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ABSTRACT

This paper describes a novel anytime branch-and-bound or best-� rst threading search algo-
rithm for gapped block protein sequence–structure alignment with general sequence residue
pair interactions. The new algorithm (1) returns a good approximate answer quickly, (2) it-
eratively improves that answer to the global optimum if allowed more time, (3) eventually
produces a proof that the � nal answer found is indeed the global optimum, and (4) always ter-
minates correctly within a bounded number of steps if allowed suf� cient space and time. It runs
in polynomial space, which is asymptotically dominated by the O (m2ñ2) space required by
the lower bound computation. Using previously published data sets and the Bryant–Lawrence
(1993) objective function, the algorithm found the true (proven) global optimum in less than
5 min in all search spaces size 1025 or smaller (sequences to 478 residues), and a putative
(not guaranteed) optimum in less than 5 hr in all search spaces size 1060 or smaller (se-
quences to 793 residues, cores to 42 secondary structure segments). The threading in the
largest case studied was eventually proven to be globally optimal; the corresponding search
speed in that case was the equivalent of 1.5 £ 1056 threadings/sec, a speed-up exceeding 1025

over previously published batch branch-and-bound speeds, and exceeding 1050 over previ-
ously published exhaustive search speeds, using the same objective function and threading
paradigm. Implementation-independent measures of search ef� ciency are de� ned for equiv-
alent branching factor, depth, and probability of success per draw; empirical data on these
measures are given. The general approach should apply to other alignment methodologies
and search methods that use a divide-and-conquer strategy.

Key words: protein threading, inverse folding, fold recognition, sequence, structure, alignment,
pair potentials, contact potentials, knowledge-based potentials, search.

1. INTRODUCTION

PROTEIN STRUCTURE PREDICTION from sequence is one of the great unsolved challenges of molecular
biology. Protein sequence–structure alignment, also called protein threading, attempts to model a novel

sequence using a known structure by aligning the sequence to the structure under an objective function. After
alignment, the sequence is given a similar three-dimensional (3D) fold by assigning each sequence residue
the 3D coordinates of the aligned structure residue. For reviews see Bowie and Eisenberg (1993), Bryant and
Altschul (1995), Fetrow and Bryant (1993), Jernigan and Bahar (1996), Jones and Thornton (1993), Jones
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and Thornton (1996), Lemer et al. (1995), Sippl (1995), and Wodak and Rooman (1993), while for cautionary
notes see Crippen (1996), Lathrop and Smith (1996), Moult et al. (1995), Ouzounis et al. (1993), Russell and
Barton (1994), Smith et al. (1997), and Thomas and Dill (1996).

The protein sequence–structure alignment problem consists of a sequence, a structure [considered as drawn
from a library of structures (Lathrop et al., 1998)], a set of legal sequence–structure alignments, and an
objective function that maps each legal alignment to a real number. The objective function value is the score,
pseudoenergy, or potential of any given alignment; here, by analogy to energy, lower numbers are more
favorable. The sequence, structure, and objective function together determine the entire alignment landscape
including the locations and values of all global and local minima. The accuracy of the objective function is
measured by the agreement (or lack of it) between crystallographic alignments and the objective function
alignment minima (Fischer et al., 1996).

1.1. Search algorithms

For purposes of this paper, assume that the protein sequence, structure, objective function, and set of
legal alignments all are � xed in advance. This � xes the alignment landscape and produces a computational
optimization task: to � nd the alignments within the search space that minimize the objective function. The
search space is the set of legal alignments, the search space size is their cardinality, and the search goal is to
� nd alignments that minimize the objective function. This optimization task is the primitive computational
step in many approaches to protein threading by sequence–structure alignment.

The objective function determines the threading landscape and whether it matches crystallographic align-
ments, while the search algorithm determines whether the alignments that are found actually match the
landscape minima indicated by the objective function. Consequently, search algorithms are evaluated on how
well and how quickly they can � nd the objective function alignment minima. Search accuracy is measured
by agreement (or lack of it) between the objective function minima and alignments returned by the search
algorithm. Ef� ciency is measured by the amount of computational resources expended. In comparisons, it
is important to use a previously characterized objective function and a large diverse set of sequences and
structures because search ef� ciencies vary considerably across these. The Bryant–Lawrence (1993) objective
function (Bryant and Lawrence, 1993) was the fastest of � ve objective functions studied (Lathrop and Smith,
1996). Speeds have been reported of 1.4 £ 102 threadings/sec for exhaustive search (Bryant and Lawrence,
1993) and 6.8 £ 1028 for branch-and-bound search (Lathrop and Smith, 1996), both on faster machines
than here.

1.1.1. Categorization. Exhaustive search could accomplish the optimization task using a number of ob-
jective function evaluations equal to the search space size, but the search space becomes combinatorically large
and so other algorithms have been sought. Protein threading search algorithm classes depend on computational
behavior and assumptions about protein structure:

² Pair Interactions: Modeled vs. Not. If interactions between pairs of sequence residues are not modeled
then the problem is low-order polynomial using dynamic programming (Sankof and Kruskal, 1983). In
contrast, if both alignment gaps and pair interactions between sequence residues are modeled, then restricted
subproblems may be polynomial of varying degree (Xu and Uberbacher, 1996; Xu et al., 1998) while the
general pair interaction problem treated here is NP-hard (Akutsu and Miyano, 1997; Lathrop, 1994).

² Alignment: Gaps Anywhere vs. Gapped Block. Alignment gaps may be permitted anywhere in the
structure, or in contrast may be con� ned to loop regions between discrete blocks of core secondary structure
segments. Permitting gaps anywhere may introduce unphysical mainchain breaks in the interior of secondary
structure segments, while con� ning gaps to the loops may produce erroneous secondary structure segment
lengths. Gaps anywhere results in much larger search space sizes than gapped block.

² Global Optimality: Exact (Proven) vs. Approximate (Not Guaranteed). An exact algorithm produces
an implicit proof that the answer found is indeed the global optimum. In contrast, an approximate algorithm
produces an answer quickly, but without proof of global optimality; its optimality, if any, is unknown.

² Answers: Anytime vs. Batch. An anytime algorithm produces a good answer quickly, then iteratively
improves that answer if allowed more time. After a short initialization period it may be stopped at any
time and a usable answer obtained. Approximate algorithms that rely on iterative sampling are anytime
algorithms because they may be stopped at any time and return their current best candidate. In contrast, a
batch algorithm produces no answer until the end of the run, and if stopped early produces no answer at all.
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Examples of these categories may be drawn from the literature; the discussion here assumes that pair inter-
actions are modeled. Within the gaps anywhere paradigm, examples of approximate algorithms include the
batch double dynamic programming algorithm (Taylor and Orengo, 1989) and the anytime frozen approxima-
tion algorithm (Godzik et al., 1992). Within the gapped block paradigm, examples of approximate algorithms
include the anytime Gibbs Sampler (Lawrence et al., 1993; Madej et al., 1995) and the stochastic algorithm of
Crawford (1999). Examples of exact algorithms include exhaustive search (Bryant and Lawrence, 1993), batch
branch-and-bound (Lathrop and Smith, 1996), and batch divide-and-conquer (Xu and Uberbacher, 1996; Xu
et al., 1998).

1.2. This paper

The algorithm described in this paper is a gapped block alignment algorithm that models fully general
sequence residue pair interactions in the objective function. It is an anytime algorithm that is initially approxi-
mate but becomes exact after a bounded number of steps. It runs in polynomial space, which is asymptotically
dominated by the space required by the lower bound computation, (m 2ñ2). The algorithmic strategy em-
ployed is to adapt a batch branch-and-bound threading algorithm (Lathrop and Smith, 1996) to employ a
best-� rst anytime control structure. The result is a branch-and-bound or best-� rst threading algorithm that
returns (1) a good answer quickly, (2) the true global optimum shortly thereafter in all cases we have been
able to verify, and (3) eventually, a proof of optimality if allowed suf� cient time to run to completion.

1.2.1. Batch branch and bound background. The method presented here is a modi� ed version of a batch
branch-and-bound threading algorithm (Lathrop and Smith, 1996). An alignment may be represented as a
vector t, where ti gives the sequence residue aligned to the i th structure coordinate. The vector space dimension
is m , the sequence length is n , and the number of distinct sequence residues that may align to a given structure
coordinate is ñ . The hyperrectangle [b, d], whose corners are the vectors b and d, contains all alignments t such
that bi · ti · di . Each hyperrectangle corresponds to a set of partially instantiated alignments, and its vector
subspace dimension corresponds to the number of unaligned core segments. A lower bound of complexity

(m 2ñ2) maps a hyperrectangle to a lower bound on the possible values of the objective function on any point
in the hyperrectangle. A splitting function partitions a hyperrectangle into a small set of mutually disjoint
and exhaustive smaller hyperrectangles, at least one of which is of lower vector subspace dimension than the
parent. A priority queue (or heap) holds a sorted list of all currently instantiated hyperrectangles, sorted by
the lower bound.

Initially the queue holds a single hyperrectangle, [1, ñ], that covers the entire search space. At each step,
the hyperrectangle having the currently lowest lower bound is removed from the queue. If it contains only one
alignment it is returned as a global optimum, because no other hyperrectangle on the queue can possibly achieve
a lower score. Otherwise it is partitioned using the splitting function, and the resulting smaller hyperrectangles
are merged into the queue ordered by the lower bound.

2. METHODS

First a new method of searching for threading landscape minima is described. Then implementation and
hardware details are given. Next the data sets, objective function, and run conditions are stated. Finally, several
implementation-independent measures of search ef� ciency are de� ned.

2.1. A local-to-global anytime search method

In this paper, the original algorithm (Lathrop and Smith, 1996) is modi� ed to use m C 1 priority queues.
Queue Q k holds hyperrectangles of vector subspace dimension m ¡ k . The hyperrectangles in each queue are
sorted by their lower bound. Figure 1 gives a schematic illustration. The queues are arranged in a cascade (left-
to-right in Fig. 1) according to the number of aligned core segments, i.e., in decreasing order of hyperrectangle
dimension. The idea is that if the lower bound is not too loose, then hyperrectangles that enclose favorable
threadings will tend to sort to the front of the queues in Fig. 1 and from there migrate to the more fully
instantiated higher-numbered queues. The Appendix gives pseudocode for the control architecture described
in this section.

When a hyperrectangle is split, at least one resulting hyperrectangle is guaranteed to decrease in dimension
and so will move to a higher-numbered queue (arrows in Fig. 1). Consequently, it is always possible to “sweep”
across the queues by beginning at the lowest-numbered occupied queue and at each step: (1) popping the best
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FIG. 1. Schematic illustration of anytime queue cascade. Queue Q0 holds completely uninstantiated alignments, queue
Qm holds fully instantiated alignments, and intermediate queues Q k hold partial alignments corresponding to hyper-
rectangles of dimension m ¡ k. Here, queue Q k holds partial alignments with exactly k aligned (� xed) core segments.
In a gap-anywhere paradigm, Q k might hold partial alignments with k aligned residues. When a partial alignment is
removed from one queue and partitioned, the resulting partial alignments are reinserted into new queues corresponding to
their vector subspace dimension. If the dimension has not changed they are reinserted into the same queue (not shown);
otherwise they are reinserted into the appropriate queue holding more completely instantiated alignments (arrows).

partial alignment from the top of the current queue, (2) splitting it and reinserting the children into queues as
appropriate, and (3) advancing to the next highest-numbered occupied queue. One such sweep can be done in

(m ) lower bound evaluations, and is guaranteed to produce a fully instantiated alignment from Qm at the end.
In addition to sweeping across the queues, it is possible to operate opportunistica lly on the queue that

currently appears to contain the most promising possibilities . The basic idea is simple. Ignoring outliers
beyond some z-score threshold above the current mean, the algorithm estimates internally the recent (decaying
average) mean and standard deviation of the increase in lower bound that previous splits have achieved when
moving from queue Q i to queue Q iC1 . As described below, these yield a very crude estimate of the probability
that the top hyperrectangle in each queue contains an alignment that scores better than the current anytime
best. The hyperrectangle with the highest crude estimate is chosen and split.

Although best-� rst search usually requires both exponential time and exponential space, a polynomial
space bound can be achieved for the task considered here; the time bound, however, remains exponential.
The user speci� es an arbitrary space constant, C (currently 100,000 in our implementation). A second set
of m C 1 priority queues is used, called the annihilation queues AQ, which mirror the primary queues Q
described above. Annihilation queue AQk also holds hyperrectangles of vector subspace dimension m ¡ k ,
also sorted by their lower bound. Whenever the total number of hyperrectangles on the primary queues exceeds
C , one hyperrectangle is removed from the primary queues and placed in its mirroring annihilation queue.
Since each split consumes one hyperrectangle and produces at most three, the number of hyperrectangle in the
primary queues can never exceed C C 2. Whenever any of the annihilation queues contain any hyperrectangles,
processing of the primary queues is suspended and only hyperrectangles in the annihilation queues are
processed until the annihilation queues again are empty. The result is that the total number of hyperrectangles in
the primary queues is decreased by one. Annihilation queues are processed by choosing the highest-numbered
occupied queue, removing and splitting its top hyperrectangle, and inserting its children into the appropriate
annihilation queues. In this process, at most two children are returned to the same annihilation queue from
which the parent was removed, while at most three children are promoted to higher-numbered annihilation
queues. One hyperrectangle ultimately can generate at most ñ / 3 C 1 descendants that are returned to its same
annihilation queue, and so there can be no more than ñ C 3 hyperrectangles in any annihilation queue. Since
there are m C 1 annihilation queues, the total number of hyperrectangles on all queues is (C C mñ). Each
hyperrectangle requires 2m integers, so the total space complexity of all queues is (Cm C m2 ñ). This is
dominated by the lower bound space complexity, which is (m 2ñ2). Consequently, the entire algorithm runs
in (m2 ñ2) space.

2.1.1. Overall control architecture. Suppose the user wishes to return the K best threadings in the search
space. Normally K D 1, indicating to return only the global optimum (called the “anytime best” below), but
sometimes near-optimal alignments are of interest too. The overall control architecture begins with at least K
sweeps to generate the initial K candidates, thereafter runs in opportunistic mode in an attempt to improve
them, and temporarily shifts to annihilation mode whenever the total number of hyperrectangles exceeds the
user-speci� ed space parameter C. First the queues are initialized. Q0 holds a single hyperrectangle containing
the entire search space, [1, ñ], and all other queues are empty. Initially max(K , 5) sweeps are done in order
to produce K good threadings quickly and to initialize the mean and standard deviation estimates. Thereafter
the algorithm opportunistica lly operates on the most productive regions of the search space. Whenever a fully
instantiated threading is produced that scores better than the worst scoring of the current K best candidates,
it replaces that candidate.



ALGORITHM FOR PROTEIN THREADING 409

The algorithm remembers its best K candidates so far, and presents this as its best guess if it is stopped
before it terminates normally. Otherwise, if allowed suf� cient time, eventually it reaches a state in which the
top hyperrectangle of every queue has a lower bound that is equal to or greater than the actual score of the
worst scoring of the current K best candidates. This constitutes an implicit proof that the current anytime
best is in fact a global optimum, because no other hyperrectangle anywhere in the search space can possibly
contain an alignment of lower score. When this occurs the algorithm announces that it has proven that the
current K candidates are the globally optimal K best threadings, and then terminates normally.

2.1.2. An improved splitting function. The original batch splitting function (Lathrop and Smith, 1996)
partitioned hyperrectangles according to a complicated function of partial probabilities over partial alignment
scores. A simpler and more effective splitting function, used for all results presented in this paper, is as follows:

1. If one segment interacts with more different segments than any other, split on that segment.
2. Break ties by splitting on the segment that has the most total number of residue interactions.
3. Break the remaining ties by splitting on the segment furthest from any � xed segment.
4. Break the remaining ties by splitting on the segment closest to the middle of the structure.

A second splitting function, also more effective than the original (Lathrop and Smith, 1996), exploits the
lower bound computation to guide the choice of split point. This chooses the segment whose split maximizes
the lowest lower bound of the children, i.e., the maximum over all segments of the minimum over all children
resulting from splitting on that segment of the lower bound of the child. If done at each split, this requires
3m lower bound computations to choose one split point, and is impractical. However, an acceptable static
compromise results from doing the full computation only once, on the very � rst initialization sweep, and
recording in a table the order in which segments were chosen to be split. Thereafter, splits are chosen by
looking up the next split segment in the recorded table.

2.2. Implementation and hardware

The algorithm is implemented in Common Lisp. The results below were obtained on a 110-MHz
SPARCstation 5 desktop workstation. For very large problem sizes the choice of algorithm completely dom-
inates the choice of programming language or machine hardware as an in� uence on search speed.

2.3. Data sets, objective function, run conditions

The algorithm was run using the previously published objective function and threading paradigm of Bryant
and Lawrence (1993). Data sets were taken from Lathrop and Smith (1996), Rost et al., (1997), and a SCOP
(Murzin et al., 1995) core domain database. The data set of Lathrop and Smith (1996) has 60 sequences (length
to 478 residues) and 60 cores (of 3 to 23 core segments) yielding search space sizes up to 9.4 £ 1031 . The data
set of Rost et al. (1997) has 16 sequences (length to 224 residues) and 16 cores (of 4 to 19 core segments)
yielding search space sizes up to 2.1 £ 1022 . In the SCOP (Murzin et al., 1995) core domain database the � ve
largest cores (39 to 42 core segments) were run against all 473 sequences (length to 793 residues) yielding
search space sizes up to 2.1 £ 1059 .

The algorithm was run to a proven global optimum on every trial in the data sets of Lathrop and Smith
(1996) and Rost et al. (1997). On the sequences and cores from SCOP (Murzin et al., 1995) the algorithm
was stopped after it had generated 100 candidate alignments beyond the current anytime best without either
improving its score or proving it optimal. Consequently, every anytime best in the data sets of Lathrop and
Smith (1996) and Rost et al. (1997) is a true global optimum (proven), while many anytime bests in the SCOP
largest cores data set are only putative (not guaranteed).

Other trials were run to compare the algorithm’s behavior across different objective functions, as well as to
compare the anytime branch-and-bound performance to the previous batch branch-and-bound (Lathrop and
Smith, 1996). The algorithm was run on the data set of Lathrop and Smith (1996) using two other previously
published objective functions (White et al., 1994; Sippl, 1993). These objective functions, as well as that of
Bryant and Lawrence (1993), have been characterized previously on this data set (Lathrop and Smith, 1996).

2.4. Implementation-independent metrics of search ef� ciency

The most important measure of search algorithm ef� ciency is the number of elapsed seconds, since this
is how long we must wait for an answer. However, it is convenient to have other measures for algorithm
comparison that are implementation independent.
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Let S be the size of the search space and L be the number of primitive objective function or lower bound
evaluations. Let the subscript “Exh” mean exhaustive search and “Alg” mean the search algorithm being
compared. Below, “Alg” will be further specialized so that “Any” means the point at which the � nal anytime
best was encountered and “Lim” means the point at which search was abandoned.

2.4.1. Branching factor. Suppose a uniform search tree of branching factor b and depth d , then there
are bd leaf nodes. For exhaustive search, bd D S and d D m , so the branching factor for exhaustive search is
bexh D S1/ m D m

p
S. The equivalent branching factor for the algorithm (Pearl, 1984) is balg D L 1/ m

alg D m
p

L alg .

2.4.2. Search depth. Recent experimental results (Korf and Reid, 1998) suggest that perhaps the branching
factor remains unchanged at bexh , and that heuristic search instead reduces the effective search depth. In this
case the search depth for exhaustive search is dexh D log S/ log bexh D m , and dalg D log L alg/ log bexh .

2.4.3. Probability of success. Let P be the probability per draw without replacement of guessing the
optimal in one blind guess. Then Pexh D 1/ S and Palg D 1/ L alg .

3. RESULTS

The results below are adapted from a preliminary presentation in Lathrop (1999).
Figure 2A shows a histogram of the rank of the � nal anytime best in the list of candidates. The rank is 1 if it

was the � rst candidate produced, 2 if the second, and so forth. Figure 2B shows a histogram of the maximum

FIG. 2. Final anytime best rank and maximum D rank. (A) Histogram of the rank in the enumerated candidate alignments
at which the � nal anytime best was found. (B) Histogram of the maximum change in the rank of the current anytime best
at any time during the search. In both histograms, black is the data set of Lathrop and Smith (1996), horizontal stripes is
Rost et al., (1997), and white is the � ve largest cores from the SCOP domain database (Murzin et al., 1995). For Lathrop
and Smith (1996) and Rost et al. (1997) the � nal anytime best was proven to be the global optimum; for SCOP (Murzin
et al., 1995) search was abandoned after 100 candidates were enumerated without improvement.
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FIG. 3. log10 total seconds to � nal anytime best. (A) The � ve largest cores from the SCOP data set (Murzin et al., 1995).
(B) The data set of Rost et al. (1997). (C) The data set of Lathrop and Smith (1996). In all graphs the x -axis is the log10 of
the search space size. The dashed line corresponds to 5 min. The runs correspond to Fig. 2. For each search, an “x” marks
the log10 of the total number of seconds to the � nal anytime best. In (A), an “L” marks the log10 of the number of seconds
at which search was abandoned if the � nal anytime best was not proven globally optimal (after 100 candidates without
change). Absence of an “L” implies that proof of global optimality was obtained. The point corresponding to (32.6, 4.2)
is a performance outlier in which the “x” is obscured by “L”s. In (B) and (C) search was always continued until the � nal
anytime best was proven to be globally optimal.

D rank observed. The D rank is the rank of the current anytime best minus the rank of the previous anytime
best that it replaced. That is, it is the number of candidates enumerated from one change of the anytime best
to the next.

Figure 3 shows the total elapsed clock seconds until the � nal anytime best was produced vs. the search
space size, on log10–log10 axes (dashed line D 5 min). In Fig. 3A an “L” marks the time at which search was
abandoned if the global optimum was not proven. In Fig. 3B and C the search was always continued until
the global optimum was proven. Here it produced the true global optimum as its anytime best within 5 min
of total elapsed time (dashed lines), although of course to produce the proof of optimality required additional
time.

Figure 4 shows how measures derived from Figs. 2 and 3 depend on search space size. Figure 4A shows the
rank of the � nal anytime best, and Fig. 4B shows the maximum D rank observed. Figure 4C shows the total
elapsed seconds/ m 2ñ2, i.e., the total time divided by the formal complexity of the lower bound calculation,
which is (m 2ñ2).

Figure 5 shows the implementation-independent metrics of search ef� ciency described above, with exhaus-
tive search compared to branch-and-bound. Figure 5A shows the branching factor b, Fig. 5B shows the search
depth d , and Fig. 5C shows the probability of success per draw P.

Tables 1 and 2 provide detailed analyses of the � ve largest SCOP cores against the � ve longest SCOP
sequences. Note that in approximately half (13/ 25) of the cases shown, the � nal anytime best was obtained
in 15 min or less total elapsed time.
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FIG. 4. Search space size dependencies. (A) Rank of � nal anytime best; the points correspond to Fig. 2A with all data
sets pooled. (B) Maximum D rank; the points correspond to Fig. 2B with all data sets pooled. (C) log10 [total seconds to
� nal anytime best/ (ñ2m2)]; the points correspond to Fig. 3 with all data sets pooled and divided by the formal lower bound
complexity, (m2 ñ2 ). In all graphs, the x -axis is the log10 of the search space size. The point at x D 32.6 corresponds to
the performance outlier (32.6, 4.2) in Fig. 3A. By coincidence, its maximum D rank was 100, numerically equal to the
D rank cut-off for abandoning the search.

Table 3 compares the three data sets across the same objective function, and three different previously
characterized objective functions across the same data set. It provides mean rank and mean maximum change
in rank of the anytime best, as well as slopes and intercepts of the best-� tting regression line to the log–log
plot of elapsed time vs. search space size. Relative objective function dif� culty, as measured by the slope of
the regression line, is the same for the anytime best time, the anytime proof time, and the batch proof time.
However, the slope for the anytime best is consistently less than the slope for the proofs.

4. DISCUSSION

The anytime branch-and-bound or best-� rst approach above has several useful characteristics. It appears to
return the global optimum quickly in many but not all realistic cases. It can return good approximate alignments
quickly when in an early exploratory mode, then later lock those in with more effort when a predictive effort is
in its � nal stages. It has a user-adjustable space bound that permits space to be traded for time in a controllable
way. Because the search space is explicitly represented and sampled without replacement, it never returns the
same candidate twice.

It is plausible that many of the putative results on the SCOP trials marked “L” in Fig. 3A, for which the
anytime best was not proven to be the global optimum, indeed eventually would be proven to be the global
optimum if the program were allowed to run suf� ciently long. They share many gross characteristics with the
proven global optima in the smaller trials: their ranks, D ranks, search times, branching factors, search depths,
and probabilities per draw are comparable. Indeed, the search was continued to the proof of global optimality
on both the largest trial of Table 1 (No. 25, 1bgw vs. 1tsp) and the performance outlier of Fig. 3A (32.6, 4.2).
In both cases the anytime best shown eventually was proven to be globally optimal, though the proof in the
case of 1bgw vs. 1tsp required over 15 days of computer time (data not shown).
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FIG. 5. Implementation -independent metrics of search ef� ciency. (A) log10 equivalent branching factor, bexh and bany .
(B) Equivalent search depth, dexh and dany . (C) log10 equivalent probability of success per draw, Pexh and Pany . In all
graphs, the x -axis is the log10 of the search space size. The � nal anytime best (any) is marked by “x” and exhaustive
search (exh) is marked by “o.” The points correspond to Figs. 2 and 3, with all data sets pooled. Points with x > 32
correspond to the large SCOP cores; their exhaustive search values separate because m is larger than in other data sets.
The y-axis metrics are de� ned in the text. In (C), “o” follows y D ¡x and is truncated at y D ¡10 as uninformative.

It would be premature to conclude that the global optimum is known in any unproven case with certainty,
or even with high probability. The point (32.6, 4.2) in Fig. 3A and Fig. 4 indicates that occasional extreme
performance outliers may occur in realistic data (the heavy-fail phenomenon). Any approximate algorithm
returns only the best results that could be found with limited search effort. Without a proof, it can never be
guaranteed that the returned alignments are globally optimal.

Finally, the basic ideas above should apply to related divide-and-conquer algorithms. For example, both
the generalization of this paper to gaps anywhere, and the divide-and-conquer method of Xu and Uberbacher
(1996; Xu et al., 1998) might be adaptable to an anytime control architecture.

APPENDIX A. PSEUDO-CODE

This Appendix gives pseudo-code for the control architecture described above.

A.1. Opportunistic mode pseudoprobabilit y formulas

These formulas compute a crude heuristic approximation of the probability that a given hyper-rectangle
contains a threading that will score better than the worst-scoring of the current best K candidates. Although
probabilistic terminology is used for convenience, the resulting quantity is not really a probability in any
meaningful sense of the word; it is just a search control heuristic.

A.1.1. Update. When a hyper-rectangle is split, the update() function is called once for each resulting
child. Lb-old and Q-ndx-old are the lower bound and queue index of the parent; Lb-new and Q-ndx-new

are the lower bound and queue index of the child. Arrays are initialized to zero.
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TABLE 1. SCOP FIVE LARGEST SEQUENCES VS. FIVE LARGEST CORES: SEARCH RANKS AND TIMES

Seq Core Rank Rank Max Sec Sec Threadings
No. Seq Core Len Segs Size Lim Any D rank Lim Any per Sec Any

1 1iphA2 1lci 597 36 9.2dC42 104 4 1 74298 348 2.7dC40
2 1vnc 1lci 609 36 4.0dC43 103 3 2 84809 375 1.1dC41
3 1iphA2 1cxsA2 597 42 5.1dC43 108 8 1 27221 393 1.3dC41
4 1cxsA2 1lci 625 36 2.6dC44 107 7 1 39013 486 5.3dC41
5 1vnc 1cxsA2 609 42 5.5dC44 135 35 25 47310 8360 6.6dC40
6 1iphA2 1oen 597 39 9.5dC45 104 4 3 49661 386 2.5dC43
7 1cxsA2 1cxsA2 625 42 1.1dC46 107 7 1 54124 419 2.6dC43
8 1vnc 1oen 609 39 4.5dC46 107 7 1 66278 663 6.8dC43
9 2sblB1 1lci 690 36 2.0dC47 107 7 3 38049 931 2.1dC44

10 1cxsA2 1oen 625 39 3.3dC47 107 7 3 36084 761 4.3dC44
11 1iphA2 4aahA 597 39 4.4dC49 109 9 4 32840 1878 2.3dC46
12 1iphA2 1tsp 597 40 1.5dC50 111 11 5 36473 1850 8.1dC46
13 1vnc 4aahA 609 39 1.7dC50 107 7 4 32091 875 1.9dC47
14 2sblB1 1cxsA2 690 42 3.0dC50 107 7 1 59142 543 5.6dC47
15 2sblB1 1oen 690 39 4.0dC50 116 16 10 27639 2686 1.5dC47
16 1vnc 1tsp 609 40 7.9dC50 113 13 4 42485 1820 4.3dC47
17 1bgw 1lci 793 36 8.5dC50 129 29 1 83361 10535 8.1dC46
18 1cxsA2 4aahA 625 39 9.6dC50 109 9 1 29742 1343 7.2dC47
19 1cxsA2 1tsp 625 40 6.5dC51 103 3 2 61700 445 1.5dC49
20 2sblB1 4aahA 690 39 5.3dC53 107 7 3 55726 873 6.1dC50
21 1bgw 1oen 793 39 3.2dC54 111 11 2 42168 3568 8.9dC50
22 2sblB1 1tsp 690 40 1.3dC55 111 11 3 80361 2475 5.2dC51
23 1bgw 1cxsA2 793 42 6.2dC55 103 3 2 62434 815 7.6dC52
24 1bgw 4aahA 793 39 1.9dC57 107 7 2 36534 2621 7.4dC53
25 1bgw 1tsp 793 40 2.1dC59 105 5 4 171377 1369 1.5dC56

The entries correspond to some search space sizes above 1040 in the � gures. Seq and Core are identi� ers in the SCOP (Murzin et al.,
1995) core domain database. Seq Len is the sequence length, Core Segs is the number of core secondary structure segments, and Size is
the resulting search space size. Rank Lim is the total number of candidate alignments that were enumerated before search was abandoned
(100 candidates beyond the � nal anytime best without improvement). Rank Any is the rank of the � nal anytime best in the list of candidate
alignments. Max D rank is the maximum amount by which the rank of the current anytime best changed during the search. Sec Lim is
the total number of seconds at which the search was abandoned. Sec Any is the total number of seconds at which the � nal anytime best
candidate was found. Threadings per SecAny is the ratio of Size to Sec Any.

PARAMETER MAX-Z-DELTA 2.0;

PARAMETER MAX-DECAY 0.95;

GLOBAL VARIABLE Total-Counts[m C 1];

GLOBAL VARIABLE Update-Counts[m C 1];

GLOBAL VARIABLE Decay[m C 1];

GLOBAL VARIABLE Mean[m C 1];

GLOBAL VARIABLE Var[m C 1];

DEFINE update(Init, Lb-old, Q-ndx-old, Lb-new, Q-ndx-new) BEGIN

IF (Q-ndx-new = Q-ndx-old + 1) THEN BEGIN

Total-Counts[Q-ndx-old] Ã Total-Counts[Q-ndx-old] + 1;

Delta Ã Lb-new - Lb-old;

IF (0 < Var[Q-ndx-old])

THEN Z-Delta Ã (Delta - Mean[Q-ndx-old]) / sqrt(Var[Q-ndx-old]);

ELSE Z-Delta Ã 0;

WHEN (Z-Delta < MAX-Z-DELTA) OR (Var[Q-ndx-old] < 1) OR (Init = TRUE)

DO update-one(Q-ndx-old, Delta);

END

END
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TABLE 2. SCOP FIVE LARGEST SEQUENCES VS. FIVE LARGEST CORES: SEARCH METRICS

LBEvals LBEvals B B B D D D P P P
No. Lim Any Exh Lim Any Exh Lim Any Exh Lim Any

1 197139 302 3.299 1.158 1.071 36.00 4.44 2.08 1.1d¡43 5.1d¡06 3.3d¡03
2 194519 203 3.357 1.158 1.066 36.00 4.37 1.91 2.5d¡44 5.1d¡06 4.9d¡03
3 224813 1832 2.831 1.136 1.081 42.00 5.14 3.14 2.0d¡44 4.4d¡06 5.5d¡04
4 198574 751 3.434 1.159 1.083 36.00 4.29 2.33 3.9d¡45 5.0d¡06 1.3d¡03
5 294197 61963 2.902 1.139 1.121 42.00 5.13 4.50 1.8d¡45 3.4d¡06 1.6d¡05
6 214193 310 3.251 1.146 1.066 39.00 4.52 2.11 1.1d¡46 4.7d¡06 3.2d¡03
7 236079 1447 2.992 1.136 1.078 42.00 4.90 2.88 9.2d¡47 4.2d¡06 6.9d¡04
8 218064 1816 3.308 1.147 1.087 39.00 4.46 2.72 2.2d¡47 4.6d¡06 5.5d¡04
9 193782 2045 3.720 1.158 1.096 36.00 4.02 2.52 5.1d¡48 5.2d¡06 4.9d¡04

10 222733 2339 3.382 1.147 1.090 39.00 4.39 2.77 3.0d¡48 4.5d¡06 4.3d¡04
11 229792 6813 3.571 1.147 1.103 39.00 4.21 3.01 2.3d¡50 4.4d¡06 1.5d¡04
12 235039 11260 3.506 1.144 1.107 40.00 4.28 3.23 6.7d¡51 4.3d¡06 8.9d¡05
13 221930 2307 3.625 1.147 1.090 39.00 4.15 2.61 5.9d¡51 4.5d¡06 4.3d¡04
14 239789 933 3.326 1.137 1.073 42.00 4.48 2.47 3.3d¡51 4.2d¡06 1.1d¡03
15 242576 19763 3.660 1.148 1.116 39.00 4.15 3.31 2.5d¡51 4.1d¡06 5.1d¡05
16 223263 11192 3.570 1.143 1.107 40.00 4.20 3.18 1.3d¡51 4.5d¡06 8.9d¡05
17 244355 45157 4.115 1.161 1.138 36.00 3.81 3.29 1.2d¡51 4.1d¡06 2.2d¡05
18 224346 6442 3.696 1.147 1.103 39.00 4.09 2.91 1.0d¡51 4.5d¡06 1.6d¡04
19 223020 217 3.652 1.143 1.060 40.00 4.13 1.80 1.5d¡52 4.5d¡06 4.6d¡03
20 218943 571 3.965 1.147 1.073 39.00 3.88 2.00 1.9d¡54 4.6d¡06 1.8d¡03
21 217685 10333 4.045 1.147 1.108 39.00 3.82 2.87 3.1d¡55 4.6d¡06 9.7d¡05
22 236442 6907 3.966 1.144 1.101 40.00 3.90 2.79 7.7d¡56 4.2d¡06 1.4d¡04
23 231206 236 3.775 1.136 1.058 42.00 4.04 1.79 1.6d¡56 4.3d¡06 4.2d¡03
24 217909 2261 4.345 1.147 1.090 39.00 3.63 2.28 5.2d¡58 4.6d¡06 4.4d¡04
25 222145 445 4.406 1.143 1.068 40.00 3.61 1.79 4.8d¡60 4.5d¡06 2.2d¡03

The entries correspond to Table 1 according to the No. column. LBEvals is the number of lower bound evaluations. B is the branching
factor b, D is the search depth d , and P is the probability of success per draw P , as de� ned in the text. Exh is exhaustive search, Lim
is the point at which search was abandoned, and Any is the � nal anytime best. LBEvals Exh is not shown because it is equal to Size in
Table 1. The notation xdy means x£10y .

TABLE 3. PROBLEM DIFFICULTY ACROSS DIFFERENT DATA SETS AND OBJECTIVE FUNCTIONS

Anybest (all) Anybest (proven) Anytime proof Batch proof
Obi Data Mean Mean
Fcn set rank max D R Slope Interc. Slope Interc. Slope Interc. Slope Interc.

BL-93 SCOP 5.81 2.37 0.03 1.19 0.02 1.34 0.10 0.90 — —
BL-93 Rost 1.20 1.31 0.09 0.06 0.09 0.06 0.11 0.14 — —
BL-93 LS 1.24 1.33 0.09 0.11 0.09 0.11 0.12 0.12 0.13 ¡0.47
WMS-94 LS 3.22 1.73 0.11 ¡0.16 0.11 ¡0.15 0.15 ¡0.23 0.18 ¡0.62
S-93 LS 5.97 2.47 0.13 0.19 0.13 0.15 0.21 ¡0.16 0.24 ¡0.81

Obj Fcn is the objective function used: BL-93 is Bryant and Lawrence (1993), WMS-94 is White et al. (1994), and S-93 is Sippl
(1993). These three objective functions have been characterized previously against the LS data set (Lathrop and Smith, 1996). Mean
rank is the average rank of the anytime best, and Mean max D R is the average maximum change in the anytime best rank, across all
trials. Anybest represents the time at which the anytime best was produced, Anytime proof represents the time at which the anytime
best was proven to be globally optimal, and Batch proof is taken from Lathrop and Smith (1996) and is the time at which the batch
branch-and-boun d algorithm of Lathrop and Smith (1996) both produced and proved the global optimum. (all) indicates that all trials
were included, and (proven) indicates only trials in which the anytime best was proven to be globally optimal were included. Slope and
Interc. are, respectively, the slope and intercept of the best-� tting regression line to the plot of log10 (elapsed seconds) vs. log10 (search
space size). SCOP, Rost, and LS correspond to Fig. 3A, B, and C, respectively.

DEFINE update-one(Q-ndx-old, Delta) BEGIN

Update-Counts[Q-ndx-old] Ã Update-Counts[Q-ndx-old] + 1;

Decay[Q-ndx-old] Ã min (MAX-DECAY,

Update-Counts[Q-ndx-old] / (2 + Update-Counts[Q-ndx-old]);
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Mean[Q-ndx-old]) Ã (Decay[Q-ndx-old] * Mean[Q-ndx-old])

+ ((1 - Decay[Q-ndx-old]) * Delta) ;

Var[Q-ndx-old]) Ã (Decay[Q-ndx-old] * Var[Q-ndx-old])

+ ((1 - Decay[Q-ndx-old]) * (Delta - Mean[Q-ndx-old])2)

* ((max 2, Update-Counts[Q-ndx-old])

/ (max 1, Update-Counts[Q-ndx-old] - 1));

END

A.1.2. Log (pseudoprobabil ity of better score). Log of the pseudo-probability that lower bound Lb at
Q-ndx will eventually produce a score better than X. The function left-normal-tail(X) returns the log of
the area under a normal curve to the left of X, and is based on a formula for the complementary error function
which has a fractional error everywhere less than 1.2 £ 10¡7 (Press et al., 1992).

DEFINE log-p-better(Lb, Q-ndx, X) BEGIN

IF (Lb > X) THEN RETURN(MINUS-INFINITY)

ELSE BEGIN

M Ã V Ã 0;

FOR ndx FROM Q-ndx TO MAX-Q-NDX DO BEGIN

M Ã M + Mean[ndx];

V Ã V + Var[ndx];

END;

IF (V = 0)

THEN IF ((Lb + M) < X)

THEN RETURN(0);

ELSE RETURN(MINUS-INFINITY);

ELSE BEGIN

S Ã sqrt(V);

Z Ã (X - (Lb + M)) / S;

Left-Tail-Z Ã left-normal-tail(Z);

Z-Lb Ã - M / S;

Left-Tail-Z-Lb Ã left-normal-tail(Z-Lb);

END;

END;

RETURN(log(exp(Left-Tail-Z) - exp(Left-Tail-Z-Lb)));

END

A.2. Choose queue

PARAMETER MIN-INIT-SWEEPS 5;

PARAMETER K-BEST-DESIRED 1;

PARAMETER C-MAX-SPACE 100000;

GLOBAL VARIABLE Priority-Queue Q[m C 1];

GLOBAL VARIABLE Priority-Queue AQ[m C 1];

Iter is the total number of lower-bound splits performed so far. N-Queues (D m C1) is the total number of
primary queues Q (also the total number of annihilation queues AQ). The function total-size() returns the
total number of hyper-rectangles in all the queues of its argument. The function highest-occupied-queue()

returns its argument’s highest-numbered queue holding any hyper-rectangles. The function best-queue()

returns its argument’s queue having the highest value of log-p-better(). The function insert() inserts
a hyper-rectangle into its appropriate queue. The function queue-pop() removes and returns the top of its
argument queue. The function queue-empty() returns TRUE if its argument queue is empty, else FALSE.

DEFINE choose-queue(Iter, N-Queues) BEGIN

IF (no current candidates) THEN

RETURN(highest-occupied-queue(Q));
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ELSE IF total-size(AQ) > 0 THEN

RETURN(highest-occupied-queue(AQ));

ELSE IF total-size(Q) > C-MAX-SPACE THEN BEGIN

insert(queue-pop(best-queue(Q)), AQ);

RETURN(choose-queue(Iter, N-Queues));

END

ELSE IF ((number of current candidates < K-BEST-DESIRED)

OR (Iter < N-Queues * MIN-INIT-SWEEPS))

THEN BEGIN

Sweep-Ndx Ã mod(Iter, N-Queues);

IF queue-empty(Q[Sweep-Ndx])

THEN RETURN(best-queue(Q));

ELSE RETURN(Q[Sweep-Ndx]);

END;

ELSE RETURN(best-queue (Q));

END
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