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Abstract—Many biomedical problems relate to mutant functional properties across a sequence space of interest, e.g., flu, cancer, and

HIV. Detailed knowledge of mutant properties and function improves medical treatment and prevention. A functional census of

p53 cancer rescue mutants would aid the search for cancer treatments from p53 mutant rescue. We devised a general methodology

for conducting a functional census of a mutation sequence space by choosing informative mutants early. The methodology was tested

in a double-blind predictive test on the functional rescue property of 71 novel putative p53 cancer rescue mutants iteratively predicted

in sets of three (24 iterations). The first double-blind 15-point moving accuracy was 47 percent and the last was 86 percent; r = 0.01

before an epiphanic 16th iteration and r = 0.92 afterward. Useful mutants were chosen early (overall r = 0.80). Code and data are freely

available (http://www.igb.uci.edu/research/research.html, corresponding authors: R.H.L. for computation and R.K.B. for biology).

Index Terms—Biology and genetics, feature extraction or construction, machine learning, medicine and science.
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1 INTRODUCTION

MUTATIONS and their functional effects drive evolution,
drug resistance, genetic disorders, viral evasion of the

immune system, and other important biomedical processes.
In pharmacogenomics [1] and drug resistant HIV [2], [3],
[4], detailed knowledge of functionally important mutations
leads directly to better patient treatment. In flu [5], knowl-
edge of important mutations leads directly to better disease
prevention, by way of better vaccine design. In cancer, the
concern of this paper, the effect of functionally important
mutations causes the disease.

Medical practice is often advanced by knowing mutant
functional properties across a mutation sequence space of
specific interest. One difficulty is that mutation spaces grow
to be combinatorially large, while experimental time and
resources remain bounded. Computational analysis is
challenging because subtle effects on structure and function
result in broad and diverse changes.

1.1 p53 Overview

Cancer is caused by the accumulation of genetic mutations
in two critical regulatory pathways: normal cell growth and

programmed cell death (apoptosis). Defects in the cell

growth pathway can result in uncontrolled cellular pro-

liferation. Tumor suppressor proteins such as p53 normally

trigger apoptosis in affected cells and destroy the tumor.
p53 exerts its tumor suppressor activity mainly as a

transcription factor that induces cell cycle arrest, apoptosis,

DNA repair, and/or senescence. It is stabilized and

activated in response to cell stress by a complicated series

of posttranslational modifications [6], [7], [8], [9]. Activated

p53 suppresses tumors through one of the following

mechanisms:

1. Induction—p53 directly targets and induces genes
with tumor suppressor functions [10], [11]. There are
approximately 100 known genes with p53 binding
sites [12] and several hundred genes are directly or
indirectly upregulated by activated p53 [13], [14].

2. Repression—p53 also represses the expression of
genes. As most of the repressed genes lack a distinct
p53 binding site, the mechanism is currently
unknown [15].

3. Nontranscriptional Mechanisms—p53 translocates
to the mitochondria in response to DNA damage
and causes cytochrome c release [16], [17].

p53 mutations that disrupt these mechanisms are

complicit in human cancers. The International Agency for

Research on Cancer (IARC) TP53 Mutation Database1 (R10)

lists 21,588 p53 mutations found in human cancer patients

[18]. Seventy-one percent of the entries (15,387) result in

full-length protein with a single amino acid change in the

DNA binding p53 core domain. The top eight mutants
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account for 30 percent and the top 50 account for 54 percent
of these single amino acid change mutants [19].

The structure of full-length wild-type p53 is unknown,
but the crystal structure of the core domain [20], in
conjunction with biophysical and NMR studies [21], [22],
[23], has made it possible to construct homology models.
p53 has 393 amino acids and three important domains: an
amino-terminal transactivation domain, a core domain
consisting of amino acids 96-292 which recognizes p53
DNA binding sites, and a carboxy-terminal tetramerization
domain [24], [25], [26], [27], [28].

1.2 Novel Cancer Treatments and p53 Functional
Rescue

A long-held medical goal for anticancer therapy is achiev-
ing functional rescue of p53 cancer mutants by stabilizing
the wild-type conformation, thereby activating apoptosis in
cancerous cells and shrinking or killing the tumor. Several
promising drug-like small molecules have been identified
[29], [30], but their mechanisms of action and their spectra
of activity are not known. This has led to intense scientific
interest in the basic mechanisms of p53 functional rescue.

1.2.1 p53 Cancer Rescue Mutants

We established the existence of global functional rescue
mechanisms for p53 cancer mutants [31] through studies of
intragenic second-site suppressor mutations that restore
native p53 function (“cancer rescue,” “cancer suppressor,”
among other names). Surprisingly, a second-site p53
suppressor mutation can cooccur with a p53 cancer
mutation such that functional effects cancel and the double
mutant protein has normal p53 function.

A search for such suppressor mutations resulted in
identification of a “global suppressor motif” involving core
domain amino acids 235, 239, and 240 [32]. Specific amino
acid changes of one or more of these restored p53 function
to 16 of 30 of the most common p53 cancer mutants tested.

1.2.2 Terminology

In this paper, the terms active and inactive are used to
describe mutant functionality. In other literature, an active
mutant may be referred to as a “functional,” “positive,” or
“rescued” mutant and an inactive mutant may be referred
to as a “nonfunctional,” “negative,” or “cancer” mutant.

1.3 Computational Approaches to p53

The p53 mutant classification problem is to predict whether
a given set of amino acid changes to the p53 core domain
results in an active p53 protein or not. It is a difficult
problem because the p53 protein is marginally stable at
physiological temperature (37�C). p53 cancer mutants can
be destabilized by only a few kcal/mole [33]. Some p53
mutants are inactive at human physiological temperature
(37�C), but regain activity at 30�C. It is a substantial
challenge to predict mutant functional activity from
sequence when it depends crucially upon such subtle
nuances.

The first, and previously the only, systematic integrated
computational analysis of p53 mutation data and structural
effects was made by Martin et al. [34]. They correlated
mutations in the IARC database [18] with structural and

evolutionary features, but did not make predictions or
consider mutant phenotypic function. In 34 percent of
distinct cancer mutations, their analysis was able to find
identifiable underlying structural changes that might be
expected to affect protein folding or protein-DNA contacts,
based on secondary structure, hydrogen bonding, backbone
torsion angles, and solvent accessibility. Possibly explain-
able changes rose to 56 percent by including substitutions of
amino acids that are 100 percent conserved across many
species.

While their results are impressive, they highlight the
difficult case of p53. Two-thirds of all distinct p53 cancer
mutants lack even a single putative explanation in terms of
identifiable underlying structural changes and nearly half
have no putative explanation whatsoever.

2 A THEORY OF COMPUTATION ASSISTING

EXPERIMENTALISTS TO PURSUE FUNCTION

A functional census of p53 cancer and suppressor mutations
means a catalog of the functional effect of each mutation. The
census assigns active or inactive labels to every mutant, by
experimental determination or computational prediction.

Initially, experimental work would focus on selective
screens in relevant regions of the p53 core domain, where
most mutations that inactivate p53 occur. Hits from the
screens would provide an initial training set for computa-
tional predictors of mutant p53 activity. The result of tested
computational predictions would be a larger pool of known
mutants with experimental activities. The larger training set
would yield more accurate computational predictors,
leading to a repeating cycle of improving predictions and
experiments. Once the computational predictor was suffi-
ciently accurate, it would be used to guide experimental
work by identifying interesting regions in the p53 sequence.

2.1 Functional Census of Mutation Sequence Space

This section defines procedures for

1. iterated predictions,
2. informative mutant selection,
3. cross-validation, and
4. periodic methodology updates.

2.1.1 Iterated Predictions

Let set Ki be the mutants known to be active or inactive at
step i. Predict Ki with cross-validation using Ki as a training
set. Select a set Xi of unknown mutants as described below
in Section 2.1.2. Predict Xi blindly using Ki as a training set,
and record the predictions. Determine functions for Xi
experimentally and score the recorded predictions. Predict
Ki, Xi, and Ki + Xi with cross-validation using Ki + Xi as a
training set. Finally, let K{i + 1} equal Ki + Xi and advance to
step i + 1.2

2.1.2 Informative Mutant Selection

Active learning is a technique for selecting the most
informative unlabeled examples and was previously used
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successfully for drug discovery and cancer classification [35],
[36], [37]. Here, the most informative mutant is determined by
estimating its impact on classifier accuracy. First, suppose the
unknown mutant is active, rebuild the classifier, and
determine the new cross-validated accuracy on the training
set. Then, suppose the mutant is inactive and repeat. The
maximum increase in the cross-validated correlation coeffi-
cient (CC), for an unknown mutant (m), across both assumed
classes is here called “curiosity” (1), (2).

CCc;t ¼
ðtpc;t � tnc;tÞ � ðfpc;t � fnc;tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðtpc;t þ fpc;tÞðtpc;t þ fnc;tÞðtnc;t þ fpc;tÞðtnc;t þ fnc;tÞ
p ;

ð1Þ

curiositym ¼ max

P
cðCCc;tþmðactiveÞ � CCc;tÞ;P
cðCCc;tþmðinactiveÞ � CCc;tÞ

� �
: ð2Þ

The CCc;t for a given classifier (c) in the set of all component
classifiers with training set (t) is calculated using the true
positive (tpc;t), false positive (fpc;t), false negative (fnc;t),
and true negative (tnc;t) receiver operator characteristic
(ROC) statistics.

2.1.3 Overlap Exclusion Cross-Validation (OECV)

The usual cross-validation strategies may not be sufficiently
stringent for mutation sequence spaces because the training
set may contain mutants that differ in only trivial ways
(irrelevant mutations) from mutants in the test set. In
OECV, mutants are removed from the training set if they
share more than one mutation with the mutant being
predicted. Thus, no cancer/rescue pair ever occurs in both
training and test sets. Even so, cross-validation can be a
misleading estimator. A major strength of this paper and
methodology is that all predictions are made blindly and
are verified experimentally.

2.1.4 Periodically Update Methodology

During the course of the iterated mutant predictions, new
information will become available about mutant behavior.
This will lead to better theories to describe behavior and
better classifiers to predict function. New information about
mutant behavior is used periodically to update the classifier
and framework (see Fig. 1).

2.2 Molecular Models and Statistical Learning

If molecular models and dynamics (MD) simulations could
predict protein function correctly from one or a few amino
acid changes, then computation would face an easy task.
However, atomic models are not strictly accurate in atomic-
level detail due to structure prediction limitations with
current tools. Current computer simulations cannot accu-
rately predict the functional effects nor definitively predict

the protein structure resulting from even one single key
amino acid change. This is especially so for marginally
stable proteins like p53.

Our hypothesis is that: 1) Atomic models and MD
simulations encode useful information, in the form of weak
trends and tendencies that are partially correlated with
molecular function, even when the molecular models
themselves fail to achieve consistent, reliable, detailed
atomic-level accuracy, and 2) statistical machine learning
methods can extract that information in a useful way.

2.3 This Paper

The goals of this paper are: 1) to demonstrate machine
learning and statistical predictions in synergy with mole-
cular modeling (see Section 2.2) and 2) to perform a double-
blind test of the functional census methodology on p53
cancer rescue mutants (see Section 2.1).

To accomplish the first goal, we constructed molecular
models of all mutants considered in this paper. We
extracted predictive features as described in Section 3.4
and used the features to make the predictions described in
the second goal. As a control, we constructed and optimized
two purely string-based classifiers. They were used to make
the same test predictions, based on the same training
mutants, as for the molecular model-based predictions.

To accomplish the second goal, we began with a training
set of 123 known p53 putative cancer rescue mutants
experimentally determined to contain 52 active and 71 in-
active mutants. These constituted K1, the initial known set.
The test set consisted of 71 novel p53 mutants, selected and
assayed by the Brachmann laboratory. These constituted X1
to X24 and were predicted by 24 iterations of Section 2.1.1 in
groups of three mutants (the last group had two mutants).
The experimentalists first released mutant identities, but
sequestered all other information, including summary
statistics. After each double-blind computational prediction
was made, the corresponding experimental result was
released.

2.3.1 Biological Advance

This paper will demonstrate a general methodology for the
computer-aided functional census of protein mutation
sequence spaces, together with its instantiation on a central
cancer protein. Other groups can use the methodology to
create a functional census for other proteins. For example,
Karchin et al. [38] provide a practical system that automates
the model-building described below. Thus, the techniques
in this paper can be implemented on a large scale using
tools available now. After a functional census has been
achieved for several dozen cancer proteins, we will know a
great deal more about cancer systems biology than we
know now.

2.3.2 Computational Advance

This paper will demonstrate that machine learning and
statistical methods extend the utility of modeling techni-
ques, while atomic modeling methods improve the power
and predictive accuracy of machine learning. This will
advance molecular computation by extending both mole-
cular modeling and machine learning/statistical methods
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Fig. 1. The overall prediction strategy. The in silico predictions drive the

in vitro experiments, which in turn improve the in silico models.



into useful but poorly understood applications to molecular

function.

3 METHODS

A multidimensional view of p53 mutant data is sketched

schematically in Fig. 2.

3.1 A Yeast p53 Functional Assay

The basic yeast p53 functional assay expresses human wild-

type p53 from a CEN plasmid (maintained at one copy per

cell) under the control of the constitutive yeast ADH1

promoter. Wild-type p53 binds to an artificial consensus

p53 DNA binding site and transactivates the URA3 reporter

gene, thus allowing yeast cells to grow on plates lacking

uracil (Uraþ phenotype). The phenotype (active, inactive) is

scored after two to three days at 37�C [31].
Intragenic suppressor mutations were initially screened

for by PCR mutagenesis, followed by gap repair in yeast
[32]. Once codons 239 and 240 were identified as suppressor
codons, a saturation mutagenesis was performed for these
two codons using oligonucleotides. A background muta-
genesis was included for the remaining codons of the
oligonucleotides (225 to 241). Annealed oligonucleotides
were cloned into yeast expression plasmids for common
p53 cancer mutants. The resultant libraries were trans-
formed into the yeast reporter strain and Uraþ colonies
were analyzed [32]. The results of these studies served as
the basis for the training set.

The libraries for the p53 cancer mutants R158L, V173L,
Y205C, Y220C, G245S, and R273H were used to generate a
new test set for computational analysis. Yeast transformants
were generated for each p53 cancer mutant and replica-
plated to plates lacking uracil to determine the Ura-
phenotype. Ura� and Uraþ colonies were selected for each
p53 cancer mutant, single-colony purified and retested for
phenotype. The plasmids were rescued from yeast,
sequenced, and transformed again into the yeast reporter
strain for phenotype confirmation. This resulted in the
isolation of 49 Ura� and 22 Uraþ p53 mutants that were
unique (see Table 4). Thirty-nine Uraþ p53 mutants were
excluded because they had been previously reported.

All plasmids for Y205C contained the spurious mutation

D207V introduced during the library construction. For a

previous study [32], we separated Y205C from D207V and

found that this did not change the observed rescue effects of

suppressor mutations, such as N235K or N239Y. For the

purpose of the current study, we therefore considered

D207V to be a neutral amino acid substitution unlikely to

impact rescue effects of the 235-239-240 rescue region.

3.2 Training and Test Data

Functional assays by the Brachmann laboratory characterized
sets of p53 mutants for suppressor (rescue) properties.
Because 1) all data was generated by one laboratory using
the same assay and 2) results were reconfirmed by replicate
testing, the data set is considered to be reliable and internally
consistent. These data were described in Section 2.3.

3.3 Molecular Models

Machine learning and statistical techniques made the
predictions using features derived from homology-based
atomic models and molecular dynamics simulations.

3.3.1 Molecular modeling and Dynamics

All simulations were performed in the AMBER package [39]
using the wild-type p53 core domain crystal structure [20]
as a template.3 All hydrogen atoms were added by the
AMBER Leap module. The ff99 force field with a recent
revision of the main chain torsion terms [39] was used. The
Zn-binding interface in p53 was calibrated in a previous
study (Lu and Luo, unpublished data). The generalized
Born model [40] was used for solvation. The protein
dielectric constant was set to 1.0. The water dielectric
constant was set to 80.0. All nonbonded interactions were
cut off at 12 Angstroms. The nonbonded list was updated
every 20 steps. All bonds involving hydrogen atoms were
constrained by the SHAKE algorithm [41]. Initial homology
models of p53 mutants were constructed in the AMBER
Leap module. Side chain rotamers of the mutated residue
and closest neighboring residues were optimized by
SCWRL4 [42] to avoid clash. The models were then
subjected to 1,000-step steepest descent minimization [43]
in vacuum.

Unfolding simulations for p53 mutants were performed
with linearly increasing temperature from 40 K to 1,000 K
over 100 picoseconds. The radius of gyration in an
unfolding trajectory was monitored to correlate with
thermodynamic stability. Three molecular dynamics runs
were performed to reduce uncertainty in the trajectories.

3.4 Features

Computational analyses used molecular model-based re-
presentations to create the component classifiers: (1D)
genomic sequence, (2D) surface property maps,
(3D) protein structure distance maps, and (4D) unfolding
trajectories over time. Feature selection was done inside the
cross-validation loop. As a control, two string-based
classifiers also were constructed.

3.4.1 Sequence (1D)

Information about the location of the mutation and the
residue change was used to construct the set of 1D structure
features. Secondary structure information of the mutation
(alpha helix, beta sandwich, etc.) was recorded with its
general location in the p53 core domain (S1, S2, H1, H2).
The residue property change was recorded: polarity, amino
acid substitution, size, charge, aromaticity, hydrophobicity,
and if in a DNA-binding region. Stability predictions from
MUpro5 [44] were also included, resulting in 247 features
per mutant.
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Fig. 2. A multidimensional view of p53 mutant data shows the mutant/

rescue mutant paradigm and the component classifiers used for different

perspectives describing mutant p53.

3. PDB ID: 1tsr. Chain B.
4. http://dunbrack.fccc.edu/SCWRL3.php.
5. http://www.igb.uci.edu/servers/psss.html.



3.4.2 Surface Property Maps (2D)

In its role as “guardian of the genome,” p53 interacts with

many molecules. The 2D surface maps the p53 surface that

is available for molecular interactions and drug binding (see

Fig. 3). The 2D surface property maps were annotated with

surface properties, such as electrostatics or h-bond donor/

acceptor status provided by the electrostatic add-ons to

AMBER 6 by Luo et al. [45]. The molecular surface was

mapped to a sphere, steric and depth information was

recorded, and the sphere was mapped to a plane.
The resulting surface map was subtracted from the wild-

type map and a raw set of 4,883 steric surface map features

and 4,895 electrostatic surface map features was extracted.

A cross-validated mutual information algorithm selecting

the 3,000 most relevant features (selected inside the cross-

validation loop) resulted in the best classifier.

3.4.3 Protein Structure Distance Maps (3D)

A structural mutation perturbs the molecular structure. The

3D distance map is an N�N matrix giving the Cartesian

distance between N residue alpha carbons. It reflects

structural shifts induced by the mutation. The wild-type
distance map is subtracted, leaving a difference map.

The p53 core domain has 197 residues, resulting in a
197� 197 matrix that may be collapsed to a distance vector
giving the magnitudes of the distance changes (Fig. 4). The
resulting 197 length vector map had three features for each
residue, the directional i, j, and k vectors. This resulted in
591 features per mutant.

3.4.4 Heating Simulation (4D)

The thermodynamic stability of a p53 mutant is an
important determinant of cancer. The unfolding of a
molecular model in a simulated heat bath is related to
thermodynamic stability. The 4D data tracks the
3D structure of the molecule over time. For each ps time
step, the radius of gyration averaged across three runs
produced a vector with 99 features per mutant (see Fig. 5).

3.4.5 String-Based Control

A Support Vector Machine (SVM) was used for the string-
based classifiers because SVMs have been found to perform
well on diverse biological data [47]. Two string-based
classifier methods were selected. One, hereafter called
string-match-based, used just k-mer match scores between
sequences [47] and was optimized extensively and used in
the composite classifier as an alternative 1D classifier. The
other, hereafter called string-mismatch-based, used slightly
different k-mer match scores with a mismatch tolerance
parameter [48]. Both were tested with k from 2-5 and the
mismatch tolerance m was tested from 0-1 to see which
produced the highest cross-validated accuracy on the
known data set. Ultimately, a kernel with k = 4 was
selected for the string-match-based method and k = 5 with
m = 0 was selected for the string-mismatch-based method.

3.5 Machine Learning

The WEKA machine learning software6 Support Vector
Machine algorithm [49], [50] was used for 1-4D component
classifiers. The composite classifier was constructed using
an in-house implementation of the Naive Bayes algorithm
[51]. In this implementation, statistics for each of the 1-4D
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Fig. 3. An example of a 2D surface property map. The peaks and valleys

show physical topographies on the surface of the p53 core domain. The

colors indicate electrostatic charge at those positions. Red indicates a

negative charge and blue indicates a positive charge.

Fig. 4. A visualization of a 3D distance map. Each square represents a

residue in the p53 core domain. Squares lighten as a residue moves

further from its wild-type position. In this example, mutations at residues

273 and 239 result in steric changes near residues 275, 281, and 240.

Fig. 5. A 4D unfolding trajectory showing two mutants with obviously

different unfolding patterns.

6. www.cs.waikato.ac.nz/~ml.



component classifiers and all combinations thereof are used
to determine the probability of each classifier correctly
predicting a mutant. Specifically, let A be the event that
mutant m is active, c½i� be the ith component classifier
trained on set t, Ci ¼ c½i�ðmÞ be the prediction of c½i� on m,
and Di ¼ ðC1&C2 . . . &CiÞ with D0 ¼ ðÞ. Then, P ðAjDNÞ, the
Bayesian probability that m is active given the predictions
of the N component classifiers, is estimated as follows (3),
(4), (5), (6):

P ðAjD0Þ ¼ 0:5; ð3Þ

P ðAjDiÞ ¼ P ðAÞ �
P ðCi&Di�1jAÞ
P ðCi&Di�1Þ

¼ P ðAjDi�1Þ �
P ðCijAÞ
P ðCijDi�1Þ

;

ð4Þ

P ðCijAÞ ¼
tpc½i�;t

tpc½i�;tþfnc½i�;t if c½i�ðmÞ ¼ active
fnc½i�;t

tpc½i�;tþfnc½i�;t if c½i�ðmÞ ¼ inactive:

8<
: ð5Þ

P ðCijAÞ estimates the probability of an active or inactive
prediction given an active mutant.

P ðCijDi�1Þ ¼
tpc½i�;t

tpc½i�;tþfnc½i�;t � P ðAjDi�1Þ

þ fpc½i�;t
fpc½i�;tþtnc½i�;t � ð1� P ðAjDi�1ÞÞ if c½i�ðmÞ ¼ active
fnc½i�;t

tpc½i�;tþfnc½i�;t � P ðAjDi�1Þ

þ tnc½i�;t
fpc½i�;tþtnc½i�;t � ð1� P ðAjDi�1ÞÞ if c½i�ðmÞ ¼ inactive:

8>>>>>>><
>>>>>>>:

ð6Þ

P ðCijDi�1Þ estimates the probability that a given compo-
nent classifier makes an active or inactive prediction given
all previous component classifiers. Ultimately, a mutant
with P ðAjDNÞ greater than 0.5 was predicted to be active.

4 RESULTS

This section gives results from 1) the preparatory analysis,
2) the double-blind trials, and 3) the postmortem analysis.

4.1 Preparatory Analysis

Table 1 summarizes the composite classifier on K1, the
initial training set of 123 mutants. Table 2 shows each
component classifier in cross-validated predictions, also on

K1. Table 3 quantifies the correlation between predictions

produced by the component classifiers.

4.2 Double-Blind Trials

Table 4 presents the raw results achieved during the

24 iterations from Section 2.1. Fig. 6 shows accuracies

derived from Table 4. Accuracy is shown for both the

predictions made in each iteration (predicting one group of

three mutants) and for a moving window of 5-iteration

moving average. As expected, prediction accuracy begins

low (47 percent for the initial 15-point moving average) and

climbs throughout the course of the experiment as the most

informative mutants are identified and added to the

training set (86 percent for the final 14-point moving

average).

Table 5 summarizes the predictive accuracy of the

classifier on the double-blind test set. Fig. 7 shows an

ROC curve and Table 6 shows a 2� 2 confusion matrix, for

the predictions shown in Table 4. Fig. 8 shows the curiosity

outlined in Section 2.1.2. As expected, the mutants selected

initially were more informative than those deferred until

later in the process.

4.3 Postmortem Analysis

Table 7 shows the cross-validated accuracy of the final

mutant set (K25) predicting the behavior of different mutant

subsets.

4.3.1 String-Based Control

We repeated the predictions using the same training and test

sets in the same order as shown in Table 4 and Fig. 6 using two

string-based controls (Section 3.4.5) as a direct comparison to

the model-based classifiers (Sections 3.4.1-3.4.4).

Fig. 9 shows the composite prediction accuracy versus

string-match-based and string-mismatch-based prediction

accuracy. While the predictive accuracy of the string-match

based k-mer predictor did increase over time, it was

substantially lower than for model-based features. The

string-mismatch-based classifier accuracy demonstrated no

clear pattern.
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TABLE 1
Cross-Validated Composite Classifier Accuracy

K1 is the initial set of known mutants cross-validated using OECV
(Section 2.1).

TABLE 2
Cross-Validated Accuracy of the Component Classifiers

Accuracies calculated using data set K1.

TABLE 3
Component Classifier Correlations

Correlation between the component classifiers (1D-4D), the string-
match based control and the composite classifier (C) created using
cross-validated K1.



4.3.2 Random Control

A baseline for active learning is established by control trials

wherein mutants are selected randomly. Fig. 10 shows the

prediction progression using active learning (Section 2.1.2)

versus the prediction progression using randomly selected

mutants. Their accuracy increased slightly as more training
data was added, but much less than the curiosity-based
active learning.

5 CLASSIFIER METHODOLOGY IMPROVEMENTS

As discussed in Section 2.1.4, the computational models and
biological experiments synergistically evolve while explor-
ing the mutant space.

5.1 Motivation to Improve 2D Component Classifier

As demonstrated in Section 4.2, the composite classifier
accuracy improved considerably while performing the
iterated predictions. When analyzed in terms of the cross-
validated component classifier accuracy, two trends became
apparent (see Fig. 11). The 1D classifier fell slightly in cross-
validated accuracy from approximately 75.8 percent to
69.1 percent, while the 2D classifier rose in cross-validated
accuracy from 64.2 percent to 72.2 percent.

5.1.1 Surface Evolution by Functional Region

DNA and almost all small molecules bind to p53 around a
promiscuous binding domain [52] on the surface of amino
acids 94-160 and 264-315. The 2D surface was modified so that
regions not in the promiscuous binding region were sampled
at a lower resolution: Each amino acid was reduced to one
surface position feature and one surface electrostatic feature.
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Fig. 6. Prediction accuracy. The diamonds show the prediction accuracy
for each iteration. The triangles show a 5-iteration moving window with
regression lines from points 5-16, 16-24, and 5-24.

TABLE 5
Double-Blind Composite Classifier Accuracies

K1 and X1-X24 are the initial sets of known and unknown mutants
(respectively). K1, X1-X24 (Pre) is a double-blind prediction using K1 to
predict X1-X24. Ky-Kz*, Xy-Xz* are iterated predictions using sets Ky-Kz
to predict iterations Xy-Xz (respectively).

TABLE 4
Predictions Grouped by Cancer Mutant Yeast

Assay is the activity observed at 37�C in Dr. Brachmann’s laboratory.
Prediction is made by the composite classifier outlined in this paper.
Iteration is the iteration in which that mutant was predicted.



Regions within the promiscuous binding domain were

sampled at the resolution described in Section 3.4.2. This

resulted in 4,826 features rather than the 9,778 used during the

iterated predictions (see Section 3.4.2). Several different

feature set sizes were tested using the Weka Mutual

Information algorithm [53] and 400 features yielded the

consistently highest cross-validated accuracy across several

training sets. The regions selected by the Mutual Information
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TABLE 6
A Confusion Matrix for the X1-X24 Predictions

Fig. 8. This figure shows the sum of curiosity values for all component

classifiers (Section 2.1.2) calculated for each of the three mutants

chosen during each iteration of the iterated predictor.

TABLE 7
Cross-Validated Composite Classifier Accuracies

Variables as defined in Table 5. K25, X1-X24 (Post) is the cross-
validated accuracy predicting X1-X24 using K25 where K25 = (K1 + X1-
X24). All trials were cross-validated using OECV (Section 2.1.3).

Fig. 9. A comparison between the composite classifier and the two

string-based classifiers.

Fig. 10. A comparison between the composite classifier runs using
active learning and using randomly selected mutants. The error bars
show one standard deviation across 15 trials.

Fig. 11. Cross-validated component classifier accuracy sampled during
the iterated predictions. The 3D and especially the 1D accuracy fell while
the 2D accuracy improved considerably.

Fig. 7. An ROC curve from the composite classifier predicting X1-X24. A

cutoff of 0.5 is used to determine whether active or inactive is predicted.



algorithm on K25 can be represented visually as shown in

Fig. 12 [54]. Most of the relevant residues cluster around the

DNA binding region or around residue Y103.

5.1.2 New 2D Results

Table 8 shows the cross-validated accuracy for the 2D and

composite classifiers using both the old and new 2D feature

selection techniques.

5.2 Improved Composite Classifier

As per Table 8, a significant improvement in the 2D

component classifier resulted in a small improvement in the

overall composite classifier. To correct this, the composite

classifier outlined in Section 3.5 was modified to weight

more heavily component classifiers that did particularly

well. For each component classifier, the score of correctly

predicting an active (QðAjDiÞ) or inactive (QðIjDiÞ) mutant

is shown in (7) and (8), respectively.

QðAjDiÞ ¼

max
tpc½i�;t

tpc½i�;t þ fpc½i�;t
�

tpc½i�;t þ fnc½i�;t
tpc½i�;t þ fpc½i�;t þ fnc½i�;t þ tnc½i�;t

; 0

� �
;

ð7Þ

QðIjDiÞ ¼

max
tnc½i�;t

tnc½i�;t þ fnc½i�;t
�

tnc½i�;t þ fpc½i�;t
tpc½i�;t þ fpc½i�;t þ fnc½i�;t þ tnc½i�;t

; 0

� �
:

ð8Þ

The final prediction was calculated using (9):

Q ¼
XN
i¼1

½� �QðAjDiÞ � � �QðIjDiÞ�; ð9Þ

where � and � are normalization constants over all

component classifiers predicting active and inactive respec-

tively. A mutant is considered active if Q > 0 (9).

6 DISCUSSION

This paper demonstrated a coordinated computational and

experimental attack on the functional genomics of p53

cancer and suppressor mutants. To our knowledge, it is the

first large-scale attempt to predict the phenotypic functional

rescue of p53 cancer mutants. It showed:

1. A double-blind test of the functional census metho-
dology on p53 cancer rescue mutants (see Section 2.1).
Predictive accuracy rose over the course of the trial
(see Fig. 6) and the more informative mutants were
selected early (see Fig. 8).

2. Machine learning and statistical predictions working
in synergy with molecular modeling (see Section 2.2).
Model-based classifiers outperformed string-based
classifiers in a control experiment (see Fig. 9). The
composite classifier was relatively accurate (over
80 percent) when predicting cancer mutants V173L,
Y205C, and R273H (see Table 4). However, it was
inaccurate on cancer mutants R158L, Y220C, and
G245S. We believe that more informative rescue
mutants can be selected for these cancer mutants and
additional trials are in progress.

It is surprising that the 4D unfolding trajectories lagged

in predictive power since they bear information about

thermostability and p53 is a thermosensitive molecule.

Nonetheless, 1,000 K is very high and 100 ps is very short.

More biologically realistic unfolding regimes may help.
By analyzing the results of each round of predictions,

new information about p53 and a better way to construct

the classifier became available. This information was used

to improve the classifier (see Section 5) and may also aid in

understanding p53.
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Fig. 12. Residues selected by mutual information value. Residues

selected for just their electrostatic components appear in red, steric

features appear in blue, and both steric and electrostatic features

appear in magenta. The DNA binding region is frequently selected and

therefore inferred to be important. Some less frequently selected

residues cluster around residue Y103 on the other side of the protein

(data not shown).

TABLE 8
Results of Methodology Improvements

Cross-validated accuracy for methodological improvements predicting
the 194 mutants in K25. The Old 2D feature selection outlined in Section
3.4.2 used 3000 features, while the New 2D feature selection shown
here used 400 features. The New Composite is outlined in Section 5.2.



6.1 Implications

The biological advance is a general method to catalog
mutation sequence spaces across important proteins of
medical interest, which may eventually extend to medical
knowledge of entire pathways and networks. The computa-
tional advance is a method whereby robust statistical
methods applied to noisy, biased, imperfect molecular
models help experimentalists to pursue function in areas
where, previously, the techniques were believed not to apply.

The broad goal is a comprehensive census of the
functional rescue of p53 cancer mutants by second-site
suppressor mutations. A functional census of suppressor
mutations for p53 cancer mutants will significantly further
our knowledge of p53 rescue mechanisms. Knowledge of all
regions of the p53 core domain that improve stability when
altered will provide guidance in choosing possible docking
sites for small molecules.

The methodology generalizes to other mutational sys-
tems where mutants can be classified as active or inactive.
Computational classifiers that predict mutant function will
allow experimentalists to map structure/function relation-
ships for proteins in other mutation-related diseases.

6.2 Conclusion

Central to the goal of cancer treatment by p53 functional
rescue is better knowledge of p53 rescue mechanisms.
Intragenic suppressor mutations pinpoint key regions of the
p53 core domain that may be modified to increase stability
of or restore binding domains in the p53 protein. This gives
a validated point of control that restores native p53 function
and identifies the cancer mutants that are amenable to
functional rescue and, thus, the most likely drug targets.
Our long-term goal is to exploit these findings for the
design of drug compounds that can restore p53 function
and preliminary small molecule studies are underway with
our collaborators.
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