
1

Chapter 12, pp. 227{283, in
\Computational Methods in Molecular Biology"

editors Steven Salzberg, David Searls, and Simon Kasif.
Elsevier Press, Amsterdam, 1998

Analysis and Algorithms for

Protein Sequence-Structure Alignment

by

Richard H. Lathrop(1), Robert G. Rogers Jr.(2), Jadwiga Bienkowska(2),
Barbara K. M. Bryant(3), Ljubomir J. Buturovi�c(4), Chrysanthe Gaitatzes(2),

Raman Nambudripad(5), James V. White(2,6), Temple F. Smith(2)

(1) Department of Information and Computer Science
444 Computer Science Building
University of California, Irvine
Irvine, CA 92697-3425

(2) BioMolecular Engineering Research Center
Boston University
36 Cummington Street
Boston, MA 02215

(3) Millennium Pharmaceuticals, Inc.
640 Memorial Drive
Cambridge, MA 02139

(4) Incyte Pharmaceuticals, Inc.
3174 Porter Drive
Palo Alto, CA 94304

(5) Molecular Computing Facility
Beth Israel Hospital
330 Brookline Avenue
Boston, MA 02215

(6) TASC, Inc.
55 Walkers Brook Drive
Reading, MA 01867

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 2

Chapter Overview

This chapter discusses analytic and algorithmic results for computational protein structure pre-
diction by protein sequence-structure alignment, an approach also known as protein threading.
Biological results are beyond the scope of this chapter, but may be found in [1, 2, 3, 4]. See
also the chapter by David Jones in this volume, which discusses another approach to protein
threading.

The chapter visits in turn: motivation, intuition, formalization, analysis, complexity, al-
gorithm, computational cost, discussion, and conclusions. The early sections are tutorial in
nature; the rest represent original research results. The overall conclusions are that: (1)
computational techniques can render vast search spaces approachable by exploiting natural
constraints; and (2) advances in knowledge-based objective functions and protein structural
environment de�nitions represent an important opportunity for future progress.

A long-range goal of this work is to integrate structural and functional pattern recognition.
The reader will notice that gapped block alignment is conceptually similar to block patterns,
consensus patterns, weight matrices, pro�le patterns, and hierarchical patterns, among many
other gapped block pattern methods (reviewed in [5]). Combined structural and functional
pattern recognition is likely to prove more powerful than either one alone.

1 Introduction

Simply stated, the protein folding problem is to transform information. The input is a string
of characters drawn from an alphabet of 20 letters. In the simplest case, the desired output
annotates each character with three numbers, giving its XYZ coordinates in the protein's
three-dimensional folded shape. Surprisingly, in many cases these coordinates are unique and
depend only on the input string. There, protein structure prediction from sequence simply
transforms implicit information into an explicit �nal form.

The protein folding problem is also the premiere computational problem confronting molec-
ular biology today: it has been called the \holy grail of molecular biology" and \the second half
of the genetic code" [6]. It is important because the biological function of proteins (enzymes)
underlies all life, their function is determined by their three-dimensional shape, and their
shape is determined by their one-dimensional sequence. The importance of computational so-
lutions is escalating rapidly due to the explosion of sequences and genomes becoming available,
compared to the slow growth in the number of experimentally determined three-dimensional
protein structures.

The problem is unusually accessible to computer scientists because it is (in its essence)
a pure information processing transformation, from implicit to explicit. No single computer
program would so transform the face of experimental molecular biology practice today as one
that correctly, reliably, and rapidly computed this function. It is a Grand Challenge problem
for computer science [7].

1.1 Why is it hard?

The problem, although simply stated, is quite di�cult. The process by which nature folds the
string is complicated, poorly understood, and most likely the global sum of a large number

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 3

of weak, local, interacting e�ects. Quantum mechanics provides a solution in principle, but
the computation becomes intractable when confronted with the many thousands of atoms
comprising a protein.

The direct approach to protein folding, based on modeled atomic force �elds [8, 9] and
approximations from classical mechanics, seeks to �nd the folded conformation having mini-
mum free energy. This is di�cult because a folded protein results from the delicate energetic
balance of powerful atomic forces, and because the vast number of possible conformations
poses a formidable computational barrier. The forces involved are often di�cult to model ac-
curately, and include stabilizing and destabilizing terms making large contributions of opposite
sign summed over a very large number of atoms [10]. Thus, small cumulative approximation
errors may dominate the smaller net stabilization. For technical reasons it is di�cult to model
surrounding water properly [9, 11], yet hydrophobic collapse is believed to be the main e�ect
driving protein folding. Classical macroscopic parameters such as the dielectric constant be-
come problematic at the atomic level. We may not know the protein's cellular folding context,
which may include chaperone proteins, post-translational modi�cations, and hydrophobic in-
terfaces to which the protein conforms. The search space may exceed 1050 plausible folded
conformations even for medium-size proteins. Simulation time-steps are measured in femtosec-
onds while folding time scales of interest are measured in milliseconds, a ratio of 1012. Unless
sophisticated methods are used, the basic time-step computation is O(N2) where N may ap-
proach 106 atoms with surrounding water. The simulation time may exceed 1012 CPU-years at
current supercomputer speeds. The direct approach has been applied successfully to smaller
molecules, but as yet faces sti� challenges for large proteins [11, 12], though recent versions
using cruder force �elds are promising [13, 14].

One important alternative approach is to use the wealth of information contained in
already-known protein structures. The structures can serve as spatial folding templates, im-
pose constraints on possible folds, and provide geometrical and chemical information. This
is an attractive strategy because proteins exhibit recurring patterns of organization; there
are estimated to be only around 1,000 to 10,000 di�erent protein structural families [15, 16].
In this approach, the known structure establishes a set of possible amino acid positions in
three-dimensional space. These template spatial positions generally include only the backbone
atoms, though sometimes the implied beta carbon is used as well. The highly variable surface
loops are not included in the template positions. Based on topological and physicochemical
criteria, an alignment of an amino acid sequence to the set of positions in one such core tem-
plate is chosen. Each amino acid of the sequence is given the three-dimensional coordinates of
the template position to which it is aligned. Estimation of the complete structure still requires
some means of assigning positions to the amino acids in the loop regions [17, 18], of assigning
amino acid side chain orientations and packing [19, 20], and of searching the immediate struc-
tural neighborhood for a free energy minimum [8, 9]. In this chapter we focus on the choice
of core template and the method of identifying the optimal alignment of the sequence to that
core template.

Initially, such methods employed primary sequence string similarity between the candidate
sequence and the structure's native sequence in order to perform the alignment (\homology
modeling" or \homological extension"). Computing the sequence similarity yields a direct
alignment of amino acids in the candidate's and structure's sequences [17, 21]. In cases where

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 4

the sequence similarity is high this is still the most successful protein structure prediction
method known. Unfortunately, it is of limited generality because novel sequences rarely have
su�ciently high primary sequence similarity to another whose structure is known. Indeed, of
the genomic sequences known at present, fully 40 percent have no homologs to any sequence
of known function, let alone known structure [22].

1.2 Why threading?

Many evolutionarily unrelated sequences (non-homologs) contain similar domain folds or struc-
tural cores [15, 16, 23, 24, 25]. Recently, approaches have been devised which exploit this fact
by aligning a sequence directly to a structure or structural model. The process of aligning a
sequence to a structure and thereby guiding the spatial placement of sequence amino acids is
referred to as \threading" the sequence into the structure [26, 27], and \a threading" means
a speci�c alignment between sequence and structure (chosen from the large number of pos-
sible alignments). In this way \threading" specializes the more general term \alignment" to
refer speci�cally to a structure (considered as a template) and a sequence (considered as being
arranged on the template).

These new approaches exploit the fact that amino acid types have di�erent preferences
for occupying di�erent structural environments (for example, preferences for being in alpha-
helices or beta-sheets, or for being more or less buried in the protein interior). Additionally,
some of the new approaches also exploit the fact that there appear to be distinct preferences
for side-chain contact (e.g., contact potentials [28]), or more generally for spatial proximity
(e.g., potentials of mean force [29]), as a function of those environments. For example, a
buried charged residue may be more likely to be adjacent to another buried residue of opposite
charge. These interaction preferences have been quanti�ed statistically and used to produce
a score function reecting the extent to which amino acids from the sequence are located in
preferred environments and adjacent to preferred neighbors. The known protein structures
can be represented in a way that makes explicit the structural environment at each position,
as well as the spatially adjacent structural positions. This done, the sequence can be aligned
or threaded into the structure by searching for an alignment or threading that optimizes the
score function. The optimal threading(s) maximize(s) the degree to which environment and
adjacency preferences are satis�ed. This has been a very active area of recent research, in
part because it has been somewhat successful, and numerous scoring schemes and threading
algorithms have been proposed. For reviews see [30, 31, 32, 33, 34, 35, 36, 37, 38], while for
cautionary notes see [1, 4, 12, 39, 40, 41, 42].

2 Protein Threading | Motivating Intuitions

The logic behind the threading approach to the prediction of an amino acid sequence's expected
three-dimensional fold is almost seductively simple, if not obvious. Given the extreme di�culty
of any direct, de novo, or quantum level approach to protein structure prediction, combined
with our esthetic sense as expressed in Occam's principle of parsimony [43], this seduction
is understandable. In practice, however, as of this writing the threading approach has not
yet lived up to our expectations [36]. The threading research challenge, only partially met at

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 5

present, is to devise a theory of protein structure su�ciently information-rich to allow accurate
prediction yet su�ciently concise to retain the simplicity of discrete alignment.

2.1 Basic ideas

Threading rests on two basic ideas: �rst, that there is a limited and rather small number of
basic \protein domain core" folds or architectures found in nature; and, second, that some av-
erage over an entire sequence of amino acid propensities to prefer particular structural/solvent
environments is a su�cient indicator for the recognition of native-like versus non-native-like
folds. The �rst of these ideas is supported by our understanding of polymer chemistry, which
suggests that there is a limited number of ways to fold a repetitive polymer of two basic
unit types (amino acids are to a �rst approximation either hydrophilic or hydrophobic) in an
aqueous environment. These are helical structures in which the helical repeat is synchronous
with the polymer unit repeat, and the extended sheet structures in which neighboring polymer
strands place the adjacent polymer repeat in synchrony. This results in six basic protein fold
building blocks: helices and sheets, either of which can be all hydrophobic, all hydrophilic, or
amphipathic (or two-sided). Now, given the requirement that a protein's interior is hydropho-
bic and its surface is hydrophilic, there appears to be a limited number of ways to pack these
six building blocks together. Indeed the vast majority of currently determined structures fall
into only a few core architectures, or arrangements of helices and sheets [16], as perhaps �rst
clearly stated by Jane Richardson in her \taxonomy of proteins" [25]. Nonetheless, a major
limitation of the threading approach is that if an appropriate core is not already present in the
structure library, correct prediction is obviously impossible. Currently most of the estimated
thousands of fold families remain unseen, and entirely novel folds appear frequently. Attempts
to assemble structure fragments into a novel core include [44], [45], and [46].

The second threading concept, that the various preferences of the di�erent amino acids for
di�erent structural environments can provide su�cient information to choose among alternate
basic fold architectures, is less obvious. Protein structures, and even their functions, are known
to be very robust to most single amino acid substitutions. This is a requirement of an evolving
system. As has been noted many times, the thousands of distinct hemoglobin amino acid
sequences all fold to nearly identical three-dimensional structures [47]. In addition, protein
structures must be stable enough to tolerate some amino acids in very unfavorable positions,
such as hydrophobic ones on the surface in a site designed to bind a hydrophobic substrate.
It thus seems very unlikely that particular atomic details of particular amino acids determine
the overall architecture of the fold. Given that many di�erent amino acid pairs can produce
nearly equivalent interactions, in terms of contact energies and packing density, it generally has
been assumed that some average over these pairwise contact interactions determines relative
positioning of the helices and sheets with respect to one another.

2.2 Common assumptions of current threading work

All current threading proposals replace the three-dimensional coordinates of the known struc-
ture by an abstract template description in terms of core elements and segments, neighbor
relationships, distances, environments, and the like. This avoids the computational cost of
atomic-detail molecular mechanics or dynamics [8, 9] in favor of a much less detailed, hence

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 6

much faster, discrete alignment between sequence and structure. However, important aspects
of protein structure, such as intercalated side-chain packing, excluded volume, constraints
linking di�erent environments, higher-order interactions, and so forth, also may be abstracted
away. This depends on the theory employed.

The common assumptions underlying all threading proposals are as follows:

1. the known structures provide sets of template positions in three-dimensional space;

2. a sequence-structure alignment, or threading, speci�es the placement of sequence residues
into one of the sets of template positions;

3. di�erent candidate threadings arise from di�erent structural templates, di�erent se-
quences, and di�erent possible alignments of template positions and sequence amino
acids; and

4. a score function (often statistical) can distinguish good from bad threadings.

2.3 Principal requirements for structure prediction

To predict accurately the structure of a novel protein sequence using the threading approach,
it is necessary both to select the proper core template from a library of known examples
(\fold recognition," �gure 1), and to align the sequence to it correctly (\sequence-structure
alignment," �gure 2), simultaneously (�gure 3). There are four components to any practical
application of the threading approach to the prediction of the three-dimensional fold for an
amino acid sequence:

(i) Construction of as complete as possible a library of potential core folds or structural
templates.

(ii) An objective function (i.e., a score function) to evaluate any particular placement or
alignment of a sequence into each core template.

(iii) Some means of searching over the vast space of possible alignments between a given
sequence and each core template in the library for those that give the best total score.

(iv) A means of choosing the best template from among the best scoring alignments of a
sequence to all possible templates.

Figures 1, 2, 3 about here.

This chapter focuses on the theory of selecting the best core templates and alignments
(requirements iii and iv). It analyzes closely the consequences of choosing \best = globally
highest conditional probability." For this case, it provides a probabilistic Bayesian theory

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 7

that uni�es core recognition and sequence-structure alignment (requirements iii and iv). The
theory is Bayes-optimal because it rigorously selects cores and alignments that are globally
most probable, regardless of the particular theory of protein structure adopted.

In contrast, the theory of protein structure does in fact determine the particular forms of
the core templates and the score or objective function (requirements i and ii). We assume that
the objective function may be interpreted as encoding the probability of observing a given
sequence in a given alignment to a given core structure, and otherwise consider requirements
(i) and (ii) to be arbitrary and �xed in advance. For approaches to requirements (i) and (ii)
see references [27, 28, 37, 40, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57]. A rigorous probabilistic
derivation of the objective function from Markov Random Field (MRF) theory may be found
in White et al. [58] and Stultz et al. [59].

2.3.1 Library members (requirement i)

Library members (requirement i) variously are termed structures, folds, cores, folding motifs,
folding patterns, topology �ngerprints, three-dimensional pro�les, contact pro�les, adjacency
graphs, spatial patterns, domains, structural models, tertiary templates, structural templates,
core templates, and so on. Here we refer to them as core templates to emphasize the loop region
variability; but the name has no special meaning and the analysis applies to many structure
representations currently in the literature. Library members usually consist of abstractions
of known structures, constructed by erasing atomic detail of speci�c native side-chains and
variable or loop regions while retaining core backbone structural features. The core template
is annotated with environmental features that describe local structural neighborhoods, such
as spatial adjacencies, distances, angles, secondary structure, solvent accessibility or exposure,
backbone parameters, and so on. The environmental features chosen depend upon the par-
ticular theory of protein structure adopted. Sometimes idealized coordinates replace database
coordinates, allowing variable-length segments.

The core template corresponds to an annotated backbone trace of the secondary structure
segments in the conserved core fold. Core segments are connected by variable loop or coil
regions. Loops are not considered as part of the conserved fold, and are modeled by an arbi-
trary loop score function that is \sequence-speci�c," because it may depend upon the speci�c
sequence residues forming the loop. In contrast, the gap penalty used in dynamic program-
ming usually is a function of gap length only [21], and usually does not depend on the identity
of sequence residues in the gap. Core template spatial \positions," implying a speci�c three-
dimensional location, are abstracted to become spatially neutral core \elements," implying
only a discrete place-holder that may be occupied by a residue from the sequence. Depending
upon the requirements of the particular theory of protein structure adopted, the core template
may record local structural environments, spatial neighbors, degree of solvent exposure, dis-
tances between core elements, and so on. In this way, the annotated core template organizes
its core elements: each is embedded in an implied structural environment and interacts with
structurally implied neighbors.

Pairs of elements are \neighbors" if they interact within the given score function. It is
necessary to record on the core template whatever information the score function will use to
assign scores to candidate threadings (e.g., Bryant & Lawrence [27] and Sippl [60] both record
discretized distances). Such information comprises the abstract \structural environment" as

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 8

seen by the threaded residues. If the score function quanti�es individual residue preferences
(e.g., for being more or less buried, or for certain secondary structures), the (singleton) struc-
tural environment at each element must be recorded. This is easily done by labeling the
element. If the score function quanti�es neighbor preferences (e.g., for being a certain distance
apart), the (pairwise) structural environment between neighbors must be recorded. Several
equivalent data structures have been used; the common theme is that certain pairs of elements
are distinguished as neighbors, and the pair is labeled in some manner. One common data
structure constructs a matrix having one row and one column for each element. Each cell
contains the corresponding pairwise environment (e.g., a distance matrix [60] results when all
elements are neighbors and the pairwise environment is Euclidean distance). An equivalent
approach, the adjacency graph used here, constructs a graph with one vertex for each ele-
ment. Neighbor elements are connected by a (directed) edge, and the edge is labeled with
the pairwise environment. The edge in the graph corresponds to the cell in the matrix, and
the edge label corresponds to the label contained in the cell. Related representations include
adjacency matrix, contact graph, and so on. For pairwise interactions this is fully general,
because each label could (in principle) specify a di�erent 20� 20 table with an arbitrary score
for any possible pair.

2.3.2 Objective function (requirement ii)

Each distinct threading is assigned a score by a speci�ed objective function or score function
(requirement ii). This chapter generally restricts attention to score functions that can be
computed by considering no more than two core segments at a time.

The objective function usually describes the degree of sequence-structure compatibility
between sequence amino acid residues and their corresponding positions in the core template
as indicated by the alignment (e.g., contact potentials, knowledge-based potentials, potentials
of mean force, etc.). In the general case, the objective function may reect the sequence
residue types placed elsewhere in the structure. For example, a polar residue in a buried
structural environment may be more likely to interact with a complementary polar residue in
a neighboring buried position than with a hydrophobic residue there. In contrast, what we
refer to below as the \singleton-only" objective function ignores interactions between pairs
(or higher) of sequence residues. It is restricted to reect only individual sequence residue
preferences for the structural environments that annotate their core template position. For
example, such a function may utilize the fact that a hydrophobic sequence residue may be
more likely to occur in a buried structural environment than in an exposed one.

The general form of most scoring schemes proposed thus far consists of pseudo energies
associated with each amino acid type for its placement in any given structural environment
and neighbor relationships. Such pseudo energies are statistics derived from the observed
occurrence frequencies for amino acid types in each structural environment among a set of
determined structures. Frequencies are converted to a pseudo energy using Gibbs' or Boltz-
mann's relationship between system state energy and state probability, or simply by taking
negative logarithms of occurrence frequency-derived probabilities or odds ratios. The struc-
tural environments used have included the degree of solvent exposure, the type of secondary
structure, the \distance" between spatial neighboring amino acids, and so on, across the types
of amino acid residues that are observed as typical neighbors.

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 9

2.3.3 Alignment (requirement iii)

The alignment of the sequence to a given core template (requirement iii) usually is selected by
searching for the best alignment under the objective function. An alignment is optimal if its
score is the global minimum score, and near-optimal if it approximates this. A search method
is said to be exact if it guarantees to �nd the optimal alignment under the objective function,
and otherwise is said to be near-optimal or approximate.

A given sequence is threaded through a given structure by searching for a sequence-
structure alignment that places sequence amino acids into preferred structural environments
and near other preferred amino acid types. The two key conditions that determine the com-
plexity of this search [61] are whether or not (1) variable-length gaps are admitted into the
alignment, and (2) interactions between neighboring amino acids from the sequence being
threaded are admitted into the score function. Finding the optimal alignment is NP-hard in
the general case where both conditions are allowed [61, 62], and low-order polynomial in the
singleton-only case allowing variable-length gaps.

If variable-length gaps are not permitted, then alignments are restricted to substructures
and subsequences of equal length that are extracted from a database. However, in a predic-
tive setting the alignment method must allow alignment gaps to account for the loop length
variability that is observed across structural families. Ignoring variable-length gaps means
that the structure and a novel sequence almost invariably will be partially out of hydrophobic
registration [11]. Consequently, this alternative is of little use for prediction.

If variable-length gaps are permitted but pairwise or higher-order interactions between
sequence amino acids not allowed then the global optimum alignment can be found using the
dynamic programming alignment method [21]. Dynamic programming alignment employs an
a�ne gap penalty which biases the search to prefer loop lengths present in the core template's
original sequence, and so would make distant structural homologs more di�cult to recognize
if their loop lengths di�ered substantially [41]. In addition, ignoring amino acid interactions
means giving up a potentially rich source of structural information.

Alternatively, if both variable-length gaps and interactions between neighboring amino
acids are allowed, then �nding the global optimum threading is NP-hard [61]. This means that
in order to �nd an optimal solution, any known algorithm must require an amount of time
that is exponential in protein size. Consequently, approximate search algorithms are relatively
fast and capable of �nding a good but not necessarily the optimal solution, while exact search
algorithms are guaranteed to �nd the optimal solution but sometimes require exponential time.
Approximate alignment search methods include double dynamic programming, which employs
a secondary level of dynamic programming to �x the neighbors for the �rst level [63, 64]; the
\frozen approximation," a dynamic programming adaptation which substitutes the original
motif residues initially and previous aligned sequence residues in subsequent steps [51]; and the
Gibbs sampler, an iterative improvement method not based on dynamic programming which
estimates a probability distribution and samples accordingly [65]. Exact methods include the
branch and bound search described below [1], and exhaustive search [27].

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 10

2.3.4 core template selection or fold recognition (requirement iv)

Selecting a core template from the library (requirement iv) usually is approached by aligning
the sequence to each member of the library and selecting the one yielding the best alignment
score, usually after normalizing or correcting the raw scores in some way. Aligning a given
sequence to several cores produces raw scores that usually are not directly comparable. Nor-
malizing terms attempt to correct for biases due to search space size (larger search spaces have
larger extreme tail values), core size (larger cores have more terms in the objective function),
sequence composition, structural environment frequency, and so on. Score normalizations have
included z-scores measured relative to near-optimal threadings of library structures, shu�ed
sequences of the same composition, random structures, or sequences of random composition;
sequence composition corrections; accounting for the variable size of the core templates, or
of the alignment search space; and reference states based on assumptions from statistical
mechanics, mathematical statistics, or sampling theory.

2.4 Gapped block alignment

The gapped block alignment de�nition of threading used here follows Greer [17], Jones et

al. [66], and Bryant & Lawrence [27]: (1) alignment gaps are prohibited within modeled
secondary structure segments; (2) speci�c pairwise amino acid interactions are con�ned to the
core template; and (3) loops are scored by an arbitrary sequence-speci�c function.

When a sequence is threaded through the core template, successive core elements of each
segment are occupied by adjacent amino acids from the sequence. Note that conserved super-
secondary structures such as beta-hairpins or tight turns could be included as additional types
of core segments. No alignment gaps are permitted within segments, as this would corre-
spond to an unphysical break in the sequence mainchain. Alignment gaps are con�ned to the
connecting non-core loop regions, which undergo evolutionary insertions and deletions over
time and are not usually considered part of the conserved core motif. Because the loops are
viewed as variable, they do not participate in speci�c pairwise amino acid interactions under
the objective function. The loop score function depends only on how the sequence is threaded
through pairs of core segments; threading two adjacent core segments �xes the subsequence in
the intervening loop region. Since loop endpoints are known, the sequence residues occupying
a single loop in principle could be modeled in three-dimensional detail, but not modeled in
general with other loops. More commonly, loop regions are treated simply as one or more
additional structural environment types (e.g., tight turn, short, medium, and long), and ob-
jective function parameters are generated for them just as for any other singleton-only score
term.

In contrast, with the use of an alignment method based on a�ne gap penalties, some
threadings delete portions of the sequence or the structure. In analytical terms, this causes
the global sum in equation 22 below to be over di�erent e�ective structures and di�erent
e�ective sequence lengths. See Fl�ockner et al. [67] or Maiorov & Crippen [68] for cogent
criticism of allowing parts of the sequence or structure to \vanish" in this way. In probabilistic
terms, the usual linear or a�ne gap penalty forces loops to become exponentially unlikely in
the length of the insertion or deletion. See Benner et al. [69] for empirical data showing that an
exponential distribution does not provide an adequate �t to observed gap lengths. See Lemer

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 11

et al. [36] for a discussion of inappropriate gap penalties, leading to gaps that are obviously
far too small, as one aspect of threading algorithms that contributes to error.

Alternative methods that do use amino acid pair interaction terms directly in the loop score
function require additional information to determine the loop placement in three-dimensional
space. This information generally is not available in a predictive setting because the loop
backbone coordinates often shift substantially to accommodate insertions or deletions. Maiorov
& Crippen [68] propose an elegant approach that would include the needed three-dimensional
information for pairwise terms. An open computational problem is to provide a practical
algorithm for their scheme.

3 Formalization

The formulation below deliberately isolates the computational methods as much as possible
from any particular theory of protein structure, from the way structural environments are
de�ned, and from the score function employed. Consequently the methods apply to a wide
variety of score functions that utilize pairwise amino acid interactions. Additional background
on the problem formalization and notational conventions may be found in references [1, 3,
58, 59, 61], which this chapter follows where possible but revises where necessary. Table 1
summarizes the notation used.

Table 1 about here.

3.1 Sequence

The sequence a is a string of length n over an alphabet A of twenty characters (amino acid
residue types). The set An consists of all strings over A of length n. The sequence w is a
summation variable over An.

3.2 Core templates and library

The core template C is drawn from a library L of cores. Core template C is composed of
m core segments Ci, each of length ci = jCij and representing a set of contiguous amino
acid positions. Core segments are usually the pieces of conserved structure comprising the
tightly packed internal protein core, and may correspond to the backbone trace of conserved
secondary structure segments. Each segment Ci is composed of primitive core elements Ci;j,
for 1 � j � ci. Each element Ci;j corresponds to a spatial position that may be occupied by
a residue from the sequence. For generality we make no restriction on segment length, and
when ci = 1 the segments may correspond to single amino acid residue positions.

For simplicity in the presentation we assume in this chapter that core segment length is
�xed, even though [1] showed how this can lead to biological threading errors. Some important

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 12

approaches [70, 71] treat core segment length as variable by adding residue positions to, or
deleting them from, core segment endpoints. This would be modeled according to section 4.8
with additional parameters specifying each segment endpoint adjustment relative to the core
template. Similarly, in this chapter we assume �xed core topology (i.e., segment rank order and
direction). Variable topology, e.g. alternate arrangement of �-strands in a �-sheet, arises easily
from core segment permutations or reversals. This would be modeled according to section 4.8
with additional parameters specifying the rank order and direction of each segment. Except
for section 4.8, however, this chapter assumes �xed segment length and topology.

3.3 Loops

Core segments are connected by a set � of loop regions. The loop regions might equally well
be the \gaps" (in a dynamic programming alignment sense) used by some formulations. Loop
�i connects segment Ci to Ci+1, N-terminal leader �0 precedes C1, and C-terminal trailer �m
follows Cm. Knowing the endpoints of �i is equivalent to knowing the threadings of Ci and
Ci+1.

The length of loop �i is the variable li and its maximum (respectively minimum) length
is lmax

i (respectively lmin
i). Unless stated otherwise, lmax

i = +1 and lmin
i = the minimum

geometric spanning loop length (i.e., the minimum loop length capable of spanning the dis-
tance between the end of Ci and the beginning of Ci+1). Other values may reect knowledge
of additional constraints. For example, loops assigned length zero or one by the crystallogra-
pher usually reect constrained \kinks" in the secondary structure which should be retained
(lmax
i = lmin

i = lnativei) or restricted (lmax
i = 1 and lmin

i = 0). As another example, Bryant
& Lawrence [27] set lmax

i and lmin
i based on the maximum and minimum loop lengths in an

aligned homologous family. To simplify notation we assume lmin
0 = lmin

m = 0, i.e., the leader
and trailer loops have zero minimum length.

3.4 Adjacency graph

An adjacency graph (also called interaction matrix, interaction graph, neighbor matrix, contact
map, etc.) describes core element positions that are \neighbors." Positions are de�ned to be
neighbors if they interact in the score function. The adjacency graph consists of a set V
of vertices and a set E of edges. Each core element Ci;j corresponds one-to-one to a graph
vertex v 2 V . Consequently, the adjacency graph vertices merely relabel the core elements.
Pairs of vertices u and v which interact in the score function (neighbors) are connected by a
graph edge e 2 E , sometimes written e = fu; vg. Each vertex v and each edge e is labeled
by an environment function s. The vertex (residue) environment labels, s(v), may describe
local factors such as degree of solvent exposure, local secondary structure type, and so forth.
The edge environment labels, s(e), may encode distance or contact between amino acids, the
local environments at each end of the edge, and so forth. The edges are directed because the
local environments at the edge head and tail may di�er. The unaligned loop regions do not
participate directly in the adjacency graph of pairwise relations.

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 13

3.5 A threading of a sequence into a core

A given alignment (\threading") of sequence a to core C associates each core element Ci;j with
exactly one amino acid from a (i.e. the core segments may not overlap). A legal threading
is subject to the further constraints that successive amino acids in the sequence necessarily
fall into successive core elements within each segment Ci (i.e. the core segments may not
have internal gaps), that the core segments retain their original topological ordering (i.e. the
threading does not permute or reverse segments), and that loop sizes are within the legal ranges
(i.e. every loop region is long enough to span between its anking segments). A sequence-
structure alignment (\threading") of a into C is completely described by the primary sequence
indices of the amino acids placed into the �rst element of each core segment. This results in a
vector of m integers, denoted by ta in absolute coordinates and t in relative coordinates. Each
absolute coordinate tai speci�es the index in the sequence a that is aligned to the �rst element
of the ith core segment. That is, sequence residue a[tai] occupies core element Ci;1.

For simpler notation [1] we generally replace absolute sequence coordinates ta by relative
coordinates t, de�ned by ti = tai �

P
j<i(cj + lmin

j). Let ~n = n + 1 � P
i(ci + lmin

i) and

~li = lmax
i � lmin

i . Then ti = 1 corresponds to the lowest legal value of tai and ti = ~n to the
highest. Below, the absence of the superscript a will indicate relative coordinates.

The ith loop length li and segment length ci are related to ta and t by li = tai+1 � tai � ci =
ti+1�ti+lmin

i . Due to the minimum spanning loop length constraints, 1+
P

j<i(cj+l
min
j) � tai �

n+1�Pj�i(cj + lmin
j). Due to core segment topological ordering constraints, tai + ci+ lmin

i �
tai+1 � tai + ci+ lmax

i . In relative coordinates, the minimum loop length constraints simplify to

1 � ti � ~n and the ordering constraints simplify to ti � ti+1 � ti + ~li.
Fictitious segments C0 (respectively Cm+1) are �xed at the beginning (respectively end)

of the sequence whenever it is convenient for indicated summations or recurrence limits. By
convention, c0 = cm+1 = 0, i.e., �ctitious segments have zero length; and t0 = 1 and tm+1 = ~n,
i.e., they are �xed.

3.6 Sets of threadings

The set of threadings T [C; n;b;d] consists of all legal alignments of any sequence of length n

to the core template C such that bi � ti � di is satis�ed. Where the entire search space is
the intended set, we simplify the notation by writing T [C; n]. The vector x is a summation
variable over T [C; n].

Where the sequence and core are clear from context, we simplify the notation by writing
T [b;d]. The integers bi and di de�ne an interval, [bi; di], made up of the allowed sequence
coordinates for core segment Ci. These m intervals may be represented compactly by two
m-length vectors, b and d (mnemonic for \Begin" and \enD"). This allows us to represent all
sets T [b;d] that have the particularly simple form of an m-dimensional axis-parallel hyper-
rectangle whose two opposite corners are the vectors b and d. The entire search space is
represented by the hyper-rectangle 1 � ti � ~n. Thus T [C; n] = T [1; ~n] = ftj1 � ti � ~ng:

The ability to represent and manipulate the search space directly allows for controlling the
search. A list of several hyper-rectangles corresponds to the union of the sets they represent. If
a particular list of hyper-rectangles is used to initialize the search in section 8.2, the subsequent
search will examine only the corresponding threadings.

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 14

Each hyper-rectangle also contains a large number of illegal threadings that violate spacing
or ordering constraints. Illegal threadings are always ignored. By convention, if till is an illegal
threading then f(till) = +1. Whenever we speak of a set of threadings we mean only the
legal ones. Whenever search space sizes are computed, only legal threadings are counted.

3.7 Objective function

For a speci�c core motif C and protein sequence a, the score of a candidate threading is
de�ned to be the sum of the scores of the vertices and edges in the adjacency graph and the
bulk composition of the loop regions. By analogy to energy minimization, lower scores are
considered better. We assume the availability of an objective function f satisfying

P (ajn; C; t) / exp (�f(a; C; t)) (1)

where a is a sequence of length n; C is a core template; t is a vector that speci�es a sequence-
structure alignment (a threading) and whose ith component ti speci�es the alignment of core
segment i; and P (AjB) is the conditional probability of A given B. Where arguments are
clear from context, we simplify the notation by omitting them, writing f(i; ti) to abbreviate
f(a; C; i; ti); and so on. The function f is the negative logarithm of an unnormalized conditional
probability. It encodes the probability of observing sequence a, given the alignment t to core
C. For example, White et al. [58] and Stultz et al. [59] describe how to construct an objective
function based on Markov Random Field (MRF) theory that satis�es equation 1.

Many published threading approaches are grounded in an underlying probabilistic objec-
tive function of this general nature. In practice, they may convert the underlying proba-
bilistic objective function from a strict conditional probability to an odds-ratio relative to
some assumed reference state, say P (ajn; C; t)=Pref(ajn; C; t). In contrast, the Bayesian anal-
ysis uses only the strict conditional probability, P (ajn; C; t). This is equivalent to setting
Pref (ajn; C; t) = constant in some odds-ratio approaches. The reference state is derived from
�rst principles of probability theory.

3.7.1 The fully general objective function

Given a speci�c protein sequence and a core template of m core segments, the fully general
form of the score function is

f(t) =
X
i

g1(i; ti) +
X
i

X
j>i

g2(i; j; ti; tj) + : : :

+
X
i

X
j>i

: : :
X
l>k

gm(i; j : : :k; l; ti; tj : : : tk ; tl) (2)

where i; j : : :k; l index core segments and ti; tj : : : tk ; tl give their relative positions in the se-
quence. The �nal sum is repeated overm indices representing all m core segments, and reects
amino acid interactions among all m core segments simultaneously.

In practice there is insu�cient data to specify all the free parameters such a function
would imply. Approaches di�er in where they terminate the expansion. Pro�le-based methods

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 15

employ only the g1 term. Dynamic programming methods that do not allow pairwise amino
acid interactions employ the g1 term plus an a�ne gap penalty g2 term of the form g2(i; i+
1; ti; ti+1) = a + bjli � lnativei j. Methods that permit pairwise interactions, as here, employ a
full g2 term. Triplet interactions [51, 53] would require a g3 term. A score function requiring
g4 or higher terms [72, 73, 74, 75] would arise in treatment of steric packing among multiple
core segments, linked constraint equations on structural environments, detailed geometric or
environment modeling, and so forth.

3.7.2 General pairwise interaction objective function

In the pairwise case, the score of a candidate threading is de�ned to be a function only of the
sum of (1) a series of g1 terms, each of which depends only on the threading of a single core
segment, plus (2) a series of g2 terms, each of which depends only on the threading of a pair
of core segments:

f(t) =
X
i

g1(i; ti) +
X
i

X
j>i

g2(i; j; ti; tj) (3)

The functions g1 and g2 are the essential point of contact between the search algorithm and
any particular choice of scoring function, neighbor relationships, or structural environments.
The search algorithm is driven only by g1 and g2, regardless of how the score function assigns
values to them.

In principle, every core element and every possible pair of elements could be assigned a
unique structural environment encoding a di�erent score table, and each loop region could
assign a di�erent score to every possible spanning subsequence. Consequently equation 3
is fully general for pair interactions. In most threading schemes, the score of a candidate
threading is built up from the scores of the vertices and edges in the adjacency graph, and
the sequence composition of the loop regions. Score functions that depend on separation in
the sequence, proximity to the N- or C-terminal end of the sequence, or specialized identities
of particular segments (e.g., including a regular expression pattern match based on known
enzymatic function) are accommodated easily because the segment numbers (i, j) and segment
indices (ti, tj) appear explicitly in the g1 and g2 argument lists. Other score components may
be included provided they depend only on singleton or pairwise core segment threadings as
shown.

3.7.3 A typical pairwise score function

Here we give an example of one way that a score function might be constructed. Details will
vary with the particular score function and environment de�nitions chosen.

For any threading t, let fv(v; t) be the score assigned to core element or vertex v, fe(fu; vg ; t)
the score assigned to interaction or edge fu; vg, and fl(�i; t) the score assigned to loop region
�i. Then the total score of the threading is

f(t) =
X
v2V

fv(v; t) +
X

fu;vg2E

fe(fu; vg ; t) +
X
�i2�

fl(�i; t): (4)

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 16

We can rewrite this as a function of threadings of pairs of core segments as follows.

f(t) =
X
i

X
v2Ci

fv(v; t) +
X
i

fl(�i; t)

+
X
i

X
j

X
fu;vg2E
u2Ci
v2Cj

fe(fu; vg ; t) (5)

=
X
i

2
664X
v2Ci

fv(v; t) +
X

fu;vg2E
u;v2Ci

fe(fu; vg ; t)

3
775+ fl(�0; t) + fl(�m; t)

+
X
i

2
66664fl(�i; t; 0 < i < m) +

X
j 6=i

X
fu;vg2E
u2Ci
v2Cj

fe(fu; vg ; t)

3
77775 (6)

=
X
i

g1(i; ti) +
X
i

X
j>i

g2(i; j; ti; tj) (7)

The singleton terms, in g1, include contributions from sources such as (in order of equation 6)
individual core elements assigned to particular structural environments, pairwise interactions
within a single core segment, and loop scores of the N- and C-terminal loop regions. The
pairwise terms, in g2, include contributions from sources such as (in order of equation 6)
interior loop scores, and pairwise interactions between di�erent core segments.

3.7.4 Computing g1 and g2 e�ciently

Pre-computing g1 and g2 and storing them in arrays permits rapid evaluation of individual
threadings as in equation 7, compared to their time-consuming ab initio evaluation as implied
by equation 4. Storing g1 requires O(m) arrays of size ~n, and storing g2 requires O(m(m�1)=2)
arrays of size ~n(~n+1)=2, though in practice less storage is required because some core segment
pairs do not interact.

3.7.5 Singleton-only objective function

In this section we de�ne an objective function that allows an arbitrary sequence-speci�c score
function for each segment or loop, but ignores all pairwise or higher order interactions between
non-adjacent segments. We use f1 to distinguish this singleton-only objective function from
the general case, and Z1 and �1 to distinguish corresponding global sums and means.

Let fs(i; ti) be the score for occupying segment Ci by the substring of length ci beginning
at a[ti], and let fl(i; ti; ti+1) be the score for occupying loop �i by the substring of length
li = ti+1 � ti + lmin

i beginning at a[ti + ci]. If desired, pair interactions between segments Ci

and Ci+1 may be encoded in fl(i; ti; ti+1) as well.
Assume that the threading score is the sum of the segment and loop scores separately.

f1(a; C; t) =
mX
i=1

fs(i; ti) +
mX
i=0

fl(i; ti; ti+1) (8)

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 17

Functions hs and hl are the unnormalized probability functions corresponding to fs and
fl.

hs(i; ti) = exp(�fs(i; ti)) (9)

hl(i; ti; ti+1) = exp(�fl(i; ti; ti+1)) (10)

By convention, all illegal or out-of-range indices imply score +1 (in�nitely bad) and proba-
bility zero; and hs(0; x) = hs(m+ 1; x) = 1, i.e., �ctitious segments have zero score and unit
probability; and hl(0; x; x) = hl(m+ 1; x; x) = 1, i.e., they have zero length.

Function Hs (respectively Hl) is the sum of hs (respectively hl) over all strings over A of
length ci (respectively li).

Hs(i; ti) =
X

w2Aci

hs(w; C; i; ti) (11)

Hl(i; ti; ti+1) =
X

w2Ali

hl(w; C; i; ti; ti+1) (12)

Function h�(i; ti; ti+1) is the sequence-independent probability of observing loop length
li = ti+1 � ti + lmin

i at loop �i. The assumption that loop lengths are independent yields

P (tjn; C) =
mY
i=0

h�(i; ti; ti+1) (13)

If uninformative priors are used, then h�(i; ti; ti+1) = jT [C; n]j�1=(m+1) and the equation is
exact. If an empirical loop length distribution [69] is used, then h� is taken from empirical

tables; in this case the equation is approximate because
P

i
~li = ~n � 1 so the assumption of

loop length independence is violated, but it may yield a biologically more plausible result in
some cases.

Recall that the relative coordinates shown must be converted to absolute coordinates to
obtain an actual index into a; speci�cally, add

P
j<i(cj+l

min
j) (respectively

P
j<i+1(cj+l

min
j))

to the second argument ti (respectively the third argument ti+1) of fs, fl, hs, hl, h�, Hs, and
Hl; and add

P
j<i(cj + lmin

j) to the relative coordinate y in a[y].

3.7.6 Per-residue singleton-only objective function

In many current proposals, the singleton-only fs (respectively fl) is specialized further to be
the sum of the individual sequence residue scores at each element of the segment (respectively
loop). Here we give a simple way to derive fs, fl, Hs, and Hl, in such proposals.

Let s(Ci;j) be the structural environment assigned to core element Ci;j and s(�i) be the
structural environment assigned to loop �i. s(Ci;j) potentially reects a di�erent structural
environment for each core element, as annotated by the theory of protein structure used. The
loop structural environment s(�i) might be used to divide loops into categories, e.g., tight,
short, medium, and long; or all loops might be assigned to a single generic loop environment.
Let fAa (a

0; s) be the score assigned to amino acid residue type a0 2 A in environment s, and

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 18

let hAa (a
0; s) = exp(�fAa (a0; s)).

fA(a; C; t) =
mX
i=1

fAs (i; ti) +
mX
i=0

fAl (i; ti; ti+1) (14)

fAs (i; ti) =
ciX
j=1

fAa (a[ti + j � 1]; s(Ci;j)) (15)

fAl (i; ti; ti+1) =
liX
j=1

fAa (a[ti + ci + j � 1]; s(�i)) (16)

hAs (i; ti) = exp(�fAs (i; ti)) =
ciY
j=1

hAa (a[ti + j � 1]; s(Ci;j)) (17)

hAl (i; ti; ti+1) = exp(�fAl (i; ti; ti+1)) =
liY
j=1

hAa (a[ti + ci + j � 1]; s(�i)) (18)

HA
s (i; ti) =

ciY
j=1

X
a02A

hAa (a
0; s(Ci;j)) (19)

HA
l (i; ti; ti+1) =

liY
j=1

X
a02A

hAa (a
0; s(�i)) (20)

4 Analysis | Selection tasks

For a given sequence, this section develops formulae for selecting

1. the most probable alignment t to a given core template, which maximizes P (tja; n; C)
(equation 24 in section 24);

2. the most probable core template C across the entire library, which maximizes P (Cja; n)
(equation 28 in section 28);

3. the most probable joint core template and alignment hC; ti across the entire library,
which maximizes P (C; tja; n) (equation 34 in section 34), and which need not be the
most probable alignment of the most probable core template; and

4. the most probable core template segment alignments across the entire library, which
maximize P (C; i; tija; n) (equation 36 in section 36), and which may potentially allow
for the construction of a core template for a sequence whose core template is not in the
library by selecting piecewise the most probable segment alignments from di�erent core
templates.

Item 1 above corresponds to requirement (iii) in section 2.3, item 2 corresponds to require-
ment (iv), item 3 corresponds to (iii) and (iv) simultaneously, and item 4 corresponds to (iii)
and (iv) for individual core segments. See �gures 1{3.

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 19

4.1 Bayesian analysis

Bayes [76] provided the �rst exact treatment of inference based on inverting conditional prob-
abilities. His interpretation of the formula, P (AjB) = P (BjA)P (A)=P (B), is well known.
Today the well-understood mathematics of Bayesian methods is a central component of op-
timal statistical inference [77, 78]. Conditional probability and Bayesian methods have been
applied to protein secondary structure [59, 79], side-chain packing [80], fragment assembly [46],
multiple sequence alignment [65], solvent exposure prediction [81], and structure classi�ca-
tion [59, 82, 83], all with good results.

Here, the Bayesian analysis provides a compact account of the globally most probable cores
and alignments. The Bayesian analysis presented here is closely related to other threading ap-
proaches as shown in �gure 4. All approaches compute a transform from observed database fre-
quencies to predicted probable structures. The Bayesian analysis is somewhat more direct and
compact, but somewhat less biologically intuitive, than pseudo energy potential approaches.

Figure 4 about here.

4.1.1 Prior probabilities

Three prior probabilities are necessary for this analysis: P (ajn), P (Cjn), and P (tjn; C).
P (ajn) is constant for a given sequence and may be ignored. P (Cjn) corresponds to the
sequence-independent part of the core template probability. It reects at least two inuences:
the relative frequencies of di�erent core templates, and the way these shift with sequence
length. P (tjn; C) corresponds to the sequence-independent part of the loop probability. It
reects the loop length probability distribution for C and n, independent of the speci�c amino
acid residue types that actually occupy the loops. Assuming uninformative priors and �xed n,
P (Cjn) = jLj�1 and P (tjn; C) = jT [C; n]j�1.

There are several plausible biological reasons why the assumption of uninformative priors
might be relaxed. For example, P (Cjn) might instead reect the observation that some folds
are more probable than others [16, 24, 84]; or that fold-space attractors have unequal pop-
ulation densities [85]; or that proteins are roughly half secondary structure and half coil; or
that longer sequences are more likely to fold into larger structures. P (tjn; C) might instead
reect an empirical loop length distribution [69] constructed by tabulating the loop lengths
observed to connect loop endpoints in various geometries across a structural database; or a
linear or a�ne gap penalty, in which case it becomes exponentially improbable in the num-
ber and length of insertions and deletions. This is not to argue for or against any particular
set of priors. Rather, di�erent informative priors might be plausible or not under di�erent
circumstances and assumptions.

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 20

4.1.2 Global sums

Only four global sums are su�cient to accomplish all of the probabilistic selections described
above. It is easy to see that global sums and global means are equivalent, because if we
know one we easily can produce the other. Below, Z denotes global sums and � denotes
global means. As with many biological problems where large search spaces and non-local
inuences co-occur, their computation is NP-hard if speci�c pair interactions and gaps are
both permitted. Consequently either pruned search, approximations, or long computation
must be employed. Section 7.3 provides brief proof sketches of NP-hardness for the general
pair interaction case.

4.2 Selecting an alignment given a core template

For �xed sequence and core template, the task of sequence-structure alignment is to select an
alignment of the sequence to the core template (see �gure 2). White et al. [58] show that

P (ajn; C; t) =
exp (� f(a; C; t))

Zhn;C;ti
(21)

Zhn;C;ti =
X
w2An

exp (� f(w; C; t)) (22)

P (tja; n; C) = P (ajn; C; t)P (tjn; C)
P (ajn; C) (23)

=
P (tjn; C)
P (ajn; C)

exp (� f(a; C; t))

Zhn;C;ti
(24)

Zhn;C;ti is the global sum over all possible sequences of length n aligned by t to core template
C. When f is modeled as a Markov Random Field, as in White et al. [58] and Stultz et al. [59],
Zhn;C;ti is the same for every t 2 T [C; n]. This case is treated here. In this case, assuming
uninformative priors, the globally most probable alignment also is the one of globally lowest
alignment score. Section 4.8 treats the case where Zhn;C;ti is allowed to vary with t. In this
case, even assuming uninformative priors, the globally most probable alignment may not have
the globally lowest alignment score; the variability of Zhn;C;ti also must be accounted for.

4.3 Selecting a core template

For a �xed sequence, the task of fold recognition is to select a core template from the structure
library (see �gure 1). There is general agreement that one would like to select the core that
has the highest conditional probability given the sequence.

P (Cja; n) =
X

x2T [C;n]

P (a; n; C;x)

P (a; n)
(25)

=
X

x2T [C;n]

P (ajn; C;x)P (xjn; C)P (Cjn)P (n)
P (ajn)P (n) (26)

=
P (Cjn)
P (ajn)

X
x2T [C;n]

exp (� f(a; C;x))P (xjn; C)
Zhn;C;ti

(27)

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 21

=
P (Cjn)
P (ajn)

�ha;n;Ci
Zhn;C;ti

(28)

�ha;n;Ci =
X

x2T [C;n]

exp (� f(a; C;x))P (xjn; C) (29)

�hn;C;ti =
X
w2An

exp (� f(w; C; t))P (wjn; C) (30)

Equation 28 orders all cores by conditional probability across the library.
Normalizing by

P
C02L P (C

0ja; n) imposes the fundamental threading assumption that the
proper core is indeed in the library, and converts the ordering into a conditional probabil-
ity reecting that assumption. Similar normalizations reecting the fundamental threading
assumption apply throughout.

Assuming uninformative priors, the most probable core template maximizes the ratio
�ha;n;Ci=Zhn;C;ti. Uninformative priors implies that �hn;C;ti = P (ajn)Zhn;C;ti, in which case
it also maximizes the ratio �ha;n;Ci=�hn;C;ti. This ratio is the mean probability across all possi-
ble alignments holding the sequence �xed, divided by the mean probability across all possible
sequences holding the alignment �xed.

4.4 Selecting structure and alignment jointly

The central problem of inverse structure prediction is to select simultaneously both a core
template and an alignment, given a sequence (see �gure 3). To predict accurately, both the core
template and the alignment must be selected correctly. However, it is evident by comparing
equations 24 and 28 to equations 31 and 34 that the most probable alignment to the most
probable core template is not necessarily equivalent to the most probable structure-alignment
pair considered jointly.

P (C; tja; n) = P (tja; n; C)P (Cja; n) (31)

=
P (ajn; C; t)P (tjn; C)

P (ajn; C)
P (ajn; C)P (Cjn)

P (ajn) (32)

=
P (ajn; C; t)P (tjn; C)P (Cjn)

P (ajn) (33)

=
P (Cjn)P (tjn; C)

P (ajn)
exp (� f(a; C; t))

Zhn;C;ti
(34)

This orders all hstructure; alignmenti pairs by conditional probability jointly across the entire
structure library.

4.5 Selecting individual core segment alignments

By selecting alignments to the most probable segments across the entire library, it might in
principle be possible to construct a new core template piecewise out of the selected segments
even though the constructed core template does not yet appear in the library. In this way it
might in principle be possible to work around a current limitation of protein threading, namely

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 22

that only known core structures may be predicted.

P (C; i; tija; n) =
X

fx2T [C;n]jxi=tig

P (C;xja) (35)

=
P (Cjn)
P (ajn)

�ha;n;C;i;tii

Zhn;C;ti
(36)

�ha;n;C;i;tii =
X

fx2T [C;n]jxi=tig

exp (� f(a; C;x))P (xjn; C) (37)

This orders all hstructure; segment number; sequence indexi triples by conditional probability
across the entire library. The triples so generated (a) potentially arise from multiple di�erent
cores in the library, (b) have no overlap constraints between them, and (c) are selected from
the set of legal threadings for each core, and so reect its mean-�eld intra-template preferences
and constraints. Furthermore, arranging for consistent pairwise or higher interactions between
selected triples would result in a challenging constraint satisfaction problem. The problem of
actually assembling such triples in a consistent manner into a novel \meta-core" is left open.

4.6 Super-secondary structures, or core template subsets

In many cases a core template may �t only partially to a structural analog. Some secondary
structure segments may correspond, while others may not. This might be the case, for example,
when a common super-secondary structure motif is shared but the rest of the protein diverges;
or when part of the core superposes but another part does not. Suppose that k of the m

segments correspond, that the corresponding segments are I = fi1; i2; : : : ; ikg, and that the
corresponding indices are T = fti1 ; ti2 ; : : : ; tikg. The previous section gave the special case
when k = 1, and the caveats there apply here too.

P (C; I; T ja; n) =
X

fx2T [C;n]jj2I)xj=tjg

P (C;xja) (38)

=
P (Cjn)
P (ajn)

�ha;n;C;I;T i

Zhn;C;ti
(39)

�ha;n;C;I;T i =
X

fx2T [C;n]jj2I)xj=tjg

exp (� f(a; C;x))P (xjn; C) (40)

This orders, by conditional probability across the entire library, all super-secondary structures
or core template subsets that consist of k segments all taken from the same core template.

4.7 Secondary structure prediction

Let helix(j) denote the event that the jth sequence residue a[j] is found in a helical conforma-
tion, and �helix(a; j; C; i) = ftij Ci is helix and ti places Ci over a[j]g; that is, the set of all
threading indices for Ci that thread a[j] to a helix position. Then

P (helix(j)ja; n) =
X
C2L

P (helix(j)ja; n; C)P (Cja; n) (41)

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 23

=
X
C2L

P (Cja; n)
X

t2T [C;n]

P (helix(j)ja; n; C; t)P (tja; n;C) (42)

=
X
C2L

P (Cja; n)
mX
i=1

X
ti2�helix(a;j;C;i)

P (C; i; tija; n) (43)

The �nal equation follows because for physical reasons a[j] cannot simultaneously be in two
di�erent helices or two di�erent positions of the same helix. P (extended(j)ja; n) is de�ned
similarly (extended = �-sheet). For 3-state prediction, coil is de�ned as anything that is not
helix or extended. Let �coil(a; j; C; i) = fhti; ti+1ij ti places Ci before a[j] and ti+1 places
Ci+1 after itg, where by convention t0 = the beginning and tm+1 = the end of the sequence
accounts for the leader and trailer loop regions. Then

P (coil(j)ja; n)

=
X
C2L

P (Cja; n)
mX
i=0

X
hti;ti+1i2�coil(a;j;C;i)

P (C; fi; i+ 1g ; fti; ti+1g ja; n) (44)

The terms are given by equations 28, 36, and 39 with k = 2, adjusted for boundary cases at
sequence endpoints. As elsewhere, the values correspond to unnormalized probabilities.

4.8 Variable Zhn;C;ti

The equations above treat the case where Zhn;C;ti is the same for every t 2 T [C; n]. Here we
treat the case where Zhn;C;ti varies with t. This would occur with non-physical loop functions
such as an a�ne gap penalty, or with variable segment length, rank order, connectedness, or
topology. In this case, f induces a partition on T [C; n] such that two threadings t and u are
in the same partition element if and only if Zhn;C;ti = Zhn;C;ui. Let the induced partition be

T �[C; n] = fT �
i [C; n]g where T �

i [C; n] � T [C; n] is the ith partition element and the T �
i [C; n]

are disjoint and cover T [C; n]. Let iZ (respectively i�) represent global sums (respectively
global means) over threadings in partition element T �

i [C; n]. De�ne

iZhn;C;ti =
X
w2An

exp (� f(w; C; t)) , where t 2 T �
i [C; n] (45)

i�ha;n;Ci =
X

x2T �
i
[C;n]

exp (� f(a; C;x))P (xjn; C) (46)

i�ha;n;C;I;T i =
X

fx2T �
i
[C;n]jj2I)xj=tjg

exp (� f(a; C;x))P (xjn; C) (47)

Equation 28 must be generalized to

P (Cja; n) =
P (Cjn)
P (ajn)

X
T �
i
[C;n]

i�ha;n;Ci

iZhn;C;ti
(48)

Equation 39 must be generalized to

P (I; T; Cja; n) =
P (Cjn)
P (ajn)

X
T �i [C;n]

i�ha;n;C;I;T i

iZhn;C;ti
(49)

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 24

Recall that equation 36 was the special case of equation 39 when k = 1, and must be generalized
accordingly. Equations 24 and 29 are unchanged, but must be interpreted with variable Zhn;C;ti.

4.9 Recurrence equations for singleton-only objective functions

Here we describe recursive formulae for the singleton-only objective function. This disal-
lows pairwise interactions between sequence residues, but otherwise allows arbitrary sequence-
speci�c score functions for the segments and loops and an arbitrary function for h�. We have
implemented the relations below in Common LISP [86]. In practice we actually compute the
logarithm of the quantities shown, then exponentiate only as needed, to avoid oating point
problems.

4.9.1 Equations for Z1
hn;C;ti

In the singleton-only case, if hs and hl are normalized probabilities, then Z1
hn;C;ti = Hs = Hl =

1; otherwise, Z1
hn;C;ti corresponds to a normalizing constant for exp(�f1).

Z1
hn;C;ti =

X
w2An

exp (� f1(w; C; t)) (50)

=
mY
i=0

Hl(i; ti; ti+1)Hs(i; ti) (51)

4.9.2 Recurrence equations for �1ha;n;Ci

�1ha;n;Ci =
X

x2T [C;n]

exp (� f1(a; C;x))P (xjn; C) (52)

=
X

x2T [C;n]

mY
i=0

hl(i; xi; xi+1)h�(i; xi; xi+1)hs(i+ 1; xi) (53)

De�ne an intermediate function R by the recurrence

R(m; x) = hl(m; x; ~n)h�(m; x; ~n) (54)

R(i; x) =
~nX

y=x

hl(i; x; y)h�(i; x; y)hs(i+ 1; y)R(i+ 1; y); 0 � i < m (55)

R(i; x) is the unnormalized probability corresponding to placing segment i at relative coor-
dinate x but assigning it zero score, together with all following segments and loops, summed
over all possible placements of the following segments. That is, R(i; x) is �1ha;n;Ci restricted to

segments i+ 1 and above and the substring a[x] and beyond. Consequently,

�1ha;n;Ci = R(0; 1) (56)

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 25

4.9.3 Recurrence equations for �1ha;n;C;i;tii

�1ha;n;C;i;tii =
X

fx2T [C;n]jxi=tig

exp (� f1(a; C;x))P (xjn; C) (57)

=
X

fx2T [C;n]jxi=tig

mY
i=0

hl(i; xi; xi+1)h�(i; xi; xi+1)hs(i+ 1; xi) (58)

=
X

fx2T [C;n]jxi=tig

mY
i=0

hs(i; xi)hl(i; xi; xi+1)h�(i; xi; xi+1) (59)

where equation 59 follows because hs(0; x) = hs(m+ 1; x) = 1.
De�ne Q by the recurrence

Q(1; x) = hl(0; 1; x)h�(0; 1; x) (60)

Q(i; x) =
xX

y=1

Q(i� 1; y)hs(i� 1; y)hl(i� 1; y; x)h�(i� 1; y; x); (61)

1 < i � m+ 1

Q(i; x) is the unnormalized probability corresponding to placing segment i at relative coordi-
nate x but assigning it zero score, together with all preceding segments and loops, summed
over all possible placements of the preceding segments. That is, Q(i; x) is �1ha;n;Ci restricted

to segments i� 1 and below and the substring a[x] and before. Consequently,

�1ha;n;C;i;tii = Q(i; ti)hs(i; ti)R(i; ti) (62)

4.9.4 Recurrence equations for �1ha;n;C;I;T i

�1ha;n;C;I;T i =
X

fx2T [C;n]jj2I)xj=tjg

exp (� f1(a; C;x))P (xjn; C) (63)

=
X

fx2T [C;n]jj2I)xj=tjg

mY
i=0

hs(i; xi)hl(i; xi; xi+1)h�(i; xi; xi+1) (64)

Recall that I = fi1; i2; : : : ; ikg and T = fti1 ; ti2 ; : : : ; tikg. By convention, let i0 = 0 and
ti0 = 1. De�ne Qj by the recurrence

Qj(ij�1 + 1; x) = hl(ij�1; tij�1 ; x)h�(ij�1; tij�1 ; x) (65)

Qj(i; x) =
xX

y=tij�1

Qj(i� 1; y)hs(i� 1; y)hl(i� 1; y; x)h�(i� 1; y; x); (66)

ij�1 + 1 < i � ij

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 26

Qj(i; x) is the unnormalized probability corresponding to placing segment i at relative coordi-
nate x but assigning it zero score, together with all preceding segments and loops back to but
excluding placing segment ij�1 at tij�1 , summed over all possible placements of the intervening
segments. Consequently, with k = jI j,

�1ha;n;C;I;T i =

� kY
j=1

Qj(ij ; tij)hs(ij ; tij)

�
R(ik; tik) (67)

For use with secondary structure prediction, loop modeling, �-/�-hairpins, etc., observe the
special case of

�ha;n;C;fi;i+1g;fti;ti+1gi

= Q(i; ti)hs(i; ti)hl(i; ti; ti+1)h�(i; ti; ti+1)hs(i+ 1; ti+1)R(i+ 1; ti+1) (68)

4.9.5 Recurrence equation invariants

Useful identities that may be used for diagnostic purposes include

�1ha;n;Ci =
X

t2T [C;n]

exp (� f1(a; C; t)) (69)

= R(0; 1) (70)

= Q(m+ 1; ~n) (71)

=
~nX

ti=1

�1ha;n;C;i;tii (72)

In the interest of correct computer code, an implementation should verify equation 69 for every
small search space, and the rest for every sequence{structure pair considered.

4.10 Recurrence equations for per-residue singleton-only objective func-
tions

Many current proposals further specialize the singleton-only fs (respectively fl) to be the sum
of the individual sequence residue scores at each element of the segment (respectively loop),
as discussed in section 3.7.6. This leads to recurrence relations that are more e�cient by a
factor of ~n. However, the new recurrences no longer make loop endpoints or lengths explicit,
so the uninformative loop prior P (tjn; C) = jT [C; n]j�1 is assumed, a per-loop structural
environment s(�i) is used, and pair interactions between adjacent segments are not allowed.
A superscript A indicates these assumptions.

The new recurrences are

RA(m; x) = hAl (m; x; ~n)jT [C; n]j�1 (73)

QA(1; x) = hAl (0; 1; x) (74)

QA
j (ij�1 + 1; x) = hAl (ij�1; tij�1 ; x) (75)

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 27

RA(i; x) =

8>>><
>>>:

hAl (i; x; x)h
A
s (i+ 1; x)RA(i+ 1; x)

+hAa (a[x+ ci]; s(�i))R
A(i; x+ 1);

1 � x � ~n and 0 � i < m
0; otherwise

(76)

QA(i; x) =

8>>><
>>>:

QA(i� 1; x)hAs (i� 1; x)hAl (i� 1; x; x)

+QA(i; x� 1)hAa (a[x� 1]; s(�i�1));
1 � x � ~n and 1 < i � m+ 1

0; otherwise

(77)

QA
j (i; x) =

8>>><
>>>:

QA
j (i� 1; x)hAs (i� 1; x)hAl (i� 1; x; x)

+QA
j (i; x� 1)hAa (a[x� 1]; s(�i�1));

tij�1 � x � tij and ij�1 + 1 < i � ij
0; otherwise

(78)

Consequently,

ZA
hn;C;ti =

mY
i=0

HA
l (i; ti; ti+1)H

A
s (i; ti) (79)

�Aha;n;Ci = RA(0; 1) (80)

�Aha;n;C;i;tii = QA(i; ti)h
A
s (i; ti)R

A(i; ti) (81)

�Aha;n;C;I;T i =

� kY
j=1

QA
j (ij ; tij)h

A
s (ij ; tij)

�
RA(ik; tik) (82)

5 Analysis | Search space tasks

The branch and bound search algorithm, described in detail in section 8.1, works by repeatedly
subdividing the search space into smaller subsets, always choosing the most promising subset
to split at each step. In order to succeed, branch and bound search here requires the ability
to (1) represent the entire search space as a set of possibilities; (2) split any set into subsets;
and (3) compute a lower bound on the best score achievable within any subset. Any correct
implementation of these three requirements would result in a correct search, but search speed
would vary dramatically. The keys to an e�cient search are a powerful lower bound and good
branch points when splitting sets.

For a given sequence and a speci�c selected core template, this section develops formulae
for lower bound, search space splitting, and various search space parameters.

5.1 Lower bound on scores in threading sets

The branch and bound search exploits a lower bound on the score f(t) attainable by any
threading t in any set T [b;d]. Any correct lower bound would result in correct search be-
havior, but the stronger the lower bound, the more rapidly the search prunes unwanted sets
of threadings and converges to the optimum. Total search time is an engineering trade-o�
between a polynomial-time lower bound computation and an exponential-time search. As a

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 28

general rule, stronger lower bounds are more expensive to compute but result in smaller ex-
ponent coe�cients than do weaker lower bounds. Evaluation of the lower bound occurs in
the inner loop of the search algorithm and consumes virtually all of its computation time.
Consequently, it is crucial that it be computable e�ciently.

For example, one lower bound that is easy to derive and fast to compute can be obtained
from equation 3 by summing lower bounds on each term separately

min
t2T

f(t) = min
t2T

X
i

"
g1(i; ti) +

X
j>i

g2(i; j; ti; tj)

#

�
X
i

"
min

bi�x�di
g1(i; x) +

X
j>i

min
bi�y�di

bj�z�dj

g2(i; j; y; z)

#
(83)

The indicated min operations are computable e�ciently using binary trees over sub-intervals
of g1(i; x), and quad-trees or 2D-trees [87] over sub-intervals of g2(i; j; y; z). This simple for-
mula works well for small cases, and consequently would be useful for threading small super-
secondary structure motifs or for testing a prototype branch and bound search implementation.
It is su�ciently powerful to provide e�ective pruning in search space sizes of about 109 or 1012.

We have explored several alternative forms of the lower bound [1]. Our current version,
denoted lb(T), is e�ective in search space sizes up to about 1025 or 1030.

min
t2T

f(t) � lb(T)

= min
t2T

X
i

"
g1(i; ti) + g2(i� 1; i; ti�1; ti)

+ min
u2T

lmax
j

=+1

X
jj�ij>1

1

2
g2(i; j; ti; uj)

#
(84)

The enclosing mint2T ensures that the lower bound will be instantiated on a speci�c legal
threading tlb 2 T . This will be used in splitting T , below. The equation further ensures that
the singleton term, in g1(i; ti), remains consistent both with the terms that reect loop scores,
in g2(i�1; i; ti�1; ti), and with the other (non-loop) pairwise terms, in g2(i; j; ti; uj). The inner
minu2T allows a di�erent vector u for each i, but requires u to be a legal threading. The
assumption lmax

j = +1 supports an e�cient implementation. Equation 84 would be a tight
lower bound (i.e, actually achieved in T) if we further required that u = t; but then evaluating
the bound would be equivalent to solving the search problem. It is easy to see that if T is a
singleton set, ftg, then lb(ftg) = f(t).

5.1.1 Lower bound invariants

Two useful invariants are (1) T1 � T2 implies lb(T1) � lb(T2), and (2) for any t, lb(ftg) by
equation 84, f(t) by summing g1 and g2 by equation 3, and f(t) by summing vertex, edge,
and loop components by equation 7, all are equal. In the interest of correct computer code,
an implementation should verify the �rst invariant whenever a subset is split, and the second
whenever a global optimum threading is found.

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 29

5.2 Splitting threading sets

The second key element of branch and bound search as used here is the ability to subdivide
sets of threadings successively. A set is split by choosing a single core segment Ci and a single
split-point tspliti (see �gure 5). The interval [bi; di] is divided into three sub-intervals: the

points (1) less than the split-point,
h
bi; t

split
i � 1

i
; (2) equal to the split-point,

h
t
split
i ; t

split
i

i
;

and (3) greater than the split-point,
h
tspliti + 1; di

i
. This results in three mutually disjoint and

exhaustive subsets of the original set. There are many possible ways to choose Ci and tspliti .
The choice a�ects search speed, but not so much as does the choice of lower bound.

Currently, we choose tspliti based on tlb 2 T . The speci�c threading tlbi that instantiates

the lower bound in equation 84 is used to choose tspliti = tlbi .
It is less obvious how to select the core segment Ci at which to split. One simple method,

easy to implement and appropriate for threading small super-secondary structure motifs, is to
split at the segment having the widest interval, i.e., at the i that maximizes the value of di�bi.
The method we currently use chooses the segment i that has the most negative expected score
contribution if its interval were to be split at tlbi . Speci�cally, we split at hi; tlbi i where i yields
the most negative value of the expression

P1(i; t
lb
i)

2
4g1(i; tlbi)� gi +

X
j 6=i

�
1� �(j)=2

��
g2(i; j; t

lb
i ; t

lb
j)� gi;j

�35 (85)

Assuming a uniform probability distribution over all legal threadings, P1(i; t
lb
i) is the proba-

bility that a randomly drawn threading will place Ci at t
lb
i ; gi is the expected value of g1(i; �);

gi;j is the expected value of g2(i; j; �; �); these terms are de�ned in section 6. �(i) indicates
whether segment i is active (variable) or inactive (�xed) in the set

�(i) =

(
1; if bi < di;
0; if bi = di.

(86)

In equation 85, the factor P1(i; t
lb
i) biases the choice to prefer combinations of i and t

lb
i that

are a priori more likely. The terms g1(i; tlbi) � gi and g2(i; j; tlbi ; t
lb
j) � gi;j bias the choice to

prefer scores that are lower than expected. The factor (1��(j)=2) assigns the entire pairwise
term g2(i; j; t

lb
i ; t

lb
j) � gi;j to core segment Ci if Cj is inactive, and shares it evenly between

them if both are active.
One-step look-ahead yields a much more e�ective, but much more expensive, heuristic for

splitting sets. In this method, all m possible splitting segments are considered in turn. For
each segment, three lower bounds are computed corresponding to its three resulting split sets
(<, =, and >). Segments are ranked by the minimum lower bound among their three sets.
The segment that maximizes the minimum lower bound is chosen as the splitting segment
because it will result in the largest overall increase in lower bound. Because 3m lower bound
computations must be done this approach is quite slow on a serial computer. In a distributed
processing environment each lower bound could be computed simultaneously on a di�erent
processor, resulting in enhanced performance for the same elapsed search time.

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 30

6 Analysis | Search Space Formulae

Formulae in this section are used when splitting sets of threadings, and also to obtain important
statistical information.

6.1 Fast approximate formulae

For the heuristic choice of which core segment to split in equation 85, speed is important and
approximate formulae are acceptable. Fast formulae result from the simplifying assumptions
that the entire search space is included (bi = 1 and di = ~n), and that loops can be arbitrarily
long (lmax

i = +1). Equations 87{89 are exact for this case, and are used to approximate all
other cases in equation 85. Exact algorithms for all other cases are given below in sections 6.2
and 6.3.

Under these simplifying assumptions the number of legal threadings, or search space size,
S = jT [C; n]j, is the result of the binomial coe�cient function

S �

~n +m� 1

m

!
: (87)

Simple formulae also hold for segment placement probabilities. Under a uniform probability
distribution on threadings, let P1(i; ti) be the probability that segment i occurs at index ti in
a randomly drawn threading, and let P2(i; j; ti; tj) be the probability that segment i occurs at
index ti and simultaneously segment j occurs at index tj . Let i < j and ti � tj . Then,

P1(i; ti) �

ti + i� 2

i� 1

!
~n� ti +m� i

m� i

!�
~n+m� 1

m

!
(88)

P2(i; j; ti; tj) �

ti + i� 2

i� 1

!
tj � ti + j � i� 1

j � i� 1

!
~n � tj +m� j

m� j

!�
~n +m� 1

m

!
(89)

Each factor is always the binomial coe�cient corresponding to the number of ways to choose
the number of available core segments, out of one less that the number of available sequence
indices plus the number of available core segments. The denominator is the approximate
search space size from equation 87. Successive factors in the numerator correspond to the
combinatorial number of arrangements between successive pairs of core segments �xed by the
arguments. Similar formulae hold for P3(i; j; k; ti; tj ; tk), for P4(i; j; k; l; ti; tj ; tk; tl), and so
forth.

These relations permit us to estimate the expected singleton and pairwise score components
attributable to each segment. The expected singleton contribution for segment i is gi, and the
expected pairwise contribution for segments i and j is gij . Where i < j and ti � tj ,

gi =
X
x

P1(i; x)g1(i; x) (90)

gij =
X
x

X
y�x

P2(i; j; x; y)g2(i; j; x; y) (91)

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 31

6.1.1 Computing P1 and P2 e�ciently

In practice we compute the logarithm of equations 88 and 89, then exponentiate. When
loading the system we precompute and store log n for n < 1; 000 and log

�n
m

�
for m < 50 and

n < 1; 000. Equations 88 and 89 then require only the sum of a few array references plus a
transcendental function call. The approximations to P1(i; ti), P2(i; j; ti; tj), gi, and gij , all are
constant for a given search space, and are precomputed and stored when each search is begun.
The precomputation is fast and the storage required is approximately the size of the g1 and g2
arrays. Consequently, equation 85 requires only sums and products of a few array references.

6.2 Exact search space size, probabilities, and uniform sampling

In practice, external knowledge may constrain core segments to arbitrary sub-intervals or
specify maximum loop lengths. This section provides exact formulae for such cases.

6.2.1 Search space size

Let T [b;d] = ftjbi � ti � dig be the set of threadings delimited by b and d, let S[b;d] be
the number of legal threadings it contains, and let B(i; x) be the number of legal threadings
of segments i through m when segment i is placed at relative sequence index x or higher. B
is given by the recursive formula

B(i; x) =

8>>>>><
>>>>>:

dm � x+ 1; if i = m and bm � x � dm;
B(i; bi); if 1 � i � m and x < bi;

B(i; x+ 1) +B(i + 1; x)�B(i+ 1; x+ ~li + 1);
if 1 � i < m and bi � x < di;

0; otherwise.

(92)

The numbers involved in computing B become combinatorically large; arbitrary precision
integer arithmetic is a language primitive in LISP, and usually available as a subroutine in
other languages.

Consequently,
S[b;d] = B(1; b1) (93)

is exact for arbitrary b, d, lmin, and lmax. By applying equation 92 to bi = 1 and di = ~n,

S = S[1; ~n] (94)

gives the exact size of the entire legal search space. This is the exact formula corresponding
to the approximate equation 87, and is used for all search space sizes reported here.

6.2.2 Exact segment placement probabilities

Exact formulae for segment placement probabilities are computable as the ratio of the search
space sizes corresponding to the constrained and the entire search spaces. The denominator
in all cases is the entire search space size given by equation 94. The numerator corresponding
to P1(i; ti) arises from the set of threadings that �x Ci at ti, denoted T hi; tii. Its search space

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 32

size Shi; tii may be computed from equation 92 applied to bj = fif j < i then 1 else tig and
dj = fif j � i then ti else ~ng. Then

P1(i; ti) = Shi; tii=S[1;~n] (95)

is the exact formula corresponding to the approximate equation 88. Similar formulae hold for
P2(i; j; ti; tj), P3(i; j; k; ti; tj ; tk), P4(i; j; k; l; ti; tj ; tk; tl), and so forth.

6.2.3 Uniform random sampling

Equation 92 also allows us to randomly sample the threadings in any set T [b;d], assuming
a uniform probability distribution (blind draw) on threadings. Let s be a random integer
uniformly drawn between one and S[b;d] inclusive; uniform random numbers are a language
primitive in LISP, and usually available as a subroutine in other languages. Convert s to a
unique threading as follows:

FOR i FROM 1 TO m DO

1. Find x such that bi � x � di and B(i; x+ 1) < s � B(i; x).

2. Set ti to x.

3. Set s to s� B(i; x+ 1).

It is only necessary to compute S[b;d] and B once for each set T [b;d].

6.3 Exact analytic search space mean and standard deviation

Let f(t) =
P

i g1(i; ti) +
P

i

P
i<j g2(i; j; ti; tj) be the threading score function chosen. Then

the score distribution mean f is

f = E(f(�)) =
X
i

E(g1(i; �)) +
X
i

X
i<j

E(g2(i; j; �; �) (96)

where

E(g1(i; �)) =
X
x

P1(i; x)g1(i; x) (97)

E(g2(i; j; �; �)) =
X
x

X
y

P2(i; j; x; y)g2(i; j; x; y) (98)

The distribution variance is V and the standard deviation is � =
p
V .

V = E([f � f(�)]2) = E(f
2 � 2ff(�) + f2(�)) = E(f2(�))� f

2
(99)

where

E(f2(�)) = E([
X
i

g1(i; �) +
X
i

X
i<j

g2(i; j; �; �)]2) (100)

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 33

=
X
i

E([g1(i; �)]2) + 2
X
i

X
i<j

E(g1(i; �)g1(j; �))

+
X
i

X
i<j

X
k

E(g1(k; �)g2(i; j; �; �))

+
X
i

X
i<j

E([g2(i; j; �; �)]2)

+2
X
i

X
i<j

X
j<k

X
k<l

E(g2(i; j; �; �)g2(k; l; �; �)) (101)

E([g1(i; �)]2) =
X
x

P1(i; x)[g1(i; x)]
2 (102)

E(g1(i; �)g1(j; �)) =
X
x

X
y

P2(i; j; x; y)g1(i; x)g1(j; y) (103)

E(g1(k; �)g2(i; j; �; �)) =
X
x

X
y

X
z

P3(i; j; k; x; y; z)g1(k; z)g2(i; j; x; y) (104)

E([g2(i; j; �; �)]2) =
X
x

X
y

P2(i; j; x; y)[g2(i; j; x; y)]]
2 (105)

E(g2(i; j; �; �)g2(k; l; �; �)) =
X
x

X
y

X
z

X
v

P4(i; j; k; l; x; y; z; v)

�g2(i; j; x; y)g2(k; l; z; v) (106)

The analytic formula for the mean has a computational complexity of O(m2~n2). The
analytic formula for the standard deviation has a computational complexity of O(m4~n4).

6.4 Computing the exact analytic mean and standard deviation e�ciently

In practice, the fourth-power computational complexity of the analytic standard deviation
formula is burdensome for most proteins. Consequently, we usually estimate the mean and
standard deviation by sampling the search space. It takes only a few seconds to draw and
score 10,000 uniformly distributed random threadings using the g1 and g2 arrays in conjunction
with methods in section 6.2.3. This results in su�ciently accurate estimates for most ordinary
purposes. In case an exact value is important, the analytic formulae are available at additional
computational cost.

7 Computational Complexity

The complexity of �nding the optimal sequence-to-structure threading is a function of whether
arbitrary length alignment gaps are allowed, and whether or not the score function includes
pairwise or higher order interactions among sequence amino acids. Given these two properties,
the threading problem is known to be NP-complete.

Our current knowledge of protein structure and evolution requires the �rst property, the
allowance of alignment gaps of near arbitrary length. In fact, a very wide range of sequences
have been observed to have been inserted into various basic folds, particularly at the protein's
surface. The extreme case is observed in many multidomain proteins where the linear sequence
encoding for one domain's fold has been inserted into that encoding a second independent fold.

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 34

The necessity of the second property, inclusion of at least long-range pairwise interactions in the
scoring schema, is much less clear. It generally is believed to be important, but the issue is far
from settled. In the three-dimensional folded form of a native protein, the key characteristics
of the local environment in which any amino acid �nds itself are determined largely by its
contacting neighbors. Interactions between spatially neighboring amino acids are formed by
those at arbitrary positions along the sequence.

The general problems of protein folding [88, 89, 90], protein threading [61], [62], and protein
structure comparison [85], all are known to be NP-hard. Thus an exact solution is widely
believed to require exponential time (unless P = NP). In the general case, any approach to
the information transform shown in �gure 4 must solve (or approximate) at least one NP-hard
problem. Di�erent approaches trade o� which NP-hard problems to solve or approximate, and
how. We expect that many current approaches will be found to contain computational analogs
or approximations to the quantities above. Fast approximate knowledge-intensive solutions
often perform well in practice, and a clear understanding of the optimal formulae can help us
to evaluate the speed/accuracy trade-o�s such approximate solutions must make.

7.1 Computational complexity and NP-completeness

An exhaustive review of computational complexity and NP-completeness is beyond the scope
of this chaper, and this section presents only enough material to motivate the discussion in the
balance of the section. The interested reader is referred to references [91, 92, 93] for formal
treatment of the subject; and to references [88, 89, 90] for discussion of its biological relevance.

The analysis of computational complexity is concerned with the question of how the running
time of an algorithm grows as the size of its input increases. For a given algorithm, this is
made speci�c by naming some function, f; and asserting that the algorithm's running time
grows with inputs of increasing size \no faster" than f grows with arguments of increasing
magnitude. Formally, let #(A; I) denote the running time (number of steps) of algorithm A
when started with input I , and let jI j be some reasonable measure of the size of I . Then we
write A = O(f), read \A is order of f" (or \A is big oh of f"), if there exists any positive
constant C such that

lim
jIj!1

#(A; I)

f(jI j) � C

Algorithms whose computational complexity is the order of some polynomial (\polynomial
time algorithms") are considered to be formally e�cient. All other algorithms have a running
time that grows faster than any possible polynomial, and are considered to be ine�cient. It
is possible, of course, that an exponential time algorithm with a tiny exponent may terminate
rapidly on small and medium sized inputs, or that a polynomial time algorithm applied to
a very large input may not. Nonetheless, the distinction is valuable and important in most
practical cases.

A \problem" is a class of computational tasks de�ned in terms of a set of parameters (for
example, SEQUENCE is a parameter of the protein threading problem). A problem \instance"
results from replacing the parameters by actual values (for example, replacing SEQUENCE by
a speci�c string). An algorithm solves a problem if it terminates correctly on every instance of
the problem. A \decision problem" is one to which the answer is either \YES" or \NO." For
example, the decision problem addressed in protein threading is, \Does there exist a threading

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 35

of this sequence into this structure under this score function, such that the threading score is
less than K?" This might be the case in which a candidate threading already has been found,
and one wishes simply to ask whether or not another threading with a better score exists.

It is customary to identify the computational complexity of a problem with that of the most
e�cient algorithm that solves it. The class of problems that can be solved by a polynomial
time algorithm is named \P." Problems which belong to this class are formally tractable. The
class of decision problems whose solution, once found or guessed, may be veri�ed in polynomial
time is named \NP." Note that it may not be possible actually to �nd a solution in polynomial
time; the condition refers only to the veri�cation of a putative solution. Problems in NP are
solvable in \non-deterministic polynomial time," meaning that if one could somehow non-
deterministically guess and check all possible solutions simultaneously, the solution would be
obtained in polynomial time. The practical message of this theoretical condition is that the
search for a solution, not the veri�cation step, determines whether a polynomial time solution
is possible or not. Clearly, P is a subset of NP, but it is unknown whether P=NP.

There is an important class of problems which belong to NP, and have the property that an
algorithm solving any problem in the class can be transformed in polynomial time to solve any
other problem in NP. Therefore, a polynomial time algorithm solving any problem in this class
would immediately yield a polynomial time solution for every problem in NP. These problems
are the hardest in NP, and are known as the \NP-complete" problems. It is not known whether
or not they have a polynomial time solution (if so, then P=NP because polynomials are closed
under composition). They include many problems deeply central to computer science, and
so a great deal of e�ort by a great many talented people has been expended searching for a
polynomial time solution to any one of them. Because so many talented people have failed, it
is widely accepted that no polynomial time algorithm is likely ever to be found.

In some cases it is possible to prove directly from �rst principles that a problem at hand
is NP-complete, but this is usually quite di�cult. Most proofs proceed by constructing a
polynomial-time transformation of another problem, already known to be NP-complete, into
an instance of the problem at hand. It follows that, if the problem at hand could be solved in
polynomial time, so could the other problem, and therefore by extension all of the problems
in NP. Consequently, the problem at hand is NP-complete.

For many NP-complete decision problems there is an associated optimization problem, for
which the task is to produce an optimal solution. For example, the optimization problem
associated with the threading decision problem stated above is, \Find the threading of this
sequence into this structure under this score function having the optimal (minimum) score."
It is easy to see that the optimization problem cannot be easier than the decision problem.
This is because a polynomial time solution to the optimization problem could be transformed
into a polynomial time solution to the decision problem. Thus, if the optimization problem
is solvable in polynomial time, then so is the decision problem. For example, if we could �nd
the optimal threading in polynomial time, then it would be easy to compute its score (also
in polynomial time). This would let us answer the decision question of whether there exists
a threading with score less than K; by checking to see if the optimal score was less than K;

with only one additional step. Search problems bearing this relationship to an NP-complete
decision problem are called NP-hard.

Finally, we note that problems can be NP-complete for di�erent reasons. In some cases,

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 36

a polynomial time solution fails only because the numbers associated with the problem can
become exponentially large in magnitude (for example, perhaps the binary bits specifying an
integer are used to encode some other non-numeric information). In most cases these numbers
are integers; more complicated numbers are theoretically treated as composites of several
distinct integers. If a problem is NP-complete, and remains NP-complete when restricted to
problem instances for which the magnitude of the largest integer is bounded by a polynomial
in the problem instance size, then the problem is called NP-complete in the strong sense.

7.2 Alignment | informal sketch of proof

The protein threading problem consists of a sequence, a core, and an objective function. The
decision problem is whether there exists a threading of the sequence into the core with a score
under the objective function of some speci�ed constant K or less. Call this problem \PRO-
THREAD." The associated optimization problem is to produce a threading whose score is the
global optimum. The bulk of the proof consists of constructing an encoding from a known NP-
complete problem into PRO-THREAD. The problem we choose for this is ONE-IN-THREE
3SAT, a variant of SATISFIABILITY. The remainder of this section briey and informally
sketches the encoding. Formal details are in reference [61].

The canonical (and �rst) NP-complete problem is SATISFIABILITY. A problem instance
consists of a set of Boolean variables, plus a set of Boolean clauses (a clause is a disjunction,
or logical OR, of a set of literals; a literal is either one of the variables or the negation of one of
the variables). The question is whether any setting (truth-value assignment) of the variables
makes all of the clauses true simultaneously. 3SAT is a well-known variant which restricts the
clauses to contain exactly three literals. ONE-IN-THREE 3SAT is a further variant of 3SAT
which requires that each of the clauses be made true by exactly one of the three literals. All
these problems are known to be NP-complete [91].

The proof that PRO-THREAD is NP-complete proceeds by showing that we can encode any
arbitrary instance of ONE-IN-THREE 3SAT (does there exist a setting of the Boolean variables
making all the clauses simultaneously true by exactly one literal?) as an equivalent instance
of PRO-THREAD. Threadings with a score of zero encode solutions of the original ONE-
IN-THREE 3SAT problem; threadings with positive scores encode failures. The equivalent
encoded PRO-THREAD question is: does there exist a threading with a score of zero or
less? The answer to this question is \YES" exactly when a solution exists for the original
ONE-IN-THREE 3SAT problem.

The essence of the proof is this:

� Amino acids from the sequence can encode whether a Boolean variable is TRUE (by
T , a threonine residue) or FALSE (by F , phenalanine); and also which literal makes
a Boolean clause true (P , proline, encodes the �rst; Q, glutamine, the second; and R,
arginine, the third, literal). In the encoded problem, the sequence a to be threaded is

a = PQRPQRPQRPQR : : :PQRTF : : :TFTFTFTF

where we allot one \PQR" for each clause, and one \TF" for each Boolean variable.

� By making each core segment exactly one element long, it is threaded to exactly one
amino acid. Consequently, any given threading assigns every core segment to one of

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 37

fP;Q;R; T;Fg. (As discussed below, extensions that add \GAP" to this list are also
NP-complete.)

� We can use one core segment to encode each Boolean clause, and choose which literal
makes it true by threading it to P (= the �rst literal), Q (= the second), or R (= the
third) in the sequence a. Similarly, one core segment encoding each Boolean variable is
threaded to T (= TRUE) or F (= FALSE), and thereby chooses truth values.

� Pairs of core elements are taken as neighbors in the core (and recorded as such in the
adjacency graph) exactly when the clause encoded by the �rst element contains a literal
naming the variable encoded by the second. The edge environment label assigned is an
ordered pair, d = (i; j), that encodes which literal (i = 1, 2, or 3) is involved and whether
the variable is negated (j = Yes or No).

� An edge score function can be written that is zero when the edge label d is consistent
with the literal choice encoded by amino acid a (as P , Q, or R) and the truth-value
encoded by amino acid b (as F or T); and is one otherwise.

� By summing the edge score function over all edges, a threading score function can be
written that is zero when a candidate threading encodes a truth-value and literal assign-
ment correctly solving the original problem, and positive otherwise. The question \Does
there exist a threading with a score of zero or less?" is now equivalent to the original
ONE-IN-THREE 3SAT question.

� Thus, if we could solve the general PRO-THREAD problem in polynomial time, we could
solve ONE-IN-THREE 3SAT in polynomial time. PRO-THREAD is NP-complete.

In fact, PRO-THREAD is NP-complete in the strong sense (i.e., is not a number problem),
because the only numbers used in the construction are zero and one. The optimization problem,
to produce an optimal threading, is NP-hard.

The basic proof can be used to prove that many threading methodology extensions and
generalizations are also NP-hard. The general strategy in such cases is �rst to show that the
extended problem remains in NP (because a putative solution can be checked in polynomial
time), then to show that the problem has not been made easier (by exhibiting some setting
of the extended parameters for which the extended problem can be made to solve PRO-
THREAD). Consequently, a polynomial time solution to the extended problem would imply
a polynomial time solution to the simpler PRO-THREAD. Without producing formal proofs,
we sketch this for three cases of interest: allowing a core element to be unoccupied (threaded
to a gap), as some dynamic programming methods permit; the inclusion of triplet or higher-
order terms; and the presence of constraint equations on environment labels. Suppose we allow
unoccupied elements. A method for solving this problem can be made to solve PRO-THREAD
by using a score function that assigns any such threading a positive score. Similarly, extensions
including triplet or higher-order terms can be made equivalent to PRO-THREAD by employing
a score function that assigns all such terms a score of zero. Extensions which admit constraint
equations on environment labels can be made to solve PRO-THREAD by adding tautologically
true constraint equations to the original PRO-THREAD problem. Generally speaking, any
related problem that includes PRO-THREAD as a special case remains NP-hard.

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 38

7.3 Selection tasks and Bayes' constants

It is easy to modify the basic proof to show that computing any of the Bayes' selection task
global sums is NP-hard if pair interactions are allowed.

7.3.1 Complexity of �ha;n;Ci

Combine the edge score functions of a given threading using multiplication instead of addition,
and change the edge score function so that threadings that score zero encode failures to the
original ONE-IN-THREE-3SAT problem and threadings that score 1 encode solutions. Then
�ha;n;Ci is greater than zero exactly when a solution exists to the original ONE-IN-THREE-
3SAT problem.

7.3.2 Complexity of Zhn;C;ti

Use the same embedding as above. Again, a score of zero corresponds to a failure, and a score
of 1 corresponds to a solution, of the original ONE-IN-THREE-3SAT problem. Shorten the
sequence so that there is exactly one amino acid per core segment in the encoded problem,
hence exactly one threading in the solution search space. Then Zhn;C;ti is greater than zero
exactly when a solution exists to the original ONE-IN-THREE-3SAT problem.

7.3.3 Complexity of �ha;n;C;i;tii and �ha;n;C;I;T i

Because �ha;n;Ci =
P~n

ti=1 �ha;n;C;i;tii, a polynomial-time computation for �ha;n;C;i;tii would
imply a polynomial-time computation for �ha;n;Ci, which is NP-complete by section 7.3.1. In
turn, �ha;n;C;i;tii is a special case of �ha;n;C;I;T i, which therefore cannot be easier.

8 Search algorithm

The search algorithm requires as input the sequence, core template, and score function. In
any threading trial, the input sequence, core template, and score function exactly de�ne an
abstract mathematical space. Each point in this search space corresponds one-to-one with a
distinct alignment between the sequence and the structure. The score function assigns a scalar
value (a score or pseudo energy) to each point. The global minimum score on the resulting
pseudo energy landscape is the lowest score achieved by any point in the space. The global
optimum alignment(s) is exactly the point(s) that achieves the global minimum score. These
are well-de�ned objects of independent mathematical interest. They are �xed, in an exact
mathematical sense, once the input sequence, core template, and score function are known

Although thereby determined, the landscape features generally are unknown. The sole task
performed by the search algorithm is to report the value of the global minimum score, and
to identify the global optimum threading(s) that instantiate(s) it. In contrast to approximate
search methods, the branch and bound search algorithm here either �nds the mathematically
exact answer or it �rst exhausts time or space resources. The version discussed here never
returns an approximate or inexact result, although fast approximate versions are possible.
Of course, even for the same sequence and core template, di�erent input score functions will

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 39

produce di�erent landscapes and di�erent global minima. Di�erent scoring landscapes a�ect
the time required by such an algorithm (and hence, whether or not it converges within a
speci�c time limit), but they cannot change the fact that the algorithm here always either
�nds the mathematically exact global minimum or fails to converge. The particular values of
the global minimum and the best alignment, therefore, are a function only of the input; while
our ability to identify them is a function of the search algorithm. Consequently, for an exact
search algorithm, any agreement | or lack of it | between optimal and native alignments is
a property only of the input, and not of the search algorithm.

8.1 Branch and bound algorithm

Branch and bound search [94, 95] is a computational method of �nding the mathematically
exact global optimum in large complex search spaces. In the best case it exploits constraints
from the problem to prune the search space, so that most potential solutions are never actually
examined. In the worst case it performs no better than exhaustive search. Here it is used to
�nd the global optimum threading when both variable-length gaps and pairwise interactions
are allowed [1]. Given a �xed core template, sequence, and score function, the branch and
bound search algorithm here is guaranteed to �nd the optimal threading �rst, and thereafter
to enumerate successive candidate threadings in score order. It provides a mathematically
exact implementation for the gapped block alignment threading methodology.

The search begins with a single set containing all legal threadings. At each step, the
algorithm chooses the set with the currently lowest lower bound and splits it into several
subsets. The entire search space always is represented explicitly as the union of the sets created
so far. After some �nite number of steps, the chosen set will contain only one threading. Its
score equals its lower bound. Every other set had an equal or greater lower bound, and so
every other threading must have an equal or greater score. Consequently, this is the desired
global optimum threading.

A set is pruned whenever its lower bound is above the global minimum score, because
the global optimum threading will be discovered before that set is ever considered again. The
global minimum score is unknown until the search terminates, and so pruning is implicit. If the
search space may be pruned rapidly, then the search may be relatively short. Cases of multiple
threadings with the same optimal score occur very rarely, and are detected automatically by
continuing the search.

8.2 Algorithm pseudo-code

INITIALIZATION:

1. Compute a lower bound for the set of all threadings.

2. Initialize a sorted list to contain one entry, the set of all threadings
with its lower bound.

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 40

ITERATION:

1. Remove from the list the set having the lowest lower bound.

2. If the set contains only one threading, stop and announce success. This
is a global optimum threading. The procedure later may be continued
from this point to enumerate successive candidate threadings in score
order.

3. Otherwise, split the set into smaller subsets.

4. Compute a lower bound for each new subset.

5. Merge the new subsets into the list, sorted by lower bound.

The sorted list is implemented as a priority queue, or heap [96], for rapid access to the currently
lowest lower bound.

8.3 Lower bound implementation

E�cient calculation of a strong lower bound is the essence of the branch and bound algorithm.
The �rst part of this section describes an e�cient implementation strategy. The second part
describes a practical caching scheme that avoids much of the computation.

8.3.1 Implementation

This subsection describes an implementation of the lower bound lb(T) on the possible scores
achieved by threadings within a set T . As in equation 86, say that a search space axis i (i.e.,
the placement of core segment Ci in the sequence) is \active" in T if bi < di (i.e., the placement
of core segment Ci in the sequence may vary within T), and \inactive" if bi = di (Ci is �xed
in T). Note that this does not refer to pairwise or singleton contributions; both active and
inactive segments may have contributions from both pairwise and singleton sources.

Separate the lower bound lb(T) into an inactive part q(T) and an active part r(T). These
satisfy lb(T) = q(T) + r(T). The inactive part q(T) sums the contributions that can be
determined by knowing the exact placement of the inactive axes. These are the singleton
contributions from each inactive axis, plus the pairwise contributions from each pair of inactive
axes. For each subset created during the search, q(T) is stored with the m-vectors b and d
and updated at each split. The active part r(T) estimates a lower bound on the contribution
from the active axes plus their pairwise interactions with the inactive axes. It is recomputed
each time the lower bound computation is done.

Use �(i) to indicate whether axis i is active (equation 86), and �(i; j) to indicate whether
either of axes i or j are active. Let

�(i; j) =

(
1; if either axis i or j is active;
0; otherwise.

(107)

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 41

� is related to � by

�(i; j) = �(i) + �(j)� �(i)�(j) (108)

= �(i)
�
1� �(j)=2

�
+ �(j)

�
1� �(i)=2

�
(109)

Then de�ne

q(T) =
X
i

�
1� �(i)

�h
g1(i; bi) +

X
j>i

�
1� �(i; j)

�
g2(i; j; bi; bj)

i
(110)

r(T) = min
t2T

X
i

h
�(i)g1(i; ti) + �(i� 1; i)g2(i� 1; i; ti�1; ti)

+ �(i) min
u2T

lmax
j

=+1

X
jj�ij>1

�
1� �(j)=2

�
g2(i; j; ti; uj)

i
(111)

Note that in the inner minu2T , the ordering constraints imply that j < i) uj � ti and
j > i) uj � ti, as otherwise g2(i; j; ti; uj) = +1. By convention, g2(j; i; tj; ti) = g2(i; j; ti; tj).

Recall that lb(T) = q(T) + r(T): The terms in equations 110 and 111 have the same
meanings as in equation 84. The inactive part q(T) is easy to update after each split simply
by accounting for newly inactive axes. The remainder of this section describes a recursive
formulation of r(T) which leads to an e�cient implementation.

De�ne K as

K(i; ti) = �(i)
h
g1(i; ti) +K�(i;m; ti; dm)

i
+ min

x�max(bi�1;ti�
~li�1)

x�min(di�1;ti)

�
K(i� 1; x) + �(i� 1; i)g2(i� 1; i; x; ti)

�
(112)

where g1(i; ti) accounts for singleton terms, g2(i � 1; i; x; ti) forces pairwise terms containing
loop scores to be consistent between i� 1 and i, and K�(i;m; ti; dm) bounds the contribution
from non-loop pairwise terms at hi; tii. K� is de�ned as

K�(i; k; ti; x) =8>>>>>>>>>>><
>>>>>>>>>>>:

min

�h
K�(i; k� 1; ti; x) +

�
1� �(k)=2

�
g2(i; k; ti; x)

i
;

K�(i; k; ti; x� 1)

�
; if k < i� 1 or k > i+ 1;

K�(i; k� 1; ti; x); if i� 1 � k � i+ 1;
+1; if x < bk, x > dk, k < i and x > ti,

or k > i and x < ti;
0; otherwise.

(113)

Equation 113 treats i and ti as parameters, and uses the assumption that lmax
j = +1. From

equation 113 it follows that

K�(i;m; ti; dm) = min
u2T

lmax
j

=+1

X
jj�ij>1

�
1� �(j)=2

�
g2(i; j; ti; uj) (114)

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 42

and consequently
r(T) = min

x
K(m; x) (115)

as desired.
One important aspect of this lower bound computation is that the lower bound actually is

instantiated on a speci�c threading tlb in the outermost mint2T of equation 111. By keeping
track of the indices x at which the minimum was actually achieved in equation 112, it is
possible to follow the backtrace from the x minimizing equation 115 in order to produce tlb.
This plays an important role in choosing the next split point.

A reasonably e�cient implementation results from holding K and K� in arrays and it-
eratively computing the array values using dynamic programming techniques. The formal
computational complexity of the lower bound computation is O(m2~n2), but this can be re-
duced as described next. An open problem is to devise a clever tree-structured embedding
that avoids brute-force iteration, much as binary trees avoid brute-force iteration when �nding
the minimum value on an interval [87]. A second open problem is to strengthen the current
lower bound. A third is to generalize it to higher-order core segment interactions.

8.3.2 Computing the lower bound e�ciently

Most of the time is expended while computing K� for use in computing K. However, most
values of K are so bad that we actually don't need the strong bound given by K�. In most
cases, we can substitute

J�(i; ti) =
X

jj�ij>1

�
1� �(j)=2

�
min

1�x�~n
g2(i; j; ti; x) (116)

The fact that J�(i; ti) � K�(i;m; ti; dm) guarantees that the result is a valid lower bound.
Computing J�(i; ti) is very fast because minx g2(i; j; ti; x) can be precomputed and stored for
each (i; j; ti), and the computation then reduces to sums of a few array references.

In fact, it is su�cient if we ensure that tlb and the value of its associated lower bound are
computed using K�; all other cases may use J�. To do this, we record all indices hi; tii that have
ever appeared in tlb during any lower bound computation. Equation 112 is computed using
K� (equation 113) for each such hi; tii, and using J� (equation 116) otherwise. Speci�cally, let

(i; ti) =

(
1; if hi; tii ever appeared in any tlb;
0; otherwise.

(117)

Kfast(i; ti) = �(i)
h
g1(i; ti) + (i; ti)K

�(i;m; ti; dm) +
�
1� (i; ti)

�
J�(i; ti)

i
+ min

x�max(bi�1;ti�~li�1)
x�min(di�1;ti)

�
Kfast(i� 1; x) + �(i� 1; i)g2(i� 1; i; x; ti)

�
(118)

Equation 118 is used in place of equation 112 in order to avoid most invocations of equation 113.
It remains to ensure that the current computation did not reach a new hi; tii appearing in

the current tlb for the �rst time, by checking (i; tlbi) for each hi; tlbi i. If (i; tlbi) = 0 for any i,
then that (i; tlbi) must be set to 1 and the lower bound computation repeated. In practice,

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 43

only a few such hi; tii ever appear. Because most values of K are su�ciently bad, the di�erence
between K� and J� doesn't matter in most cases. Cases where it does matter typically are
identi�ed early on, and subsequently very little repeat computation is done.

An e�cient implementation might scale and round the input in order to use fast integer
arithmetic; keep arrays as nested pointers in order to avoid multi-dimensional array references;
lay out large arrays in small pieces in order to minimize disk paging; precompute or cache
values where possible; and so on. A parallel MIMD implementation could distribute subsets
among arbitrarily many processors. A parallel SIMD implementation could embed the array
computations in a connected grid of processors.

9 Computational Experiments

This section presents the branch and bound search algorithm's computational behavior and
current limits. It shows that the search can succeed in many practical cases, and illustrates
the relationship between problem size and computational resources required. Detailed com-
putational analyses are based on the score function of Bryant & Lawrence [27], because it
has the highest convergence rate found (99.8%) and thus gives a picture of performance span-
ning thirty orders of magnitude in search space size (< 101 to > 1031). Five score func-
tions [27, 28, 29, 55, 58] are used to illustrate general trends. Every example described has
been run under all �ve score functions employed, and yields the same qualitative behavior
(often with substantial variation in detail).

Two of the �ve score functions shown below [27, 58] directly provide loop (or loop reference
state) score terms as part of their score function. The other three [28, 29, 55] here require
an auxiliary loop score function. This was set to zero for the timing analysis, which therefore
depends only on previously published values or theories. For biological examples [1] we set it
proportional to a simple log odds ratio, log(P (ajloop)=P (a)), summed over all amino acids a in
the loop. Here P (a) is the prior probability of a and P (ajloop) is the probability of observing
a in a loop region.

9.1 Core template library

We developed a library of core templates taken from 58 non-homologous, monomeric, single-
domain, soluble, globular proteins representing diverse structure types (described in table 2).
We believe this to be one of the simplest interesting test cases: statistical artifacts arising
from much smaller test sets are avoided, and the proteins require no arbitrary decisions about
hydrophobic face packing on domain or multimer boundaries. In order to avoid any subjective
bias in core de�nition, core segments were exactly the main-chain plus �-carbon atoms (inferred
for glycine) of �-helices and �-strands taken from the Brookhaven Protein Data Bank feature
tables [97], or if not present were computed from atomic coordinates using DSSP [98] (smoothed
as in Stultz et al. [59]). All side-chains were replaced by alanine, in order to assign core
template environments independent of the original amino acid identities. Loops were discarded.
The resulting core templates were equivalent to a backbone trace plus �-carbons of the core
secondary structure, annotated as required by the score function. An even more abstract
template would use ideal coordinates. We sought to reduce residual traces of the structure's

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 44

original primary sequence (sequence memory) and loop lengths (gap memory), as otherwise
threading alignment accuracy on distant structural homologs may su�er (see discussions by
references [40, 41, 99]).

We exhaustively threaded every library sequence through every library core template. This
created 3,364 sequence-template pairs, each consisting of a single �xed sequence and core
template. Template loops assigned length zero or one by the crystallographer were treated as
�xed-length because they usually reect constrained \kinks" in the secondary structure. In all
other cases we considered all physically realizable loop lengths that maintained core segment
topological order. Any loop length that could be proven to break the main-chain or violate
excluded atomic volumes was discarded as illegal. Consequently, 833 sequence-template pairs
were discarded a priori because the sequence was too short to occupy the template under any
legal loop assignment. With the remaining 2,531 admissable pairs we searched for the global
optimum threading under all �ve score functions considered. This resulted in a total of 12,655
legal trials, where each trial corresponded to a search for the global optimum threading given
a �xed sequence, core template, and score function. Trials were run on a desktop workstation
DEC Alpha 3000-M8000, using public-domain CMU Common Lisp [100], and were terminated
at the computational limit of two hours. For each trial, we computed the size of the search
space of legal threadings and recorded the elapsed time required to �nd its global optimum
threading.

9.2 Problem size and computation time

In a total of 12,109 trials (96%) the search converged within two hours; in 488 trials (4%) time
was exhausted �rst; and in 58 trials (0.5%) space was exhausted �rst. Figure 6 shows the time
required to �nd the global optimum in every convergent trial under all �ve score functions, as
a function of search space size. On a DEC Alpha 3000-M8000 desktop workstation running
LISP, we have identi�ed the global optimum threading in NP-hard search spaces as large as
9:6 � 1031 at rates ranging as high as 6:8 � 1028 equivalent threadings per second, most of
which were pruned before they were ever explicitly examined.

Figure 6 about here.

Table 2 shows detailed timing results for self-threading each sequence into its own core
template using the Bryant & Lawrence (1993) score function [27], abbreviated \BL93." Protein
size is stated in terms of sequence length and number of core segments; search space growth is
exponential in number of core segments, but in practice proteins are roughly one-half secondary
structure and so the two measures are roughly proportional. Total elapsed time is resolved
into initialization and search components, showing that the fast search does not require a
prohibitively long initialization. The data in table 2 appear together with all non-self-threading
trials in �gure 6 in the plot labeled \BL93," transformed by x = log10(\Search Space Size")
and y = log10(\Total Seconds").

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 45

Table 2 about here.

Table 3 shows the fraction of trials that converged in each case, the total and per-trial time
required, and the log-log regression slopes and intercepts, across all �ve score functions used.
It compares native and non-native threadings for each graph in �gure 6, and gives the pooled
results of all trials. Table 3 summarizes table 2 in the row labeled \BL93 Native."

Table 3 about here.

Figure 7 shows histograms of number of trials and total time expended �nding optimal
threadings under Bryant & Lawrence [27], grouped by search space size. In 81% of all trials,
the search space contained fewer than 1015 legal threadings. However, the searches in those
same trials expended only 11% of the total time. Conversely, only 4% of all trials involved a
search space that contained more than 1020 threadings, but their searches expended 71% of
the total time. Figure 7 corresponds to �gure 6 in the graph labeled \BL93."

Figure 7 about here.

10 Discussion

It is clear from table 2 that the search algorithm is successful at drastically reducing the portion
of search space that actually need be examined. This allows the algorithm to �nd the optimal
threading in vastly larger search spaces than heretofore possible. Figure 6 shows that this
behavior is characteristic of a wide variety of score functions. Larger search spaces do require
more time, as expected, but in most cases examined an exact search could be accomplished
within reasonable limits.

Because the algorithm search behavior depends on the input score function, sequence, and
core template, it is di�cult to give an analytic statement of its average-case time complexity.
Figure 6 shows that the log-log relationships remain approximately linear over nearly twenty-
�ve orders of magnitude. For the range of data considered, the regression slopes in table 3
were between 0.12 and 0.24 and the intercepts were between -1.16 and -0.39. Changes in raw
speed due to di�erent computer languages or hardware should a�ect the intercept but leave

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 46

the slope unchanged, producing a constant vertical o�set in �gure 6. Because log y = a log x+b
implies y = ebxa, the search time in seconds was approximately proportional to between the
fourth and eighth root of the search space size and the proportionality constant was between
0.3 and 0.7. Di�erences in the underlying search space landscapes probably give rise to the
considerable scatter about the central tendency and the variation in timing behavior between
score functions. We expect that further speed increases can be achieved by parallelizing the
algorithm. It has e�cient implementation strategies for both Single Instruction Multiple Data
(SIMD) and Multiple Instruction Multiple Data (MIMD) parallel computers. Tighter lower
bound formulae (cf. equation 84) would decrease the slope in �gure 6, which would lead to
greater leverage in larger search spaces.

Due to the exponential nature of the search, most of the time is expended during the few
trials that search the very largest search spaces. However, most trials involve search spaces
that are substantially smaller, hence more quickly searched. As �gure 7 shows, most results
can be obtained for relatively little computational e�ort. All �ve score functions converged
quickly on almost all trials that involved a small to medium sized search space, e.g. of size
1020 or less. An important implication is that core templates at the level of super-secondary
structure or domain motifs should thread very quickly. This result should greatly encourage
e�orts to recognize protein structure building blocks and assemble them hierarchically.

10.1 Scoring schemes

Our recent experiences and those of others [1, 36] on current threading structural environment
descriptors and scoring potential functions strongly suggest a need for better protein structural
environment de�nitions and objective functions. There are at least two potential problems in
all of the current scoring schemas. The �rst is a standard statistical problem associated with
limited data or low counts. Due in part to the limited size of the current database, some amino
acid pairs are sparsely populated in particular structural environments. For example, if there
are four or more structural environments associated with each modeled fold position, then there
are nearly four hundred times sixteen di�erent independent pairwise score terms to estimate.
However, some amino acids are quite rare, and currently there are only a hundred or so
completely independent single fold protein structures determined [85, 101, 102, 103, 104]. Thus,
for many neighboring pairs in particular environments there are very few or zero observations.
In such cases the threading score functions are sensitive to uctuations in the observed number
of occurrences. For example, methods that use the logarithms of probabilities or derived odds
ratios are sensitive to small frequencies because the logarithm becomes numerically unstable
as its argument approaches zero. This rare observation problem compounds the testing or
validation of any threading score function because score functions may tend to \memorize"
the particular proteins in the data set used to derive score function parameters. This is, of
course, due to the fact that a rare event can provide sequence-to-structure memory in the score
function, thus invalidating the test. Cross-validated tests (jack-knife, hold-one-out, etc.) are
critical (see the discussion by Ouzounis et al. [40]).

The second potential problem (and likely the more limiting) is in the de�nition of neighbor
and/or pairwise contact environments. The question appears to be, when are two amino acid
positions meaningful neighbors? If they are physically close? If they have a particular geomet-
ric relationship to one another? If their side chain atoms interact energetically? The simplest

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 47

side chain independent de�nition of neighboring structural positions is one that depends only
on the physical distance between the alpha or beta carbon pairs. Thus in a number of scor-
ing schemes, the pairwise preferences of amino acids are obtained by counting the occurrence
frequencies at which each type of amino acid's beta carbon is within a particular distance of
another type of amino acid's beta carbon. This simple de�nition is not obviously related to
the physical pairwise interactions expected to a�ect protein folding. Note, two amino acids
on opposite sides of a beta sheet might satisfy the distance conditions, but fail to make any
physical contact. More to the point is the fact that two close amino acids, even on the same
side of a beta sheet or alpha helix, may make little or no physical energetic contact due to the
positioning of their side chain rotamers. The rotamer of an amino acid de�nes the direction
in which the rest of its side chain atoms point. Most amino acids have beta carbons with
four atoms bonded in a tetrahedral con�guration, with freedom to rotate about the alpha-beta
axis when in solution. Two very close amino acids whose side chains point away from each
other normally will have no signi�cant contact. Thus any simple spatial de�nition of neighbor-
ness used in calculating a threading scoring scheme directly from the occupation frequencies
of nearby positions will be a mix of noninteracting \chance" neighbors and truly interacting
neighbors. That would give a potential noise to signal ratio of at least two to one.

11 Conclusions

One of the most probable limiting factors of the threading predictability appears to be current
score functions. There are obviously strong correlations between what particular type of
amino acid is found in a given structural position and who its neighbors are. However, one
needs to distinguish between the fact that a buried amino acid is most likely to be strongly
hydrophobic and the fact that most of its neighbors also being buried will be hydrophobic
| that is, amino acids sharing similar local environments will have correlated properties, but
not necessarily because they interact. Nearly all of the current threading scoring functions
contain both local and nonlocal terms, the former being the local environment as a function
of the position only within the overall structure, and the latter being a function of what
other amino acids are brought into the neighborhood by their alignment with the rest of the
structure. Currently, in most cases, under current score functions a small fraction of the non-
native threadings in the search space continue to score better than the native. Because the
search space may be combinatorically large, however, this small fraction may include very
many individual threadings.

Why try to continue to work on a method that seems to have so many problems? For one
thing, it may work, even with the current limitations. In any particular test case the pairwise
noise may happen to \average out" and the local environmental preferences alone may provide
good predictions; in fact, this often happens in practice. In addition, there are many extensions
to the threading approach that should prove very useful. By combining functional diagnostic
patterns of amino acids with threading models, one should be able to extract information as
to the most likely positions of those key residues. By extending the threading concept to
the threading or alignment of amino acid sequences with partially determined X-ray electron
densities [2] or NMR data, one should be able to speed up structure determinations. By using
threading as a design tool, one should be able to engineer sequences for particular folds.

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 48

Acknowledgments

Ilya Muchnik helped develop the probabilistic framework within which this work is situated.
We thank Melissa Cline, Lisa Tucker-Kellogg, Loredana Lo Conte, Sophia Zarakhovich and
Srikar Rao for their work on core modelling and score functions; Gene Myers and Jim Knight
for discussions of the mathematical formalism; Tom�as Lozano-Perez and Patrick Winston
for discussions of computational protein folding; Janice Glasgow, David Haussler and Alan
Lapedes for applications and extensions; and Steve Bryant, Gordon Crippen, Chip Lawrence,
Vladimir Maiorov, and Manfred Sippl for discussions of their score functions. Comments from
Nick Ste�en improved the presentation. Special thanks to all crystallographers who deposited
their coordinates in the international scienti�c databases.

This chapter describes research performed at the Department of Information and Computer
Science of the University of California, Irvine; the Arti�cial Intelligence Laboratory of the
Massachusetts Institute of Technology; and the BioMolecular Engineering Research Center of
Boston University. Support for the �rst author is provided in part by a CAREER grant from
the National Science Foundation. Support for the Arti�cial Intelligence Laboratory's research
is provided in part by the Advanced Research Projects Agency of the Department of Defense
under O�ce of Naval Research contract N00014-91-J-4038. Support for the BioMolecular
Engineering Research Center is provided in part by the National Library of Medicine under
grant number P41 LM05205-14, and by the National Science Foundation under grant number
BIR-9121546. The contents of this chapter are solely the responsibility of the authors and do
not necessarily represent the o�cial views of the granting agencies.

References

[1] R. H. Lathrop and T. F. Smith (1996) J. Mol. Biol. 255, 641{665.

[2] K. Baxter, E. Steeg, R. H. Lathrop, J. Glasgow, and S. Fortier (1996) From electron
density and sequence to structure: Integrating protein image analysis and threading for
structure determination In D. J. States, P. Agarwal, T. Gaasterland, L. Hunter, and
L. Smith (Eds.), Proc. Intl. Conf. on Intelligent Systems and Molecular Biology pp. 25{33
Menlo Park, California. AAAI Press.

[3] T. F. Smith, L. Lo Conte, J. Bienkowska, B. Rogers, C. Gaitatzes, and R. H. Lathrop
(1997) The threading approach to the inverse folding problem In S. Istrail, R. Karp,
T. Lengauer, P. Pevzner, R. Shamir, and M. Waterman (Eds.), Proc. Intl. Conf. on
Computational Molecular Biology pp. 287{292 New York. ACM Press.

[4] T. F. Smith, L. Lo Conte, J. Bienkowska, C. Gaitatzes, R. G. Rogers Jr., and R. H.
Lathrop (1997) J. Comp. Biol. 4, 217{225.

[5] T. F. Smith, R. H. Lathrop, and F. E. Cohen (1996) The identi�cation of protein func-
tional patterns In J. Collado-Vides, B. Magasanik, and T. F. Smith (Eds.), Integrative
Approaches to Molecular Biology pp. 29{61 Cambridge, Massachusetts. MIT Press.

[6] G. Kolata (1986) Science 233, 1037{1039.

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 49

[7] C. Herzfeld (chair) et al. (1990) Grand challenges: High performance computing and
communications. Technical report Report by the Committee on Physical, Mathematical,
and Engineering Sciences of the U.S. O�ce of Science and Technology Policy.

[8] S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, S. Profeta,
and P. Weiner (1984) J. Am. Chem. Soc. 106, 765{784.

[9] C. L. Brooks, M. Karplus, and B. M. Pettitt (1990) Proteins: A theoretical perspective
of dynamics, structure, and thermodynamics John Wiley and Sons New York.

[10] T. E. Creighton (1983) Biopolymers 22, 49.

[11] J. Novotn�y, A. A. Rashin, and R. E. Bruccoleri (1988) Proteins: Structure, Function,
and Genetics 4, 19{30.

[12] J. Moult, J. T. Pedersen, R. Judson, and K. Fidelis (1995) Proteins: Structure, Function,
and Genetics 23, ii{iv.

[13] R. Srinivasan and G. D. Rose (1995) Proteins: Structure, Function, and Genetics 22,
81{99.

[14] J. Skolnick, A. Kolinski, and A. R. Ortiz (1997) J. Mol. Biol. 265, 217{241.

[15] C. Chothia (1992) Nature 357, 543{544.

[16] C. A. Orengo, D. T. Jones, and J. M. Thornton (1994) Nature 372, 631{634.

[17] J. Greer (1990) Proteins: Structure, Function, and Genetics 7, 317{333.

[18] Q. Zheng, R. Rosenfeld, S. Vajda, and C. DeLisi (1993) Protein Science 2, 1242{1248.

[19] J. Desmet, M. De Maeyer, B. Hazes, and I. Lasters (1992) Nature 356, 539{542.

[20] C. Mandal and D. S. Linthicum (1993) J. Computer-Aided Mol. Design 7, 199{224.

[21] D. Sankof and J. B. Kruskal (Eds.) (1983) Time warps, string edits and macromolecules
Addison-Wesley Reading, Massachusetts.

[22] E. Pennisi (1997) Science 277, 1432{1434.

[23] L. Holm and C. Sander (1993) J. Mol. Biol. 233, 123{138.

[24] L. Holm and C. Sander (1994) Nucl. Acids Res. 22, 3600{3609.

[25] J. S. Richardson (1981) Adv. Protein Chem. 34, 167{339.

[26] R. L�uthy, J. U. Bowie, and D. Eisenberg (1992) Nature 356, 83{85.

[27] S. H. Bryant and C. E. Lawrence (1993) Proteins: Structure, Function, and Genetics

16, 92{112.

[28] V. N. Maiorov and G. M. Crippen (1992) J. Mol. Biol. 227, 876{888.

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 50

[29] M. J. Sippl (1993) J. Computer-Aided Mol. Design 7, 473{501.

[30] J. Bowie and D. Eisenberg (1993) Current Opinion in Structural Biol. 3, 437{444.

[31] S. H. Bryant and S. F. Altschul (1995) Current Opinion in Structural Biol. 5, 236{244.

[32] J. S. Fetrow and S. H. Bryant (1993) Bio/Technology 11, 479{484.

[33] R. L. Jernigan and I. Bahar (1996) Current Opinion in Structural Biol. 6, 195{209.

[34] D. T. Jones and J. M. Thornton (1993) J. Computer-Aided Mol. Design 7, 439{456.

[35] D. T. Jones and J. M. Thornton (1996) Current Opinion in Structural Biol. 6, 210{216.

[36] C. M.-R. Lemer, M. J. Rooman, and S. J. Wodak (1995) Proteins: Structure, Function,
and Genetics 23, 337{355.

[37] M. J. Sippl (1995) Current Opinion in Structural Biol. 5, 229{235.

[38] S. J. Wodak and M. J. Rooman (1993) Current Opinion in Structural Biol. 3, 247{259.

[39] G. M. Crippen (1996) Proteins 26, 167{71.

[40] C. Ouzounis, C. Sander, M. Scharf, and R. Schneider (1993) J. Mol. Biol. 232, 805{825.

[41] R. B. Russell and G. J. Barton (1994) J. Mol. Biol. 244, 332{350.

[42] P. D. Thomas and K. A. Dill (1996) J. Mol. Biol. 257, 457{469.

[43] W. of Ockham (ca. 1319) Commentary on the Sentences of Peter Lombard (the Repor-
tario) Cited p. 35n in [105].

[44] M. J. Sippl, M. Hendlich, and P. Lackner (1992) Protein Science 1, 625{640.

[45] A. Kolinski, J. Skolnick, and A. Godzik (1996) An algorithm for prediction of structural
elements in small proteins In L. Hunter and T. Klein (Eds.), Proc. Paci�c Symposium
on Biocomputing '96 pp. 446{460 Singapore. World Scienti�c.

[46] K. T. Simons, C. Kooperberg, E. Huang, and D. Baker (1997) J. Mol. Biol. 268, 209{225.

[47] T. F. Smith (1995) Science 268, 958{959.

[48] R. Abagyan, D. Frishman, and P. Argos (1994) Proteins: Structure, Function, and
Genetics 19, 132{140.

[49] A. Bauer and A. Beyer (1994) Proteins: Structure, Function, and Genetics 18, 254{261.

[50] F. U. Bowie, R. L�uthy, and D. Eisenberg (1991) Science 253, 164{170.

[51] A. Godzik, A. Kolinski, and J. Skolnick (1992) J. Mol. Biol. 227, 227{238.

[52] M. Hendlich, P. Lackner, S. Weitckus, H. Fl�ockner, R. Froschauer, K. Gottsbacher,
G. Casari, and M. J. Sippl (1990) J. Mol. Biol. 216, 167{180.

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 51

[53] E. S. Huang, S. Subbiah, and M. Levitt (1995) J. Mol. Biol. 252, 709{720.

[54] J.-P. A. Kocher, M. J. Rooman, and S. J. Wodak (1994) J. Mol. Biol. 235, 1598{1613.

[55] S. Miyazawa and R. L. Jernigan (1985) Macromolecules 18, 534{552.

[56] Y. Wang, L. Lai, Y. Han, X. Xu, and Y. Tang (1995) Proteins: Structure, Function,

and Genetics 21, 127{129.

[57] M. Wilmanns and D. Eisenberg (1993) Proc. Natl. Acad. Sci. USA 90, 1379{1383.

[58] J. V. White, I. Muchnik, and T. F. Smith (1994)Mathematical Biosciences 124, 149{179.

[59] C. M. Stultz, R. Nambudripad, R. H. Lathrop, and J. V. White (in press) Predicting
protein structure with probabilistic models In N. Allewell and C. Woodward (Eds.),
Protein Folding and Stability Greenwich. JAI Press.

[60] M. J. Sippl (1990) J. Mol. Biol. 213, 859{883.

[61] R. H. Lathrop (1994) Protein Engineering 7, 1059{1068.

[62] T. Akutsu and S. Miyano (1997) On the approximation of protein threading In S. Istrail,
R. Karp, T. Lengauer, P. Pevzner, R. Shamir, and M. Waterman (Eds.), Proc. Intl. Conf.
on Computational Molecular Biology pp. 3{8 New York. ACM Press.

[63] C. A. Orengo and W. R. Taylor (1990) J. Theor. Biol. 147, 517{551.

[64] W. R. Taylor and C. A. Orengo (1989) J. Mol. Biol. 208, 1{22.

[65] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald, and J. C.
Wootton (1993) Science 262, 208{14.

[66] D. T. Jones, W. R. Taylor, and J. M. Thornton (1992) Nature 358, 86{89.

[67] H. Fl�ockner, M. Braxenthaler, P. Lackner, M. Jaritz, M. Ortner, and M. J. Sippl (1995)
Proteins: Structure, Function, and Genetics 23, 376{386.

[68] V. N. Maiorov and G. M. Crippen (1994) Proteins: Structure, Function, and Genetics

20, 167{173.

[69] S. A. Benner, M. A. Cohen, and G. H. Gonnet (1993) J. Mol. Biol. 229, 1065{1082.

[70] A. V. Finkelstein and B. Reva (1991) Nature 351, 497{499.

[71] T. Madej, J.-F. Gibrat, and S. H. Bryant (1995) Proteins: Structure, Function, and

Genetics 23, 356{369.

[72] S. C. Bagley, L. Wei, C. Cheng, and R. B. Altman (1995) Characterizing oriented protein
structural sites using biochemical properties In C. Rawlings, D. Clark, R. Altman,
L. Hunter, T. Lengauer, and S. Wodak (Eds.), Proc. 3rd Intl. Conf. on Intelligent Systems
for Mol. Biol. pp. 12{20 Menlo Park, California. AAAI Press.

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 52

[73] T. Grossman, R. Farber, and A. Lapedes (1995) Neural net representations of empirical
protein potentials In C. Rawlings, D. Clark, R. Altman, L. Hunter, T. Lengauer, and
S. Wodak (Eds.), Proc. 3rd Intl. Conf. on Intelligent Systems for Mol. Biol. pp. 154{161
Menlo Park, California. AAAI Press.

[74] A. Tropsha, R. K. Singh, I. I. Vaisman, and W. Zheng (1996) Statistical geometry
analysis of proteins: Implications for inverted structure prediction In L. Hunter and
T. Klein (Eds.), Proc. Paci�c Symposium on Biocomputing '96 pp. 614{623 Singapore.
World Scienti�c.

[75] P. J. Munson and R. K. Singh (1997) Multi-body interactions within the graph of
protein structure In T. Gaasterland, P. Karp, K. Karplus, C. Ouzounis, C. Sander,
and A. Valencia (Eds.), Proc. 5th Intl. Conf. on Intelligent Systems for Mol. Biol. pp.
198{201 Menlo Park, California. AAAI Press.

[76] T. Bayes (1764) Philosophical Transactions of the Royal Society of London 53, 370{418
Reprinted pp. 131{153 in [106].

[77] G. E. Box and G. C. Tiao (1973) Bayesian inference in statistical analysis Addison-
Wesley Reading, Massachusetts.

[78] J. A. Hartigan (1983) Bayes Theory Springer-Verlag New York.

[79] G. E. Arnold, A. K. Dunker, S. J. Johns, and R. J. Douthart (1992) Proteins: Structure,
Function, and Genetics 12, 382{399.

[80] R. L. Dunbrack, Jr. and F. E. Cohen (1997) Protein Science 6, 1661{1681.

[81] M. J. Thompson and R. A. Goldstein (1996) Proteins: Structure, Function, and Genetics
25, 38{47.

[82] L. Hunter and D. J. States (1992) IEEE Expert 7, 67{75.

[83] J. V. White, C. M. Stultz, and T. F. Smith (1994) Mathematical Biosciences 191, 35{75.

[84] A. G. Murzin, S. E. Brener, T. Hubbard, and C. Chothia (1995) J. Mol. Biol. 247,
536{540.

[85] L. Holm and C. Sander (1996) Science 273, 595{602.

[86] G. L. Steele Jr. (1990) Common Lisp: the Language Digital Press Bedford, Mas-
sachusetts.

[87] R. Sedgewick (1990) Algorithms in C Addison-Wesley Reading, Massachusetts.

[88] A. S. Fraenkel (1993) Bull. Math. Biol. 55, 1199{1210.

[89] J. T. Ngo and J. Marks (1992) Protein Engineering 5, 313{321.

[90] R. Unger and J. Moult (1993) Bull. Math. Biol. 55, 1183{1198.

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 53

[91] M. R. Garey and D. S. Johnson (1979) Computers and Intractability: A Guide to the
Theory of NP-Completeness W. H. Freeman and Company New York.

[92] J. E. Hopcroft and J. D. Ullman (1979) Introduction to Automata Theory, Languages,

and Computation Addison-Wesley Reading, Massachusetts.

[93] H. R. Lewis and C. H. Papadimitriou (1979) Elements of the Theory of Computation
Prentice-Hall Englewood Cli�s, New Jersey.

[94] P. H. Winston (1993) Arti�cial Intelligence Addison-Wesley Reading, Massachusetts
third edition.

[95] V. Kumar (1992) Search, branch-and-bound In S. C. Shapiro (Ed.), Encyclopedia of

arti�cial intelligence, vol. 2 pp. 1468{1472 New York. John Wiley and Sons.

[96] A. V. Aho, J. E. Hopcroft, and J. D. Ullman (1982) Data Structures and Algorithms

Addison-Wesley Reading, Massachusetts.

[97] F. C. Bernstein, T. F. Koetzle, G. J. B. Williams, E. F. Meyer, M. D. Brice, J. R.
Rodgers, O. Kennard, T. Shimanouchi, and M. Tasumi (1977) J. Mol. Biol. 112, 535{
542.

[98] W. Kabsch and C. Sander (1983) Biopolymers 22, 2577{2637.

[99] B. Rost and C. Sander (1994) Proteins: Structure, Function, and Genetics 20, 216{226.

[100] R. A. MacLachlan (1992) Cmu common lisp user's manual Technical report School
of Computer Science, Carnegie Mellon University Pittsburgh, Pennsylvania CMU
Common Lisp source code and executables are freely available via anonymous FTP
from lisp-rt1.slisp.cs.cmu.edu (128.2.217.9) and lisp-rt2.slisp.cs.cmu.edu

(128.2.217.10).

[101] C. A. Orengo, A. D. Michie, S. Jones, D. T. Jones, M. B. Swindells, and J. M. Thornton
(1997) Structure 5, 1093{1108.

[102] S. E. Brenner, C. Chothia, and T. Hubbard (1997) Current Opinion in Structural Biol.
7, 369{376.

[103] L. Holm and C. Sander (1997) Nucleic Acids Res. 25, pp 231{234.

[104] A. D. Michie, C. A. Orengo, and J. M. Thornton (1996) J. Mol. Biol. 262, 168{185.

[105] G. Le� (1975) William of Ockham Manchester University Press Manchester, UK.

[106] E. S. Pearson and M. G. Kendall (Eds.) (1970) Studies in the History of Statistics and
Probability Charles Gri�n London.

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 54

Figure Legends

Legend for �gure 1.

Selecting a core from a structural library. Cores in the structural library are rank ordered by
their probability according to equation 28. The globally most probable core is shown selected.
It is also possible to enumerate all cores in order of probability, or to sample most-probable
cores.

Legend for �gure 2.

A schematic view of the gapped block alignment approach to protein threading (adapted
from [1]).
(a) Conceptual drawing of two structurally similar proteins and a common core of four sec-
ondary structure segments (dark lines, I-L). Note that there is no restriction on core segment
length, which may range from a single residue position upwards. To form the core templates
used here, side-chains were replaced by a methyl group resulting in polyalanine, and loops or
variable regions were removed resulting in discrete core segments.
(b) Abstract core template showing spatial adjacencies (interactions). Small circles represent
amino acid positions (core elements), and thin lines connect neighbors that interact in the
objective function. The structural environments and interacting positions will be recorded for
later use by the objective function.
(c) Illustration of the combinatorically large number of threadings (sequence-structure align-
ments) possible with a novel sequence. tax indexes the sequence amino acid placed into the
�rst element of segment X . Sequence regions between core segments become connecting turns
or loops, which are constrained to be physically realizable. All alignment gaps are con�ned to
turn or loop regions.
(d) A sequence is threaded through the core template by placing successive sequence amino
acids into adjacent core elements. Alignments are rank-ordered by their probability according
to equation 24. The globally most probable alignment is shown selected. It is also possible to
enumerate all alignments in order of probability, or to sample the near-optimal alignments.

Legend for �gure 3.

Selecting a core and alignment jointly. Conceptually, every core template of the structural
library (Str. Lib., Ci) is used to generate a pool of all possible sequence-structure alignments
(All Aligns., [iT [Ci; n]) with the input sequence. The pooled (core, alignment) pairs are rank
ordered by probability according to equation 34. The globally most probable core template
and alignment pair is shown selected. It is also possible to enumerate all (core, alignment)
pairs in order of probability, or to sample near-optimal pairs.

Legend for �gure 4.

Schematic view of the general-case information transformation pathways.

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 55

Legend for �gure 5.

De�ning and splitting sets of threadings. Sets used in the branch-and-bound search are de�ned
by lower and upper limits (dark arrows, labeled bax and dax for segment X) on the sequence
amino acid placed into the �rst core element of each segment. The set consists of all legal
threadings such that the �rst element of each segment X is within the interval [bax; d

a
x]. A set

is split into subsets by choosing one core segment (here, segment I) and one split point (dark
interior arrow). Its interval is split into sub-intervals (1) less than, (2) equal to, and (3) greater
than the split point.

Legend to �gure 6 | Slow Exponential Growth.

The time required to �nd the global minimum is shown on log-log axes as a function of search
space size. All sequences and all core templates in our library were threaded through each
other under every score function considered. All physically realizable loops were considered.
Occassionally the crystallographer assigns a loop length of zero or one; this usually reects
a constrained \kink" in secondary structure, not a true loop, and was left unchanged. The
graph for each score function shows every trial that converged under that score function. PDB
codes are shown in table 2.

Score functions: \BL93" = Bryant & Lawrence (1993) [27]; \MC92" = Maiorov & Crippen
(1992) [28]; \MJ85" = Miyazawa & Jernigan (1985) [55]; \S93" = Sippl (1990, 1993) [29];
\WMS94" = White et al. (1994) [58].

Timing resolution is one second. The dashed line corresponds to our computational limit
of two hours. All physically realizable loop lengths were admitted, but gaps provably breaking
the chain or violating excluded atomic volumes were prohibited. Trials were performed using
CMU Common Lisp [100] running on a DEC Alpha 3000-M8000 desktop workstation.

Legend to �gure 7 | Histograms of number of trials (\N") and total time ex-

pended (\T").

Histograms of number of trials (\N", white bars, dotted line) and total time expended (\T",
striped bars, solid line), grouped by search space size and expressed as fractions of the total.
Trials and search space sizes reect the 2,531 legal sequence-template pairs that result from
threading every sequence through every core template in our library (PDB codes in table 2).
Time expended reects trials using the Bryant & Lawrence (1993) score function [27], as shown
in �gure 6, BL93. Each non-convergent trial expended two hours.

The histograms group trials according to log10(SearchSpaceSize). For example, \0-5"
indicates the trials such that the search space size is between 100 and 105, \N" indicates the
fraction of total trials having search space sizes in that range, and \T" indicates the fraction
of the total time that was expended on them.

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 56

Table captions

Caption to table 1 | Notational usage of this paper.

Notational usage of this paper.

Caption to table 2 | Detailed Timing, Bryant and Lawrence (1993) [27], DEC

Alpha 3000-M8000.

Detailed data for all self-threading cases in �gure 6, BL93. Experimental conditions are
described in �gure 6. \PDB Code" is the locus name in the Brookhaven Protein Data
Bank [97]. \Search Space Size" is the size of the search space within which the algorithm
�nds the optimal threading. Note that the algorithm does not actually calculate all of these
threadings, which is one of its critical strengths. \Total (Search-only) Seconds" is total (in
parentheses, only the search component) real elapsed clock time. Total time includes reading
the protein sequence and core template from �les, all datastructure initialization, and the
search itself, but not reading the score function parameter �les (in a predictive setting these
would be memory-resident). \Number of Search Iterations" is the number of times the loop
labeled \Iteration" in section 8.2 was executed. \Equivalent Threadings per Second" and
\Equivalent Threadings per Iteration" are the ratio of search space size to the respective
quantities. The ratios represent, respectively, the speed required for exhaustive search to
achieve the same time, and the number of threadings that exhaustive search would examine
per iteration of pruned search.

Caption to table 3 | Convergence, time, slopes, and intercepts.

Experimental conditions are described in �gure 6. \Native" refers to threading sequences
into their native cores, \Non-Native" into non-native cores. \Hours Required" is the total
time consumed by all searches. Searches that did not converge consumed two hours before
being terminated. \Slope" and \Interc." are respectively the slope and intercept (a and b in
y = ax + b) of the best �tting regression line to the graphs in �gure 6, discarding points at
y = 0. \Pooled" accumulates the results of all trials.

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 57

Input
Sequence

'

&

$

%

Structural
Library

Core 1

Core 2

Core 3

� � �

#
"

!

#
"

!

#
"

!

'
&

$
%

PP���
�
�
�
�
�����

@
@
@
@
@
@AAHH

A
A
A
A
A
A
A
A
A
A
A
AEE@@

Selected
Core

'

&

$

%
�

�
�

�
�

�

����

Figure 1:

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 58

I
J K

L

I

JK

L

I J K L

I J K L

a
i

t
ta
j

ta
k ta

l

(A)

(B)

(C)

(D)

Figure 2:

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 59

Input
Sequence

'

&

$

%

Str.
Lib.

C1

C2

C3

� � �

#
"

!

#
"

!

#
"

!

PP���
�
�
�
�����

@
@
@
@
@AAHH

A
A
A
A
A
A
A
A
A
AEE@@

All
Aligns.

T [C1; n]
[

T [C2; n]
[

T [C3; n]
[

� � �

�
�
��

��
�*
-HHHj@

@
@R

�
�
��

��
�*
-HHHj@

@
@R

�
�
��

��
�*
-HHHj@

@
@R

�
�
��

��
�*
-HHHj@

@
@R

Selected
Core &
Alignment

'

&

$

%
�

�
�

��

����

m

Figure 3:

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 60

Observed
Database
Frequencies Boltzmann

Transform

Inferred
Pseudoenergy
Potentials

��PP
PP��

B
B
�
�

�
�
B
B

Predicted
Relative
Structural
Probabilities

Boltzmann
Transform

Predicted
Relative
State
Occupancies

��PP
PP��

B
B
�
�

�
�
B
B

NP-hard
Markov, Bayes
Normalizations

NP-hard
Partition
Function

Normalizations

Figure 4:

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 61

1 2
3

(<) (=)
(>)

I J K L

b
a
i d a

i
b

a
j

b
a
k

d
a
j

d
a
k b

a
l

d
a
l

Figure 5:

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 62

0

5

10

15

20

25

30

35

 0

 1

 2

 3

 4

 5

WMS94

0

5

10

15

20

25

30

35

 0

 1

 2

 3

 4

 5

S93

0

5

10

15

20

25

30

35

 0

 1

 2

 3

 4

 5

MJ85

0

5

10

15

20

25

30

35

 0

 1

 2

 3

 4

 5

MC92

0

5

10

15

20

25

30

35

 0

 1

 2

 3

 4

 5

BL93

10
lo

g

 (
S

ec
o

n
d

s)

10
log (Search Space Size)

Figure 6: Slow Exponential Growth.

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 63

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0-5 5-10 10-15 15-20 20-25 >25

 N

 N

 N

 N

 N

 N

0.0

0.1

0.2

0.3

0.4

0.5

 0-5 5-10 10-15 15-20 20-25 >25

 T

 T

 T

 T

 T

 T

10
log (Search Space Size)

F
re

q
u

en
cy

Figure 7: Histograms of number of trials (\N") and total time expended (\T").

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 64

Notation Usage

a a sequence or string over A of length n

A an alphabet of 20 characters (amino acid types)

An the set of all strings over A of length n

b (or d) a vector of m integers; segment lower (or upper) bounds

ci jCij, the length of the ith core segment Ci

C a core structure; its ith segment is Ci, whose j
th element is Ci;j

f an objective function or score function

f1 a sequence singleton-only version of f

fA a per-residue version of f1

fa (or fv, or fe) f restricted to amino acid residue types (or vertices, or edges)

fl f restricted to loops or variable regions

fs f restricted to core segments

f a mean or expected value of f

g a per-segment encapsulation of f

h exp(�f)
h� the loop length prior probability

H
P

w2Ak h

li (or lmin
i , or lmax

i) j�ij, the variable (or minimum, or maximum) length of the ith loop �i
~li lmax

i � lmin
i , the variability of li

lb a function returning a lower bound on scores achievable within a set

L a library of core structures

m jCj, the number of core segments in C

n jaj, the length of the sequence a

~n n+ 1�Pi(ci + lmin
i), the relative sequence length

P (AjB) the conditional probability of A given B

P1(i; ti) (or P2(i; j; ti; tj)) the probability that a random threading places Ci at ti (and Cj at tj)

q, r the inactive and active components of lb

s a function returning a structural environment label

S, S[b;d], Shi; tii the sizes of T [C; n], T [b;d], T hi; tii
t (or ta) a vector of m integers; ti (or tai) is the i

th relative (or absolute) coordinate

T a set of alignments

T [C; n] the set of all alignments between core C and any sequence of length n

T [b;d] the set of alignments satisfying bi � ti � di
T hi; tii the set of alignments that place Ci at ti
V the variance of a search space score distribution

w (or x) a summation variable over An (or over T [C; n])
Z, Zhx;y;zi a partition function; a global sum speci�ed by x, y, and z

�(i) (or �(i; j)) an indicator of whether axis i (or either axis i or j) is active

E a set of adjacency graph edges, e or fu; vg; a subset of V � V
� a set of loops; the ith loop is �i, whose jth element is �i;j
�hx;y;zi a global mean speci�ed by x, y, and z

� the standard deviation of a search space score distribution

V a set of adjacency graph vertices, v, corresponding bijectively to fCi;jg
B, J , J�, K, K�, Q, Qj , R recurrence functions

Table 1: Notational usage of this paper.

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 65

Number Search Number of Total Equivalent Equivalent
PDB Protein of Core Space Search (Search-only) Threadings Threadings
Code Length Segments Size Iterations Seconds per Iteration per Second

256b 106 5 6.19e+3 6 1 (1) 1.03e+3 6.19e+3
1end 137 3 4.79e+4 6 1 (1) 7.98e+3 4.79e+4
1rcb 129 4 5.89e+4 7 1 (1) 8.41e+3 5.89e+4
2mhr 118 4 9.14e+4 7 1 (1) 1.31e+4 9.14e+4
351c 82 4 1.12e+5 5 1 (1) 2.24e+4 1.12e+5
1bgc 174 4 1.63e+5 6 1 (1) 2.72e+4 1.63e+5
1ubq 76 5 1.70e+5 6 1 (1) 2.83e+4 1.70e+5
1mbd 153 8 1.77e+5 10 1 (1) 1.77e+4 1.77e+5
1lis 136 5 5.02e+5 7 1 (1) 7.17e+4 5.02e+5
1aep 161 5 5.76e+5 13 1 (1) 4.43e+4 5.76e+5
1hoe 74 6 7.36e+5 8 1 (1) 9.20e+4 7.36e+5
2hpr 87 6 1.34e+6 8 1 (1) 1.68e+5 1.34e+6
5cyt 103 5 1.37e+6 8 1 (1) 1.71e+5 1.37e+6
1bp2 123 5 1.53e+6 8 1 (1) 1.92e+5 1.53e+6
1aba 87 7 1.95e+6 13 1 (1) 1.50e+5 1.95e+6
1cew 108 6 2.32e+6 8 1 (1) 2.91e+5 2.32e+6
5cpv 108 5 2.60e+6 6 1 (1) 4.33e+5 2.60e+6
2mcm 112 10 1.31e+7 15 1 (1) 8.75e+5 1.31e+7
5fd1 106 5 2.25e+7 12 1 (1) 1.88e+6 2.25e+7
1plc 99 6 3.63e+7 10 1 (1) 3.63e+6 3.63e+7
1alc 123 6 1.70e+8 10 2 (1) 1.70e+7 8.51e+7
1yat 113 7 2.03e+8 8 1 (1) 2.54e+7 2.03e+8
7rsa 124 10 2.54e+8 12 1 (1) 2.12e+7 2.54e+8
3fxn 138 9 7.09e+8 12 2 (1) 5.91e+7 3.54e+8
9rnt 104 8 7.53e+8 21 2 (1) 3.58e+7 3.76e+8
2sns 149 8 2.19e+9 14 4 (1) 1.56e+8 5.47e+8
1ifc 132 12 2.31e+9 87 2 (1) 2.66e+7 1.16e+9
2lzm 164 12 3.16e+9 37 2 (1) 8.54e+7 1.58e+9
3chy 128 10 4.08e+9 45 1 (1) 9.06e+7 4.08e+9
1pkp 150 9 5.32e+9 20 3 (1) 2.66e+8 1.77e+9

Table 2: Timing details for self-threading (Bryant and Lawrence (1993), on DEC Alpha), part
1.

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 66

Number Search Number of Total Equivalent Equivalent
PDB Protein of Core Space Search (Search-only) Threadings Threadings
Code Length Segments Size Iterations Seconds per Iteration per Second

1aak 152 8 2.34e+10 10 3 (1) 2.34e+9 7.82e+9
8dfr 189 10 1.45e+11 25 7 (1) 5.78e+9 2.06e+10
1cde 212 13 1.51e+11 38 5 (1) 3.99e+9 3.03e+10
2cpl 165 10 1.82e+11 17 5 (1) 1.07e+10 3.65e+10
3adk 194 13 1.89e+12 66 3 (1) 2.86e+10 6.30e+11
1rec 201 10 3.54e+12 30 4 (1) 1.18e+11 8.85e+11
2cyp 294 10 3.55e+12 181 20 (4) 1.96e+10 1.78e+11
1f3g 161 16 5.17e+12 45 6 (1) 1.15e+11 8.61e+11
4fgf 146 12 1.06e+13 48 4 (1) 2.22e+11 2.66e+12
1baa 243 9 1.53e+13 64 10 (2) 2.39e+11 1.53e+12
2act 220 11 1.12e+14 34 7 (1) 3.30e+12 1.60e+13
1dhr 241 14 4.56e+14 51 5 (1) 8.94e+12 9.12e+13
1mat 264 11 5.25e+14 100 15 (2) 5.25e+12 3.50e+13
1tie 172 12 1.19e+15 394 20 (9) 3.03e+12 5.96e+13
3est 240 13 1.92e+15 1946 47 (36) 9.85e+11 4.08e+13
2ca2 259 10 4.51e+15 100 20 (2) 4.51e+13 2.25e+14
1byh 214 14 1.07e+16 95 12 (4) 1.12e+14 8.90e+14
1apa 266 14 3.56e+17 141 18 (6) 2.52e+15 1.98e+16
4tgl 269 14 5.86e+18 361 22 (7) 1.62e+16 2.66e+17
5tmn 316 14 6.51e+18 164 28 (7) 3.97e+16 2.32e+17
1lec 242 15 7.01e+18 320 26 (12) 2.19e+16 2.70e+17
1nar 290 17 2.33e+19 3984 208 (183) 5.85e+15 1.12e+17
1s01 275 15 4.36e+19 541 32 (13) 8.05e+16 1.36e+18
5cpa 307 16 1.22e+20 1089 72 (50) 1.12e+17 1.69e+18
9api 384 17 1.95e+22 290 57 (25) 6.71e+19 3.41e+20
2had 310 19 2.57e+22 4027 201 (179) 6.39e+18 1.28e+20
2cpp 414 20 6.37e+24 3068 205 (164) 2.08e+21 3.11e+22
6taa 478 23 9.63e+31 4917 1409 (1267) 1.96e+28 6.83e+28

Table 2: Timing details for self-threading (Bryant and Lawrence (1993), on DEC Alpha), part
2.

Lathrop, Rogers, Bienkowska, Bryant, Buturovi�c, Gaitatzes, Nambudripad, White, Smith 67

Native or Total Avg. Secs. Regression
Potentials Non-Native Searches Converged Hours per Search Slope Interc.

BL93 Native 100% (58/58) 0.7 43.3 0.12 -0.74

Non-native 99.8% (2467/2473) 42.3 61.5 0.13 -0.47

MC92 Native 98% (57/58) 3.2 199.1 0.13 -0.50

Non-native 98% (2426/2473) 167.5 243.8 0.14 -0.44

MJ85 Native 98% (57/58) 3.3 204.5 0.12 -0.42

Non-native 99% (2446/2473) 101.6 148.0 0.13 -0.35

S93 Native 90% (52/58) 13.7 853.1 0.16 -0.43

Non-native 89% (2189/2473) 749.7 1091.4 0.24 -0.81

WMS94 Native 88% (51/58) 18.4 1143.7 0.18 -0.74

Non-native 93% (2306/2473) 455.6 663.2 0.18 -0.62

Pooled Pooled 96% (12109/12655) 1556.0 442.6 0.15 -0.40

Table 3: Convergence rates, total hours, slopes, and intercepts.

