in the limit di�ers from this work in
�nding an exact rather than probabilistic predicate,
and in lacking polynomial time complexity bounds.
Gold (Gold 1967) showed that even the class of all
regular languages is not inferable from positive data.
Gasarch and Smith (Garasch and Smith 1992) con-
sider identi�cation in the limit under a model in which
the learner is permitted to ask undecidable questions.
Cherniavsky and Smith (Cherniavsky and Smith 1987)
investigate the relationship between recursive enu-
merability, inductive inference and program testing
(which includes in�nite loops), but do not extend it to



the probabilistic learning considered here. Fulk and
Jain (Fulk and Jain 1994) consider approximate in-
ference under which the class of recursive functions is
identi�able in the limit, but do not establish polyno-
mial time bounds. Benedek and Itai (Benedek and
Itai 1991) consider learnability when the distribution
is �xed and known. They mention the possibility that
the target class may be uncomputable but do not ex-
plicitly consider the case. The Halting Probability
Problem (Machlin and Stout 1990), which uses the
probability that a randomly drawn TM will halt to in-
vestigate randomness in algorithmic information the-
ory, is only distantly related to the present work.

2 MATHEMATICAL

PRELIMINARIES

To be of interest, a learning system must perform bet-
ter than a fair coin-
ip. We assume throughout that �
and � are both less than 1=2.

Notationally, let the data for learning be denoted by
pairs hM; Ii, where M is a TM program and I is
its input (\instance" and \example" are synonyms for
such a pair). An instance is positive ifM halts on I,
otherwise negative. Let # (hM; Ii) be the number of
steps thatM runs on I (de�ned for positive examples,
and unde�ned for negative examples), and let jhM; Iij
be the length of the instance as a string of symbols
(de�ned for all examples).

Let r be the inverse cumulative distribution of positive
instance run-times induced on #(:) by the probability
density function D+, de�ned for 0 < x < 1 by

r(x) = min
k

( X
#(hM;Ii)�k

D+ (hM; Ii)

!
� x

)

Thus r(x) is the minimum number k such that the
probability is at least x that a positive instance halts
in k steps or less. For example, r(0:5) is the median
run-time of positive instances, while 90% halt in r(0:9)
steps or less. r is completely determined by D+, but
is unknown to the learner because D+ is unknown.
Let l be de�ned similarly as the inverse cumulative
distribution of positive instance lengths induced on j:j
byD+. Let � be the mean of #(:) on positive examples
(their mean run-time) and let � be the mean of j:j on
positive examples (their mean length). � and � are
(possibly in�nite) distribution-dependent parameters,
unknown to the learner.

2.1 IDENTITIES AND INEQUALITIES

Fact 1
�
1 + x�1

�x
< e , for 0 < x.

Fact 2
�
1� x�1

�x
< e�1 , for 0 < x.

Fact 3 exp(�x�1) < x , for 0 < x.

Fact 4
P1

i=0

�Qm
j=1(i+ j)

�
xi = m!

(1�x)m+1

for m a non-negative integer and 0 < x < 1.

Fact 5
P1

i=0 x
iim < 2m+1m!

for m a non-negative integer and 0 < x < 1=2.

Fact 6
Pn

i=1 i
m =

Pm+1
j=0 cjn

j

where m and n are non-negative integers and the co-
e�cients cj are given by

c0 = 0

cj =

2
4� m

j � 1

�
�

m+1X
k=j+1

ck

�
k

j � 1

�35=j

Fact 7 (Cherno� Bound (Cherno� 1952),
(Valiant 1984)) In n independent trials, each with
probability of success at least p, the probability that
there are at most k successes, where k < np, is at most�
n�np
n�k

�n�k �
np
k

�k
2.2 LEMMAS

Lemma 1 In Fact 7, if p = (1 � b�) and k =
n(1 � c�) where 0 < b < c � 1, then the proba-
bility that there are at most k successes is at most1

[exp (c� ln c� (b� ln b))]n�.

Lemma 2 In Fact 7 above, if p = b� and k =
nc� where 0 < c < b � 1, then the probability
that there are at most k successes is also at most
[exp (c� ln c� (b� ln b))]n�.

Lemma 3 Let f(hM; Ii) be any function from in-
stances to non-negative numbers, let g be the inverse
cumulative distribution induced on f(:) by D+, and
let 
 be the mean of f . Then for 0 < � � 1,
g(1� �) � 
��1.

Corollary r(1� �) � ���1.

Corollary l(1 � �) � ���1.

Lemma 4 Let f , g, and 
 be as in Lemma 3. Then
g(1� �) is �nite for 0 < � � 1 (even if 
 is in�nite).

Corollary r(1� �) is �nite for 0 < � � 1.

1Throughout this paper ln denotes the natural loga-
rithm and log

2
the logarithm to the base 2.



Corollary l(1 � �) is �nite for 0 < � � 1.

3 THE HALTING PROBLEM

RELATIVE TO AN ORACLE

In this section we precisely state a computational prob-
lem and prove that it is uncomputable. We then state
an algorithm and prove that it learns a total predicate
for the problem, achieving arbitrarily high accuracy
with arbitrarily high con�dence under any probabil-
ity distribution. The time complexity of the learner
is polynomial in the measures of accuracy, con�dence,
and the length of the learned predicate.

The problem consists of the Halting Problem relative
to an oracle. For input instance hM; Ii, the task is to
output a 1 ifM halts when given I as input and a 0
otherwise, and then halt. The learner (but not the so-
lution) may make use of a routine, ORACLE, that ac-
cepts two arguments: an instance hM; Ii, and an inte-
ger S governing output format. IfM fails to halt when
given I as input, then the call ORACLE(hM; Ii; S)
never returns and so the caller fails to halt. However,
ifM halts on I then the call ORACLE(hM; Ii; S) re-
turns in unit time, and the returned value is the num-
ber of stepsM takes before halting on I. For technical
reasons in the proof below, we assume that the input
format for ORACLE is the same as is returned by calls
to POS, and that the format of the returned value is
a binary integer, written least signi�cant bit �rst onto
every Sth square of the TM tape, starting at the head
position at the time of the call.

It is easy to see that the Halting Problem relative to
ORACLE is uncomputable, because if some TM, say
MO, could compute it, then we could easily mod-
ify MO to solve the classical Halting Problem. Let
NON-ORACLE be a TM with identical input/output
behavior to ORACLE (but a longer run-time), and
MNO be identical toMO except that wherever MO

calls ORACLE, MNO calls NON-ORACLE. Conse-
quentlyMNO will have identical input/output behav-
ior to MO (but a longer run-time). Then MO com-
putes the Halting Problem relative to ORACLE if and
only if MNO computes the Halting Problem without
an oracle, which we know to be impossible.

3.1 THE LEARNING ALGORITHM

Next we show that the Halting Problem relative to
ORACLE is learnable, by exhibiting an algorithm that
learns it.

Let AO be as follows:

1. Input � and �.

2. N  16��1��1.

3. C  dN (1� �=4)e.

4. Make N calls to ORACLE(POS(), N ).

5. Compute K as the Cth smallest returned value.

6. Output a program LO that does:

A. Input an instance hM; Ii.

B. SimulateM on I for K steps.

C. IfM has halted then print 1, else print 0.

D. Halt.

7. Halt.

3.2 PROOF THAT AO LEARNS THE
HALTING PROBLEM RELATIVE TO
ORACLE.

Theorem 1 Let AO be as stated. Then:

1.A LO has an error rate of 0 on negative examples;

1.B with probability greater than (1� �), LO has an
accuracy greater than (1��) on positive examples;
and

1.C AO halts in time polynomial in ��1; ��1; and the
size of the learned predicate.

Proof:

1.A LO has an error rate of 0 on negative examples
because it classi�es as positive only those instances
which do halt (in K or fewer steps). 2 (1.A)

1.B By de�nition of r; the learned predicate LO has
an accuracy on future positive examples greater than
(1 � �) if and only if AO terminates with K � r(x)
for some x > (1 � �). We show that with probability
greater than (1 � �), AO terminates with K � r(1 �
�=2).

Term a call to ORACLE(POS(), N ) a success when
its returned value equals or exceeds the (unknown)
value of r(1 � �=2). Then K � r(1 � �=2) if the Cth

smallest run-time was a success, which in turn is true
if we have more than N�=4 successes in our N calls.
By de�nition of r the probability of a success is at
least �=2. Consequently, by Lemma 2 with b = 1=2;
c = 1=4; and n = N = 16��1��1, the probability
that this condition fails and there are at most N�=4



successes is less than exp
�
�1:227� ��1

�
, and by Fact

3 this is less than �. 2 (1.B)

1.C Let L be the length of the program that is to
be output in step 6. Steps 1-4 and 6-7 are obviously
polynomial-time in ��1; ��1; and L. However, in step
5 we must compute the Cth smallest of the values re-
turned by the N calls to ORACLE(POS(), N ), and
these values may be arbitrarily huge.

By making the N calls to ORACLE(POS(), N ) with
the tape head on consecutive adjacent squares of the
tape, we may arrange that the bits of the N returned
values are interdigitated in increasing order of signi�-
cant bits:

: : : 6 b d11d12d13 : : : d1Nd21d22 : : :d2Nd31d32 : : : 6 b 6 b : : :

where 6 b is the blank symbol initializing the tape and
dij is the ith least signi�cant bit of the jth call, or 6 b
if the jth call returned fewer than i signi�cant bits.

Now if K is the Cth smallest value, we can �nd K in
time polynomial in N and log2K. First, start at d11
and skip to the right in groups of N bits, at the ith

stage examining the N tape squares dij; 1 � j � N;
until at least C of the N squares are 6 b. This occurs
at i0 = blog2Kc + 2. Eliminate all values for which
di0;j 6=6 b, and �nd the Cth smallest value of the N or
fewer remaining integers, each of size blog2Kc+1 bits
or less. This can easily be done in time polynomial in
N and blog2Kc:

Because blog2Kc � L and N = 16��1��1, step 5 and
consequently AO runs in time polynomial in ��1; ��1;
and L. 2 (1.C)

Consequently AO formally learns the Halting Problem
relative to ORACLE in time polynomial in ��1, ��1,
and the size of the learned predicate. 2 (1)

3.3 A BOOLEAN ORACLE

Traditionally, an oracle returns only a YES/NO an-
swer. The oracle we employed above returned a nu-
meric answer. We can modify the algorithm to ac-
commodate learning with a YES/NO oracle as fol-
lows. Let ORACLE-P be de�ned the same as ORA-
CLE, except that ORACLE-P(hM; Ii; S) returns YES
if #(hM; Ii) � S and NO if M halts on I and
#(hM; Ii) > S. As with ORACLE, if M fails to
halt on I then ORACLE-P(hM; Ii; S) fails to return.
Replace statements 4 and 5 of AO with the following:

4. For I = 1 to N do EXAMPLE[I]  POS().

5.a. K  1.

5.b. K  2K.

5.c. J  0.

5.d. COUNT  0.

5.e. J  J + 1.

5.f. If ORACLE-P(EXAMPLE[J ], K)
then COUNT  COUNT + 1.

5.g. If J < N then go to 5.e.

5.h. If COUNT < C then go to 5.b.

We leave to the reader the proof that the Boolean
version of AO learns the Halting Problem relative to
ORACLE-P in time polynomial in ��1; ��1; and the
size of the learned predicate. Note that the output
format of POS must be adjusted so that the results of
successive calls do not over-write each other (for exam-
ple, by interdigitation as in 1.C), and the input format
of ORACLE-P must match.

4 LEARNING TO SOLVE THE

HALTING PROBLEM

In this section we turn our attention to learning to
solve the classical Halting Problem. The problem
statement is identical to that in the previous section,
except that the learner is not permitted to use ORA-
CLE. We state an algorithm and prove that it learns a
total predicate for the Halting Problem, achieving ar-
bitrarily high accuracy with arbitrarily high con�dence
under any probability distribution. The expected time
complexity of the learner is polynomial in the measures
of accuracy, con�dence, and the mean length and run-
time of programs which do halt on their inputs.

We state our results in terms of the mean positive in-
stance length and run-time, � and �, because it leads
to a more intuitive and compact form. Alternatively,
we could have phrased all claims and proofs below in
terms of l(1 � �=16) and r(1 � �=16), both of which
are always �nite by Lemma 4. The proof actually uses
these quantities internally, then converts to � and � in
order to obtain a more compact �nal statement.

4.1 THE LEARNING ALGORITHM

Let AH be as follows:

1. Input � and �:



2. N0  32��1��1:

3. K  0:

4. K  K + 1:

5. Nk  K �N0:

6. Ck  dNk (1� �=4)e :

7. COUNT  0:

8. J  0:

9. J  J + 1:

10. X  POS().

11. If jXj > K then go to 14.

12. Simulate X for K steps.

13. If X halted then COUNT  COUNT + 1.

14. If J < Nk then go to 9.

15. If COUNT < Ck then go to 4.

16. Output a program LH that does:

A. Input an instance hM; Ii.

B. SimulateM on I for K steps.

C. IfM has halted then print 1, else print 0.

D. Halt.

17. Halt.

4.2 PROOF THAT AH LEARNS THE
HALTING PROBLEM.

Theorem 2 Let AH be as stated. Then:

2.A LH has an error rate of 0 on negative examples;

2.B with probability greater than (1 � �), LH has an
accuracy greater than (1��) on positive examples;

2.C with probability greater than (1��), AH executes
in time polynomial in ��1, ��1, � and �;

2.D in the remaining less than � fraction of cases not
bounded in (2.C), AH executes in expected time
polynomial in ��1, ��1, � and �; and

2.E the probability that AH fails to terminate is zero.

Proof:

2.A LH has an error rate of 0 on negative examples,
as it will classify as positive only those instances which
do halt (in K or fewer steps). 2 (2.A)

2.B We will use k to refer to the kth iteration of the
loop at instructions 4-15, and K to refer to the �nal
value in instruction 16.B.

By de�nition of r; the learned predicate LH has an
accuracy on future positive examples greater than (1�
�) if and only if AH terminates withK � r(x) for some
x > (1 � �). We show that with probability greater
than (1� �), AH terminates with K � r(1� �=2).

Let Pk be the probability of halting on the kth itera-
tion. Term a success any instance which runs for more
than k steps. AH cannot possibly halt on the kth iter-
ation unless there are at most Nk � Ck = Nk�=4 suc-
cesses. When k < r(1� �=2) the probability of success
is at least �=2, by de�nition of r. Therefore, by Lemma
2 with n = Nk = 32k��1��1, b = 1=2, and c = 1=4, for

k < r(1��=2) we see Pk is at most
�
exp(�2:454��1)

�k
.

By Fact 3, this is less than (�=2:454)k.

The probability that AH terminates with K < r(1 �
�=2) is less than

r(1��=2)X
k=1

Pk

 
k�1Y
l=1

(1� Pl)

!

where the �rst factor is the probability of halting at
iteration k and the second is the probability of not
having halted before then. Dropping the second factor
(which is less than 1) and substituting for Pk shows
that this is less than

r(1��=2)X
k=1

(�=2:454)k

By Fact 4 above with m = 0 and noting the sum is
from k = 1, this is less than (�=2:454)=(1� �=2:454),
which is less than � for 0 < � < 1=2. 2 (2.B)

2.C We show that:

2.C.i with probability at least 1��, AH terminates with
K bounded by 16(�+ �)��1;

2.C.ii the run-time of the kth iteration is bounded by a
polynomial in ��1, ��1, and k;

2.C.iii from which the result follows.



2.C.i For use below (in 2.D,E) we will prove a stronger
result, namely that if k � 16(�+ �)��1 then the prob-
ability of terminating on the kth iteration is at least
(1� �).

On the kth iteration for k � 16(� + �)��1, term
a success any instance which has length not greater
than k, and halts in k or fewer steps. By Lemma
3, r(1 � �=16) � 16���1 and l(1 � �=16) � 16���1,
so the probability of success is at least (1 � �=8).
AH fails to halt if and only if there are fewer than
Ck = Nk (1� �=4) successes. By Lemma 1 with
n = Nk = 32k��1��1, b = 1=8, and c = 1=4, this prob-
ability is at most exp(�1:545��1k): By Fact 3 this is
less than �. 2 (2.C.i)

2.C.ii Instructions 4 through 8, and 15, are executed
once on the kth iteration, and are clearly O(k��1��1).
Instructions 9 through 14 are each executed Nk times
on the kth iteration, and except for instruction 12 are
clearly also O(k��1��1).

Instruction 12 involves simulating the instance re-
turned by POS for k steps. AH encodes a UTM
to perform this simulation. Because k bounds both
the length of the instance and the number of steps
simulated, each execution of instruction 12 requires
time bounded by some polynomialQ(k) =

Pq
j=0 ajk

j,
where q is the degree of Q and fajg are its coe�cients.
Q is constant for AH, and depends only on the form of
UTM employed. In turn Q is bounded by bkq where
b =

P
j jajj.

Consequently for some positive constant c, the exe-
cution time of each step 9 through 14 is bounded by
ckq��1��1. These are executed Nk = 32k��1��1 times
on the kth iteration. It follows that, for some positive
constant d, the run-time of the kth iteration is bounded
by dkq+1��2��2. 2 (2.C.ii)

2.C.iii By (i) and (ii), with probability greater than
(1� �), the total run-time of AH is bounded by

d��2��2
16(�+�)��1X

k=1

kq+1

By Fact 6 with m = q + 1 this equals

d��2��2
q+2X
j=0

cj
�
16(�+ �)��1

�j
where the coe�cients cj depend only on q, which is
constant for AH. 2 (2.C.iii)

Consequently, with probability greater than (1 � �),
AH executes in time polynomial in ��1, ��1, � and �.

2 (2.C)

2.D The proof of (2.C.iii) showed that the total run-
time of AH for iterations number 1 through 16(� +
�)��1 is bounded by a polynomial in ��1, ��1, � and
�. Call this D.

The proof of (2.C.i) showed that if k � 16(� + �)��1

then the probability of terminating on the kth iteration
is greater than (1 � �). The proof of (2.C.ii) showed
that the run-time of the kth iteration is bounded by
dkq+1��2��2. Consequently, if AH runs for more than
16(� + �)��1 iterations then its expected run-time is
bounded by

D +
1X
i=1

d
�
16(�+ �)��1 + i

�q+1
�i�2��2

= D + d��2��2

�

q+1X
j=0

�
q + 1

j

��
16(�+ �)��1

�q�j+1 1X
i=1

�iij

where we are justi�ed in reversing the order of sum-
mation because all terms are non-negative and so the
series is absolutely convergent.

Because j is bounded above by q + 1 this is less than

D + d��2��2

�

q+1X
j=0

�
q + 1

j

��
16(�+ �)��1

�q�j+1 1X
i=1

�iiq+1

By Fact 5 with m = q + 1 this is less than

D + d��2��2

�

q+1X
j=0

�
q + 1

j

��
16(� + �)��1

�q�j+1
2q+2(q + 1)!

which clearly is polynomial in ��1, ��1, � and �.
2 (2.D)

2.E Assume, to the contrary, that the probability with
which AH fails to halt were some positive number �.
The proof of (2.C.i) showed that for i � 0 the proba-
bility that AH fails to halt in i+16(�+�)��1 or fewer
iterations is bounded above by �i. Consequently for
i > ln �= ln � the probability that AH fails to halt is
less than �, contradicting the assumption that � was
that positive number. 2 (2.E)

Consequently AH learns from examples a total predi-
cate that probably approximates the Halting Problem,
executes in time polynomial in ��1, ��1, � and � with
probability greater than (1� �) and in expected poly-
nomial time otherwise, and always halts. 2 (2)



5 IMPORTANT LIMITATIONS.

An important limitation of the proof approach used in
this paper is the small size of the hypothesis class (sim-
ulation to K) relative to (say) the space of all Boolean
functions or all quanti�ed �rst-order logic formulae.
The learners presented in this paper do not have a
rich space of learnable knowledge. Although they suf-
�ce to prove our main technical result, realistically any
learner capable of learning general knowledge must
have a richer knowledge representation scheme than
appears above.

Another important limitation is the fact that the posi-
tive examples are a priori known to be generated rela-
tive to the Halting Problem. Consequently, the target
class has only one element. This fact does not a�ect
the uncomputability of the problems we posed, but it
would be an interesting restriction to remove.

Yet another important limitation is the fact that all
of our time complexity statements, while polynomial,
contain distribution-dependent terms. Another impor-
tant limitation is the fact that the hypothesis class
(simulation to K) fails to be polynomially evaluatable.
However, the fact that the underlying uncomputable
problem is indeed learnable holds out the hope that
other, cleverer, predicates and hypothesis classes may
be devised that will satisfy this condition.

In concluding this section, we point out that even if
future research were to discover a polynomially evalu-
atable hypothesis class and a distribution-independent
polynomial-time learning algorithm for some uncom-
putable problem, the test of polynomially learnability
would still fail. This is because, by de�nition, no un-
computable problem can have a polynomially evaluat-
able target class. One might argue that the de�nition
of polynomially learnable should be changed to drop
that requirement on the target class. Alternatively,
of course, one might view the learnability of any un-
computable problem to be an undesirable consequence
within a theory of learning. This viewpoint might lead
one to argue that the de�nition of learnability should
be changed to exclude such results.
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