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1. Introduction

We develop broadly applicable methods for learning flexible models of high-dimensional
data, like images, that are paired with (discrete or continuous) labels. We are particularly
interested in semi-supervised learning (SSL) (Zhu, 2005; Oliver et al., 2018) from data that
is sparsely labeled, a common situation in practice due to the cost or privacy concerns
associated with data annotation. Given a large and sparsely labeled dataset, we seek a single
probabilistic model that simultaneously makes good predictions of labels and provides a
high-quality generative model of the high-dimensional input data.

Prior approaches for semi-supervised learning of deep generative models include variational
autoencoders (VAEs) (Kingma et al. (2014)), generative adversarial networks (GANs) (Du-
moulin et al., 2017; Kumar et al., 2017), normalizing flows (Nalisnick et al., 2019; Izmailov
et al., 2020) and hybrids of these (Larsen et al., 2016; de Bem et al., 2018; Zhang et al.,
2019). We favor VAEs due to their ability to learn low-dimensional representations with high
predictive accuracy and their ability to evaluate a learned probability density function.

We have three key contributions. First, we expose the conceptual and practical deficiencies
of SSL VAEs built on the M2 approach of Kingma et al. (2014). Second, to address these
limitations we provide a new downstream SSL framework – prediction constrained variational
autoencoders (PC-VAEs) – which learns high-quality generative models while simultaneously
enforcing accurate predictions. Third, we show that the generative model structure leads to
a natural consistency constraint vital for effective semi-supervised learning from very sparse
labels. Our experiments demonstrate that consistent prediction-constrained (CPC) VAE
training leads to accuracy competitive with state-of-the-art SSL methods and integrates well
with generative modelling improvements such as “very-deep” VAEs (Child, 2021).

2. Background: Semi-supervised VAEs

We now describe VAEs as deep generative models and review previous methods for SSL of
VAEs. SSL tasks provide two training datasets: an unsupervised (unlabeled) dataset DU
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of N feature vectors x and a supervised (labeled) dataset DS containing M pairs (x, y) of
features x and label y ∈ Y. Labels are often very sparse (M � N).

The variational autoencoder (Kingma and Welling, 2014) is an unsupervised learning
framework with two components: a generative model and an inference model. The generative
model defines for each example a joint distribution pθ(x, z) over “features” (observed vector
x ∈ RD) and “encodings” (latent vector z ∈ RC). The VAE “inference model” defines
an approximate posterior qφ(z | x), which is trained to be close to the true posterior
(qφ(z | x) ≈ pθ(z | x)) but easier to evaluate:

pθ(x, z) = N (z | 0, IC) · F(x | µθ(z), σθ(z)), qφ(z | x) = N (z | µφ(x), σφ(x)). (1)
The likelihood F is often multivariate normal, where (deterministic) functions µθ and σθ
define the mean and covariance via parameters θ. Given x, the posterior of z is approximated
as normal with mean µφ and (diagonal) covariance σφ. Here, φ may parameterize multi-layer
perceptrons (MLPs), convolutional neural networks (CNNs), or other (deep) neural nets.

We would ideally learn generative parameters θ by maximizing the marginal likelihood
pθ(x), integrating over z. As this is intractable, we instead maximize a variational bound:
maxθ,φ

∑
x∈D LVAE(x; θ, φ), where,

LVAE(x; θ, φ) = Eqφ(z|x)

[
log pθ(x,z)

qφ(z|x)

]
≤ log pθ(x). (2)

This expectation can be evaluated via Monte Carlo samples from the inference model qφ(z|x).
Gradients with respect to θ, φ can be similarly estimated by the reparameterization “trick”
of representing qφ(z | x) as a linear transformation of standard normal variables (Kingma
and Welling, 2014; Rezende et al., 2014).

2.1. Two-Stage SSL: VAE then Predict

VAEs may be used for SSL via a two-stage “VAE + GLM”. First, train a VAE to maximize
the unsupervised likelihood (2) of all features x (both labeled DS and unlabeled DU ). Second,
fixing φ and using only DS , learn a label-from-code predictor ŷw(z) that maps latent codes z
to prediction scores. Our experiments use a generalized linear model (GLM) with weights w
trained to minimize the cross-entropy loss

∑
x,y∈DS Eqφ(z|x) [`S(y, ŷw(z))].

2.2. SSL of VAEs via Joint Likelihoods

Motivated by limitations of two-stage SSL, Kingma et al. (2014) proposed a VAE-inspired
“M2” model for joint generative modeling of labels y and data x. M2 first generates labels
y with frequencies π, and then features x: pθ(x, y, z) = N (z | 0, IC) · Cat(y | π) · F(x |
µθ(y, z), σθ(y, z)). M2 inference sets qφ(y, z | x) = qφy|x(y | x)qφz|x,y(z | x, y).

To train M2, Kingma et al. (2014) maximize the likelihood of all observations:
max

θ,φy|x,φz|x,y

∑
x,y∈DS LS(x, y; θ, φz|x,y) +

∑
x∈DU LU (x; θ, φy|x, φz|x,y). (3)

Like unsupervised VAEs, Eq. (3) and its gradients may be approximated via samples from
the variational posterior. The first, “supervised” term bounds the feature-and-label joint
likelihood: log pθ(x, y) ≥ LS ,

LS(x, y; θ, φz|x,y) = Eq
φz|x,y (z|x,y)

[
log pθ(x,y,z)

q
φz|x,y (z|x,y)

]
.

2



Consistency-constrained VAEs
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Figure 1: Predictions on half-moon classification (accuracy in corner) for semi-supervised VAE
learning from 6 labeled examples (diamonds) and 994 unlabeled examples. Dots are 2-dim. feature
vectors colored by predicted probability of mostly likely label. Titles indicate encoding size C = 2 or
C = 14. M2 (Kingma et al., 2014) accuracy deterioriates when capacity increases from C = 2 to 14
(drop from 98.1% to 80.6% accuracy). Our CPC-VAE is reliable at any capacity.

The second, “unsupervised” term is a variational bound for the features-only likelihood
log pθ(x) ≥ LU , where LU = Eqφ(y,z|x)

[
log pθ(x,y,z)

qφ(y,z|x)

]
in terms of LS is:

LU =
∑

y∈Y qφy|x(y | x)
(
LS − log qφy|x(y | x)

)
. (4)

M2’s prediction dilemma and heuristic fix. After training parameters θ, φ, we need
to predict labels y given test data x. M2’s structure assumes we make predictions via the
inference model’s discriminator qφy|x(y | x). However, the discriminator’s parameter φy|x is
only informed by the unlabeled data via the objective LU of (4); it is not used to compute
LS . We cannot expect good predictions from a parameter that does not touch labels.

To partially overcome this issue, Kingma et al. (2014) use a weighted objective:

max
θ,φ

∑
x,y∈DS

(
α log qφy|x(y | x) + λLS(x, y; θ, φz|x,y)

)
+
∑

x∈DU LU (x; θ, φy|x, φz|x,y). (5)

This objective pushes the inference model’s discriminator qφy|x(y|x) to do well on the labeled
set via an extra loss term (weighted by hyperparameter α > 0). Weight λ > 0 further
balances supervised and unsupervised terms.

3. CPC Variational Autoencoders

3.1. Prediction Constrained VAEs

We develop a framework for jointly learning a generative model of features x and making
label-given-feature predictions ŷ(x) of uncompromised quality, by requiring predictions to
meet a user-specified quality threshold. Our prediction constrained training objective enables
end-to-end estimation of all parameters while incorporating the task-specific costs relevant
in evaluation (“test”) scenarios, via user-chosen loss functions.

Generative model. Our generative model does not include labels y, only features x
and encodings z. The joint distribution pθ(x, z) and inference model qφ(z | x) factorize as in
the unsupervised VAE of Eq. (1). While M2 included labels in its generative model (Kingma
et al., 2014), our goals are different: we seek to predict labels from features, but do not need
other conditionals.

Label-from-feature prediction. To predict labels y from features x, we sample
encoding z ∼ qφ(z|x) from the inference model and then predict a label ŷw(z) as in the
two-stage method of Sec. 2.1. By sharing latent code z, the generative model is involved in
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predictions. Li et al. (2019) promote the robustness properties of this downstream model
structure, which corresponds to their “GBZ” architecture, but do not explore SSL.

Constrained PC objective. Unlike two-stage models, our approach does not predict
post-hoc with a previously learned generative model. Instead, we train the predictor
simultaneously with the generative model via a novel prediction-constrained (PC) objective:

max
θ,φz|x,w

∑
x∈DU∪DS LVAE(x; θ, φz|x), subj. to: 1

M

∑
x,y∈DS Eqφ(z|x)[`S(y, ŷw(z))]︸ ︷︷ ︸

P(x,y;φz|x,w)

≤ ε. (6)

The constraint requires that any feasible solution achieve average prediction loss less than
ε > 0 on the labeled training set. The loss function `S may be flexibly specified based on
task-specific needs.

Unconstrained PC objective. Using the KKT conditions, we define an equivalent
unconstrained objective that maximizes the likelihood but penalizes inaccurate predictions:

max
θ,φz|x,w

∑
x∈DU∪DS LVAE(x; θ, φz|x)− λ

∑
x,y∈DS P(x, y;φz|x, w). (7)

Here λ > 0 is a Lagrange multiplier chosen to ensure that the target prediction constraint is
achieved; smaller loss tolerances ε require larger values of λ. This PC objective, and gradients
for parameters θ, φ, w, can be estimated via Monte Carlo samples from qφ(z | x).

Justification. While the PC objective of Eq. (7) may look superficially similar to Eq. (5),
we emphasize two key differences. First, it couples a generative likelihood and a prediction
loss via shared variational parameters φz|x. This makes both generative and discriminative
performance depend on the same learned encoding z. In contrast, the M2 objective uses a
label-given-features predictor that does not share any parameters φy|x with the supervised
likelihood LS . Our approach may coherently use any amount of labels (from very sparse to
fully-labeled) to inform the generative model, while fully-labeled M2 decouples the generative
and discriminative models. Second, our objective is more affordable: no term requires an
expensive marginalization over labels (or lossy approximation to avoid this marginalization),
easing applications to big unlabeled datasets and enabling learning from continuous labels.

Hyperparameters. The major hyperparameter influencing PC training is the constraint
multiplier λ ≥ 0. Setting λ = 0 leads to unsupervised maximum likelihood training (or MAP
training, given priors on θ) of a classic VAE. Setting λ = 1 and choosing a probabilistic loss
− log p(y | z) produces a “supervised VAE” that maximizes the joint likelihood pθ(x, y). In
practice we use validation data to select the best of several candidate λ values.

3.2. Improved Predictions via Consistency

While the PC objective is effective given sufficient labeled data (see supplement), it may
generalize poorly when labels are very sparse (see Fig. 1). This fundamental problem arises
because in the PC objective of Eq. (9), the parameters w of the predictor ŷw(z) are only
informed by the small labeled training dataset.

Let x ∼ pθ(· | z′) and x̄ ∼ pθ(· | z′) be two observations sampled from the same latent
code z′. Even if the true label y of x is uncertain, we know that for this model to be useful
for predictive tasks, x̄ must have the same label as x. We formalize this (and dramatically
boost performance) via a consistency constraint requiring label predictions for common-code
data pairs (x, x̄) to approximately match .
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SSL? Gen? Source Method MNIST (100) SVHN (1000) CelebA (1000)

ours CPC-VAE 98.86 (±0.18) 94.22 (±0.62) 86.22
Tab. 1-2 of Kingma et al. M1 + M2 96.67 (±0.14) 63.98 (±0.10) 79.28
Tab. 2 of Maaløe et al. SDGM 98.68 (±0.07) 83.39 (±0.24) 83.56
Tab. 3 of Feng et al. SHOT-VAE 96.88 (±0.22) 71.18 (±0.49) 77.1
Tab. 6 of Joy et al. CCVAE 92.7 (200 labels) - 84.20

Tab. 3-4 of Miyato et al. VAT 98.64 (±0.03) 94.23 (±0.32) 81.48

ours Discrim. 73.91 (±1.45) 87.7 (±1.02) 76.10

Table 1: SSL image classification across methods and datasets, reporting mean test set accuracy (+/-
std. dev.) across 10 runs on distinct random samples of the labeled set; only 1 run is feasible on large
CelebA. Check in first column indicates the method uses both unlabeled and labeled data, not just
the labeled set. Check in second column indicates the method is a generative model. Italicized entries
indicate our own experimental results using the cited methods on the 4-class CelebA task, matching
architectures and preprocessing to our CPC-VAE. For reproducibility details, see supplement.

Given x, we predict labels ŷw(z) via codes z ∼ qφ(z | x). Alternatively, given x we can
simulate alternative features x̄ with matching code z by sampling from the inference and
generative models, and then predict the label for x̄. We force the label predictions y for x,
and ȳ for x̄, to be similar via a (cross-entropy) consistency penalty `C(y, ȳ). We constrain
the maximum consistency violations on unlabeled and labeled data:

CU(x; θ, φ, w) , Eqφ(z|x)

[
Epθ(x̄|z)

[
Eqφ(z̄|x̄) [`C(ŷw(z), ŷw(z̄))]

]]
, (8)

CS(x, y; θ, φ, w) , Eqφ(z|x)

[
Epθ(x̄|z)

[
Eqφ(z̄|x̄) [`C(y, ŷw(z̄))]

]]
.

Consistent PC: Unconstrained objective. To train parameters, we use multiplier γ > 0
to enforce consistency constraints for both unlabeled and labeled features , yielding the
objective:
max
θ,φ,w

∑
x∈DU∪DS LVAE(x; θ, φ)−

∑
x∈DU γCU(x; θ, φ, w) +

∑
x,y∈DS −λP(x, y;φ,w)− γCS(x, y; θ, φ, w),

where L is the unsupervised likelihood bound, P is the predictor loss, and CU , CS are the
consistency costs.

Aggregate label consistency. We further regularize predictions with an aggregate
label consistency constraint, which forces the distribution of label predictions to be close
to a target distribution π (typically, the empirical distribution of DS). This discourages
predictions on unlabeled examples from collapsing to a single value. We define the aggregate
consistency loss as `A(π,Ex∼DU ,z∼q(z|x)[ŷw(z)]), and again use a cross-entropy penalty.

Generative Model Innovations By design, our CPC-VAE may boost SSL performance
by incorporating advances in generative models. Our experiments explore three improvements
to the basic VAE: noise-robust pixel likelihoods, affine transformations for poorly-aligned
data, and “very deep” VAEs with many stochastic layers (Child, 2021). More details about
all these innovations are in the supplement.

4. Experiments

We compare our consistent prediction-constrained (CPC) VAE to baselines on two goals:
useful generative modeling of images x and classification accuracy of y given x. For our meth-
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Figure 2: 2a: Left: Samples from the learned generative model conditioned on class (by column:
neutral woman, neutral man, smiling woman, smiling man). Samples are chosen via rejection sampling
in the latent space with a threshold of 95% confidence in the target class. Right: Reconstructions
of test images. Each pair shows an image and sample sharing only the deepest stochastic layer,
sampling other layers. 2b: Evaluation of class-conditional generation on CelebA. We assess the ability
of generative models (trained with 1000 labels) to produce samples from a target class recognizable
by an independent classifier (discriminative WRN) trained on fully labeled Celeb-A data. For the
CPC-VAE and VAE + GLM models, the label is not a discrete input to the generative model. We
therefore draw class-conditional samples based on label confidence using the following process: (1)
Draw samples from the latent prior p(z), (2) divide according to the prediction made by the latent
classifier ŷw(z), (3) reject a percentage of the samples with the lowest confidence in the predicted
label, (4) reconstruct images from pθ(x|z) using the accepted latent samples. We show the accuracy
of the independent classifier as a function of the rejection rate.

ods, we use encoder/decoder networks based on the WRN-28-2 architecture (Zagoruyko and
Komodakis, 2016) and train with Adam (Kingma and Ba, 2014) using balanced minibatches
of 50% labeled and 50% unlabeled data. Hyperparameter search used Optuna (Akiba et al.,
2019) to maximize validation accuracy. Reproducible details are in the supplement.

Datasets. For the CelebA dataset (Liu et al., 2015) with 1000 labeled and 159,770 unla-
beled images, we predict 4 classes that combine gender (woman/man) and facial expression
(neutral/smiling). We also test SVHN (Netzer et al., 2011) and MNIST (LeCun et al., 2010)

CPC-VAEs improve SSL classification accuracy. In Tab. 1, CPC achieves the top
accuracy (86.22%) among all methods (6 VAEs, 2 discrim.) on CelebA. On SVHN, CPC
also tops the SSL VAEs while matching the non-generative VAT. CPC also is in the top 3 of
all methods on MNIST, less than 0.4% from the leader.

CPC-VAEs generate better images. Because predictive likelihoods may be an
ineffective measure of generative model quality (Theis et al., 2016), we use a reclassifica-
tion paradigm (like Joy et al. (2021)) for assessment of label-informed generative models.
Fig. 2shows that the CPC-VAE, and especially the (very) Deep CPC-VAE, generate images
that are better recognized (by an independent classifier) as examples of the intended class.
Samples and reconstructions from our Deep CPC-VAE are visually plausible (Fig. 2a). See
the supplement for visuals for other models and datasets.
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Appendix A. Code Availability

Code for our methods is available for download here:
https://www.dropbox.com/s/b43xcsnhs5kevue/PC-VAE-REVIEW-RELEASE.zip?dl=1.
It is available for browsing here:
https://anonymous.4open.science/repository/0fa4ef53-5e92-40df-ad0a-bcdab28f6df0/
pcvae/. Code for our very-deep VAE model is forthcoming.

Appendix B. Methods: Very Deep CPC-VAE

For large-scale experiments on complex datasets such as Celeb-A, we employ a variant of the
very-deep VAE proposed by (Child, 2021). This model uses a ladder-VAE (Sønderby et al.,
2016) structure that operates at progressively finer-scales in the generative process. Please
refer to these works for the specifics of the model, here we focus on our modifications to this
architecture.

In the original very-deep VAE, the initial “bottom-up” encoder produces parameters
for the variational posterior of the topmost stochastic layer qφ(z0 | x), while intermediate
outputs from this network are used as ladder connections influencing corresponding variational
distributions for intermediate stochastic layers. Figure 3(left) illustrates this structure, where
dK , . . . , d1, d0 are (deterministic) layer outputs from the bottom up encoder network. We let
K equal the number of intermediate stochastic layers (2 for the simplified model in Fig. 3,
many more in our experiments).

For our very-deep CPC-VAE we modify this structure by splitting the bottom-up encoder
into two separate networks. We retain the ladder-structured bottom up network (parameters
ξ) to influence the approximate posteriors for intermediate layers (qξ(z1|x), qξ(z2|x), . . .). We
do not modify the architecture of this network, but we do not use its final output qξ(z0|x).
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Figure 3: Comparison of the VAE model architecture proposed by (Child, 2021) and the modified
version used by our CPC-VAE, which applies prediction and consistency constraints to z0. Shaded
nodes indicate observed variables, while diamond nodes are deterministic intermediate outputs of
the encoder network. As in (Child, 2021), portions of the network structure are shared between the
encoder and decoder.

Instead we introduce a separate encoder network for qφ(z0|x), with parameters denoted φ.
For this network we use the same WRN architecture employed in our single stochastic layer
VAE experiments. Figure 3 (right) illustrates this modified encoder structure. The generative
model remains unchanged, as it is not influenced by ladder connections. We find that this
model architecture helps encourage consistency that affects the entire generative hierarchy,
leading to higher test accuracy. Note that this change also does not affect the bottom-up
factorization of the variational distribution. As in prior work, p(z) and q(z|x) are factorized
as follows:

pθ(z) = p(z0)pθ(z1|z0) · · · pθ(zK |z<K)),

qφ,ξ(z) = qφ(z0|x)qξ(z1|z0, x)...qξ(zK |z<K , x).

PC-VAE Architecture: For the PC-VAE and CPC-VAE the prediction constraint is
applied only to a subset of the latent variables, specifically those of the topmost stochastic
layer (z0), so that the constraint only affects a small number of global latent variables. With
this structure implicit label information is accessible at every scale in the generative process.
Our (constrained) PC-VAE objective becomes:

max
θ,φz|x,w

∑
x∈DU∪DS

LVAE(x; θ, φz0|x, ξz>0|x,z0), subj. to:
1

M

∑
x,y∈DS

Eqφ(z0|x)[`S(y, ŷw(z0))]︸ ︷︷ ︸
P(x,y;φz0|x,w)

≤ ε.

(9)
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This design simplifies the classification structure and limits over-fitting. Due to the
multi-scale structure of the very-deep VAE, latent variables lower in the hierarchy are highly
localized, making them less suitable as features for predicting global image classes.

CPC-VAE Architecture: When applying our consistency constraint, we follow our
assumption that z0 should fully determine the class of an image and thus we condition
our consistency reconstruction only on the topmost stochastic layer, z0. In practice, this
preserves the global representation relevant to the class label, while allowing consistency
reconstructions to exhibit significant local variations. The distribution for "neighboring"
images x̄ assumed to have consistent class labels is defined as:

pθ(x̄|z0) ∝ pθ(x̄|z≤K)pθ(zK |z<K)...pθ(z1|z0), (10)
qφ,θ(x̄|x) = pθ(x̄|z0)qφ(z0|x). (11)

Our corresponding supervised and unsupervised consistency losses are then defined as:

CU (x; θ, φ, w) , Eqφ(z0|x)

[
Epθ(x̄|z0)

[
Eqφ(z̄0|x̄) [`C(ŷw(z), ŷw(z̄0))]

]]
, (12)

CS(x, y; θ, φ, w) , Eqφ(z0|x)

[
Epθ(x̄|z0)

[
Eqφ(z̄0|x̄) [`C(y, ŷw(z̄0))]

]]
. (13)

Appendix C. Methods: Robust Likelihoods with Spatial Transformations

C.1. Noise-Normal Likelihood

As discussed in Sec. 3.4, we use a “Noise-Normal” distribution as the pixel likelihood for
many of our experiments. We define this distribution to be a parameterized two-component
mixture of a truncated-normal distribution and a uniform distribution. We will use ρ to
denote the mixture probability of the Normal component, and µ and σ to denote the mean
and standard deviation of the truncated-normal, respectively. The generative model (or
decoder) predicts a distinct outlier probability (1− ρ) for each pixel. We assume that pixel
intensities are defined on the domain [−1, 1] and rescale our datasets to match. We can write
the probability density function of the Noise-Normal distribution via the standard normal
PDF φ(·), and standard normal CDF Φ(·), as follows:

f(x | ρ, µ, σ) = ρ

 φ
(x−µ

σ

)
Φ
(

1−µ
σ

)
− Φ

(
−1−µ
σ

)
+ (1− ρ)

(
1

2

)
. (14)

We can similarly express the cumulative distribution function of the Noise-Normal distribution
as:

F (x | ρ, µ, σ) = ρ

 Φ
(x−µ

σ

)
− Φ

(
−1−µ
σ

)
Φ
(

1−µ
σ

)
− Φ

(
−1−µ
σ

)
+ (1− ρ)

(
x+ 1

2

)
. (15)

In order to propagate gradients through the sampling process of the noise-normal distribution,
we use the implicit reparameterization gradients approach of (Figurnov et al., 2018). Given
a sample x drawn from this distribution, we compute the gradient with respect to the
parameters ρ, µ, and σ as:

∇ρ,µ,σx =
−∇ρ,µ,σF (x | ρ, µ, σ)

f(x | ρ, µ, σ)
. (16)
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Figure 4: Prior distribution for latent parameters z̄(i)t = tanh(z
(i)
t ) used to represent affine transfor-

mations.

When fitting the parameters of this distribution using gradient descent, we enforce the
constraints that ρ ∈ [0, 1], µ ∈ [−1, 1], and σ > 0. To do this, we optimize unconstrained
parameters ρ∗, µ∗, σ∗, and then define ρ = sigmoid(ρ∗), µ = tanh(µ∗), and σ = softplus(σ∗).

C.2. Spatial Transformer VAE

Our spatial transformer VAE retains the structure of a standard VAE, but reinterprets the
latent code z as two components. As described in Sec. 4.3, the first 6 latent dimensions zt
are associated with affine transformation parameters capturing image translation, rotation,
scaling, and shear:

• z(1)

t → horizontal translation,

• z(2)

t → vertical translation,

• z(3)

t → rotation,

• z(4)

t → shear,

• z(5)

t → horizontal scale,

• z(6)

t → vertical scale.

The remainder of the latent code, z∗, generates parameters for independent per-pixel likeli-
hoods.

To constrain our transformations to a fixed range of plausible values, we construct
Mt using parameters z̄(i)

t = tanh(z
(i)
t ) that are first mapped to the interval [−1,+1], and

then linearly rescaled to an appropriate range via hyperparameters α(1), . . . , α(6). Figure 4
illustrates that the induced prior for z̄(i)

t is heaviest for extreme values, encouraging aggressive
augmentation when sampling from the prior. The mapping function could be changed to
modify this distribution for other applications.

Given these latent transformation parameters, we define an affine transformation matrix
Mt:

Mt =

1 0 α(1)z̄(1)

t

0 1 α(2)z̄(2)

t

0 0 1

·
cos(α(3)z̄(3)

t ) − sin(α(3)z̄(3)

t α
(4)z̄(4)

t ) 0
sin(α(3)z̄(3)

t ) cos(α(3)z̄(3)

t α
(4)z̄(4)

t ) 0
0 0 1

·
(α(5))z̄

(5)

t 0 0

0 (α(6))z̄
(6)

t 0
0 0 1

 (17)

15



Consistency-constrained VAEs

To determine the parameters of the likelihood function for the pixel at coordinate (i, j), we
use the generative model (or decoder) output at the pixel (i′, j′) for whichij

1

 = Mt

i′j′
1

 . (18)

This corresponds to applying horizontal and vertical scaling, followed by rotation and shear,
followed by translation. As (i′, j′) may not correspond to integer coordinates, a spatial
transformer layer (Jaderberg et al., 2015) uses bilinear interpolation of the non-transformed
likelihood parameters, appropriately padding the boundaries of the decoder output. For the
Noise-Normal distribution we independently interpolate the ρ, µ, and σ2 parameters.

Appendix D. Related work

D.1. Related work on SSL of VAEs since M2

Gordon and Hernández-Lobato (2020) explore SSL for VAEs by indirectly coupling discrim-
inative and generative parameters via a joint prior. Such “parameter coupling” (Lasserre
et al., 2006) still requires expensive sums over labels when computing likelihoods. We show
that directly integrating generative parameters in predictions leads to superior performance
(see Sec. 4).

Joy et al. (2021) propose the Characteristic-Capturing VAE (CCVAE) which, like M2,
optimizes a lower bound on the joint probability of x and y via an upstream generative
structure: p(x, y, z) = p(y)p(z|y)p(x|z). The CCVAE has improved class-specific generative
performance, but Joy et al. acknowledge that it does not significantly improve SSL accuracy.

Feng et al. (2021) introduce SHOT-VAE, a variant of M2 that seeks a better justification
for the questionable log q(y|x) term. They apply label smoothing (Szegedy et al., 2016)
to M2, producing a “smoothed” variational objective that contains a KL-divergence term
incorporating log q(y|x). The experiments of Feng et al. suggest that the SSL accuracy gains
of SHOT-VAE are partially due to their additional inclusion of a variant of Mixup data
augmentation (Zhang et al., 2017).

The SeGMA model (Smieja et al., 2021) maps classes to components of a Gaussian
mixture in the latent code space, and adapts Wasserstein autoencoders to avoid explicit
representation of discrete mixture assignments. SeGMA may be used for classification, but
their results emphasize its ability to interpolate observations.

D.2. Related Work on Constrained Learning

Imposing constraints to supervise probabilistic models is a widespread idea (Jaakkola et al.,
1999; Chang et al., 2007; Mann and McCallum, 2010). Our PC objective can be seen as
an instance of the broad family of posterior regularization (PR) techniques (Ganchev et al.,
2010) for latent variable models. Zhu et al. (2014) present a regularized Bayesian formulation
for fully-supervised nonparametric latent variable models. We emphasize that PR is an
extremely broad family of approaches; our novel constraints are crucial to the success of the
CPC-VAE, and are not similar to prior PR methods.

Li et al. (2018) propose an objective related to Eq. (9) for training VAEs from fully-
supervised data with a max-margin loss. They also claim that an M2-like model is more
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effective in semi-supervised tasks when labels are rare, yet lack empirical evidence for this
claim (no direct comparisons). In contrast, we demonstrate that with consistency constraints,
Eq. (9) is in fact a superior semi-supervised objective for VAEs in terms of accuracy, reliability,
and training speed. Hughes et al. (2018) also suggest a constrained objective like Eq. (9),
but specialized to semi-supervised topic models.

Our unconstrained PC objective (7) has connections to the multi-conditional objective
of McCallum et al. (2006), which was extended to deep generative models (both explicit
VAEs and implicit GANs) by Kuleshov and Ermon (2017). This prior work does not use
consistency, does not present our constraint-based view of SSL, and exclusively uses implicit
GANs in SSL experiments. The DIVA model (Ilse et al., 2020) uses a similar prediction
penalty for domain adaptation, but does not impose consistency constraints.

Related work on consistency. Recent non-generative image classifiers have used loss
functions that encourage both accuracy and a notion of consistency on unlabeled data, such
as consistency under adversarial perturbations (Miyato et al., 2019) or feature interpola-
tions (Berthelot et al., 2019). Unsupervised Data Augmentation (UDA) (Xie et al., 2020)
achieves state-of-the-art vision and text SSL classification by enforcing label consistency on
augmented perturbations of unlabeled features, but requires highly-engineered augmentation
routines (e.g., image processing libraries). In contrast, we learn a generative model that
samples features whose label predictions need to be consistent. Our CPC-VAE applies to
new domains where augmentation routines are unavailable; the learned generator provides
augmentations.

More broadly, “cycle-consistency” has improved generative adversarial learning for im-
ages (Zhu et al., 2017; Zhou et al., 2016) and biomedical data (McDermott et al., 2018).
Others have developed cycle-consistent objectives for VAEs (Jha et al., 2018) that make the
encodings z consistent. Miller et al. (2019) consider feature-to-label prediction in VAEs and
enforce consistency with reconstructed predictions on fully-labeled data. In contrast, our
work focuses on SSL and enforces consistency in code-to-label prediction.

Appendix E. Ablation study

We compare variants of CPC, M2, and MMVA (Li et al., 2018) for SSL training on MNIST
using a common architecture. We test variants of CPC without consistency, without spatial
transformations, and without aggregate label loss. Ablations of M2 and MMVA try different
model capacities (number of layers) and α penalties.
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Method MNIST (100) Method MNIST (100) Method MNIST (100)

CPC (2 Layer) 96.68 (±0.54) M2§(1 L, α=0.1, B) 88.03 (±1.71) MMVA (1 L, α=∗) 80.50 (±2.56)
CPC (2 L, w/o A) 94.27 (±3.78) M2 (2 L, α=0.1, B) 83.32 (±5.22) MMVA (2 L, α=∗) 83.50 (±2.51)
CPC (2 L, w/o ST)91.93 (±1.65) M2 (4 L, α=0.1, B) 47.05 (±8.13) MMVA (2 L, α=.1) 58.27 (±5.82)
CPC (4 L, w/o ST)93.78 (±2.25) M2 (4 L, α=∗, B) 68.15 (±3.43)
PC (2 L) 80.49 (±3.31) M2 (1 L, α=0.1, N) 73.93 (±8.12) VAE + GLM (2 L) 72.90 (±1.98)

Table 2: Ablation study on MNIST comparing our SSL VAEs to M2 (Kingma et al., 2014) and
MMVA (Li et al., 2018). We use our own implementation, except for entry marked § from Kingma
et al. (2014). We use a common MLP architecture with C = 50 and 1000 units per hidden layer.
We indicate the likelihood: Noise-Normal (N, used by all CPC runs) or Bernoulli (B, used by M2
and MMVA). Left: Our innovations (consistency, spatial transforms (ST), and aggregate loss (A))
improve accuracy. Center: M2’s accuracy deteriorates with larger networks, even after tuning α
(α=∗) instead of Kingma et al.’s default (α=0.1). CPC results are stable as size increases. Right:
MMVA results are worse than CPC’s.
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Figure 5: Semi-supervised VAE learning with 2-dim. encodings of MNIST (accuracy in corner). All
methods use 49,900 unlabeled examples and 100 labeled (emphasized). We show each image’s most
likely encoding z, colored by true label y, and predicted decision boundaries if possible. Baselines
(from left): 2-stage unsupervised VAE + GLM (Sec. 2.1) and a “supervised” VAE maximizing
joint likelihood log p(x, y) (a special case of our PC method with λ = 1, Sec. 3.1). Our methods:
Prediction constrained VAE (PC-VAE with λ = 25, Sec. 3.1) and consistent prediction constrained
VAE (CPC-VAE, Sec. 3.2). Competitor: M2 (Kingma et al., 2014) intentionally decouples label y
from “style” encoding z.

Appendix F. Visualization of latent space

To provide intuition for differences among model variants, Fig. 5 shows encodings for VAE
models of MNIST digits with latent dimension C = 2, given only 10 labeled examples per
class.

Appendix G. CPC-VAEs as a decision network

Fig. 5 provides further intution for the CPC-VAE method by formalizing it as a decision
network.

Appendix H. Results: Visualizations of Sampled Images from Generative
Models

Spatial Transformations and Consistency Constraints

To illustrate the simulated data that plays a key role in our consistency constraints, Figures 7
and 8 show images sampled from CPC-VAE models trained on MNIST and SVHN. Given
some real image x, we first sample z ∼ qφ(· | x), and then generate x̄ ∼ pθ(· | z). We further
show how images change as affine parameters for our spatial transformer VAE are varied.
These parameters are not fixed when applying consistency constraints, encouraging models
to learn how to align images.

Class-conditional sampling

A standard VAE generates data by sampling z ∼ N (0, I), and then sampling x ∼ N (µθ(z), σθ(z)),
or an alternative like the Noise-Normal likelihood. For the PC-VAE or CPC-VAE, we can
further sample images conditioned on a particular class label. As labels are not explicitly part
of the generative model, we accomplish this by sampling images that would be confidently
predicted as the target class. We use a rejection sampler, repeatedly sampling z ∼ N (0, I)
until a sample meets the criteria: pw(y | z) > 1− ε, for some target threshold ε. We typically
use ε = 0.05 in our experiments. Alternatively, as shown in figure 5, we can reject a fraction
of the samples of each class.

19



Consistency-constrained VAEs

z
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Figure 6: Formalization of our CPC-VAE as a decision network (Cowell et al., 2006). Circular nodes
are random variables, including latent codes z and observed features x. Shaded nodes are observed,
including the class labels y for some data (left). Square decision nodes indicate label predictions
ŷw via the inference network qφ(z | x). Diamonds indicate four losses ((a)-(d) below) that influence
the prediction of labels and latent variables. (a) Generative likelihood: Like standard VAEs, our
methods favor generative parameters θ and variational posteriors qφ that maximize the variational
bound L (orange). (b) Prediction accuracy: Unlike previous semi-supervised VAEs, we do not model
the probability of labels y given z or x. Instead, we treat label prediction as a decision problem,
with task-motivated loss `S (red), that constrains the encoding posterior qφ(z|x) (and therefore the
generative model). (c) Prediction consistency: For unlabeled data (right), we know that if two
observations x and x̄ are generated from the same latent code z, they should have identical labels;
otherwise, the model cannot have high accuracy. The loss `C (blue) enforces this consistency. (d)
Aggregate consistency: The predicted label frequencies for unlabeled data should be close to the
empirical frequencies π of labeled data. The loss `A (green) enforces this, penalizing degenerate
solutions to `C that use the same label ŷw for most unlabeled data.

Figure 7: Sampled reconstructions used to compute the consistency loss during training. Top:
Original image. Middle: Sampled reconstructions using a “Noise-Normal” likelihood. Bottom:
Sampled reconstructions with spatial affine transformations sampled from the prior.
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Figure 8: Visualization of spatial transform CPC-VAE reconstructions (trained with full labels).
Each triplet shows left: the original image, center: the reconstructed image, and right: the "aligned"
reconstruction obtained by setting the affine transform dimensions of the latent code to the prior
mean. We see that the model learns a canonical orientation for each digit.

Fig. 2 in the main text shows 2-dimensional latent space encodings of the MNIST dataset
using several different models. We provide a complementary visualization of generative
models in Fig. 12, where we compare class-conditional samples for three of these models.
The unsupervised VAE’s encodings of some classes (e.g., 2’s and 4’s and 8’s and 9’s) are not
separated, and samples thus frequently appear to be the wrong class. Model M2 (Kingma
et al., 2014) explicitly encodes the class label as a latent variable, but nevertheless many
sampled images do not visually match the conditioned class. In contrast, for our CPC-VAE
model almost all samples are easily recognized as the target class.

We illustrate class-conditional samples for our CPC-VAE model of SVHN in Fig. 13, and
for our CPC-VAE models of Celeb-A in Fig. 16. The SVHN samples show rich variability while
clearly retaining the digit identity. For both the standard and very-deep CPC-VAE models of
Celeb-A, the corresponding class can be easily determined from the sampled images. We also
see the clearly superior image detail and realism that the state-of-the-art very-deep CPC-VAE
architecture provides, which leads to substantially improved reclassification accuracy in Fig.
5.

Appendix I. Results: Training time comparison

Figure 17 below provides an empirical comparison of the average training time cost per step
using the MNIST models summarized in our main paper’s Table 2. Our CPC-VAE imple-
mentation runs both the encoder and decoder networks twice to compute the objective (once
for the standard VAE loss and an additional time to compute the consistency reconstruction
and prediction), thus the runtime is approximately twice that of the PC-VAE: the PC-VAE
requires 38 milliseconds per training step, while the CPC-VAE requires 80.7 milliseconds.

Furthermore, our empirical findings show that training M2 is more expensive than our
proposed CPC-VAE in practice, which we expect given the runtime analysis in Sec. 2. The
M2 model must run the encoder and decoder networks once per class in order to compute
the loss, due to the marginalization of the labels required for the unsupervised loss in Eq. (4).
This increases the runtime by a factor equivalent to the number of classes. In our empirical
test, we see that the training time per step is 6.7x that of the PC-VAE model, close to the
10x slowdown we would expect for the 10 digit classes of MNIST. In our experiments, we did
not find substantial differences in the size of networks or number of training steps needed to
train each of these models effectively.
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Figure 12: Class-conditional samples of the 10 possible digit classes in the MNIST dataset. Each
column shows multiple samples from one specific digit class. From left to right, each panel shows
samples from a standard unsupervised VAE, our CPC-VAE, and model M2 (Kingma et al., 2014).
All models use a 2-dimensional latent code, and are trained on the MNIST dataset with 100 labeled
examples (10 per class).

Appendix J. Results: Additional classification results

Figure 18 shows extended results on the toy half-moons dataset, including results using 100
labels. These extended results demonstrate that the PC-VAE model works well when the
fraction of labeled data is large enough, significantly outperforming the 2-stage VAE+GLM
model. When the labeled fraction becomes extremely small, as in the 6-label case, the
consistency constraint becomes necessary for good performance.

We also performed experiments on the NORB dataset (LeCun et al., 2004), to compare
to results in prior semi-supervised VAE works. Results are shown in table 3. These results
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Figure 13: Class-conditional samples of the 10 possible digit classes in the SVHN dataset. The
generative model was trained on the fully labeled SVHN dataset with prediction and consistency
constraints. Samples were chosen via rejection sampling in the latent space with a threshold of 95%
confidence in the target class.

Method NORB (1000)

CPC-VAE 92.0 (±1.21)
SDGM 90.6 (±0.04)

Discrim. 86.7 (±1.32)

Table 3: Results on the NORB dataset

further reinforce our claims that the CPC-VAE outperforms previous SSL VAEs on image
tasks.

Appendix K. Results: Sensitivity to constraint multiplier
hyperparameters

We compare the test accuracy for our consistency-constrained model for MNIST over a range
of values for both λ (the prediction constraint multiplier) and γ (the consistency constraint
multiplier) in Figure 21. All runs used our best consistency-constrained model for MNIST
using dense networks. We kept all hyperparameters identical to the previous results (see
section L), changing only the value of interest for each run.

We see that the resulting test accuracy smoothly varies across several orders of magnitude,
with the optimal result being at or near the values we chose for our experiments. Performance
is superior to the M2 baseline model for a wide range of hyperparameter values.
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Figure 14: Single stochastic-layer VAE
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Figure 15: "Very-deep" VAE

Figure 16: Comparison of class-conditional samples of Celeb-A from a standard VAE and the deep
VAE. From left to right, classes are woman-neutral, man-neutral, woman-smiling, man-smiling. Both
models were trained as a semi-supervised CPC-VAE with 1000 labels. Samples from the single-layer
VAE show the mean output for each pixel, samples from the very-deep model are fully sampled
including at the pixel level.
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Appendix L. Experimental Protocol

Here we provide details about models and experiments which did not fit into the primary
paper.

L.1. Hyperparameter optimization

The hyperparameter search for all models, including the CPC-VAE and various baselines,
used Optuna (Akiba et al., 2019) to achieve the best accuracy on a labeled validation set.
For our 2-layer and 4-layer M2 experiments, we used our own implementation (available in
our code release) and followed the hyperparameters used by the original authors. For the
4-layer variant, we tested 10 different settings of α, ranging from 0.05 to 50, reporting both
the result using the original suggested value of α = 0.1 and the best value from our search
(α = 10). For M2, we also dynamically reduced the learning rate when the validation loss
plateaued.

L.2. Network architectures

For our PC-VAE and CPC-VAE models of the MNIST data, we use fully-connected encoder
and decoder networks with two hidden layers, 1000 hidden units per layer, and softplus
activation functions. Like the M2 model (Kingma et al., 2014), we use a 50-dimensional latent
space. The original M2 experiments used networks with a single hidden layer of 500 units.
We compare this to replications with networks matching ours, as well as 4-layer networks.

For the SVHN and NORB datsets, we adapt the wide-residual network architecture (WRN-
28-2) (Zagoruyko and Komodakis, 2016) that was proposed as a standard for semi-supervised
deep learning research in (Oliver et al., 2018). In particular, we use this architecture for
our encoder with two notable changes: We replace the final global average pooling layer
with a final dense layer that outputs means and variances for the latent space. We find
that this structure provides the capacity needed for accomplishing both generative and
discriminative tasks with a single network. For the decoder network we use a "mirrored"
version of this architecture, reversing the order of layer sizes used, replacing convolutions with
transposed convolutions, and removing pooling layers. We maintain the residual structure of

0 50 100 150 200 250 300
Training time per step

M2

CPC-VAE

PC-VAE

M
od

el

254.0 ms
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Figure 17: Comparison of training time per update step of stochastic gradient descent. Each model
was trained on the semi-supervised MNIST with 100 labels using hyperparameter settings identical
to those used in Table 2. Experiments were run on an RTX Titan GPU, using a common codebase
built on top of Tensorflow (Abadi et al., 2015) that implements all methods. Each time reported is
the average training step time over the second epoch.
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Figure 18: Predictions on half-moon classification (accuracy in corner) for semi-supervised VAE
learning. Dots are 2-dim. feature vectors colored by predicted probability of mostly likely label,
labeled examples are shown as larger diamonds. Titles indicate encoding size C = 2 or C = 14.
M2 (Kingma et al., 2014) accuracy deterioriates when capacity increases from C = 2 to 14 (drop
from 98.1% to 80.6% accuracy). Our CPC-VAE is reliable at any capacity via constraints that
ensure prediction quality. Top row: Learning from 6 labeled examples (diamonds) and 994 unlabeled
examples. Bottom row: Learning from 100 labeled examples and 900 unlabeled examples.
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Figure 20: Sensitivity to γ

Figure 21: Sensitivity of test accuracy to the constraint (Lagrange multiplier) hyperparameters λ
and γ.

the network. Our best classification results with this architecture were achieved with a latent
space dimension of 200 for SVHN and NORB, and a dimension of 50 for MNIST and CelebA.

For CelebA we used a similar WRN structure, but with 2 fewer residual blocks per level
(WRN-20-2). This allowed for faster training on the higher resolution images, while providing
good validation accuracy.
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For the "very-deep" VAE model we used the larger (WRN-28-2) wide resnet for the z0

encoder. For the ladder encoder and decoder we retained the bottleneck block structure from
(Child, 2021), but used only 30 stochastic layers. Each latent representation used 16 channels.
Each bottleneck block used an input/output width of 128 channels with a bottleneck width
of 64 channels. All other details were retained from (Child, 2021).

L.3. Additional regularization

In developing and evaluating our CPC model we explored several common regularizers taken
from deep semi-supervised learning and VAE literature. The SVHN results in Table 1 in the
main text included these terms as part of the training loss (with the weighting specified in
the hyperparameter summary below). Our experiments on CelebA omitted these terms, and
more recent (unpublished) testing on SVHN suggests that these additions are unnecessary
for achieving good semi-supervised performance. However, we lacked the time and resources
to repeat our full set of replicated experiments without these regularizers, so we discuss them
here for completeness.

Beta-VAE. As an additional form of regularization for our model, we allow our hyperpa-
rameter optimization to adjust a weight on the KL-divergence term in the variational lower
bound, which we call β as in previous work (Higgins et al., 2017):

LVAEβ (x; θ, φ) = Eqφ(z|x) [log pθ(x | z)] + β · Eqφ(z|x)

[
log

p(z)

qφ(z | x)

]
(19)

This allows us to encourage qφ(z | x) to more closely conform to the prior, which may be
necessary to balance the scale of the objective, depending on the likelihoods used and the
dimensionality of the dataset.

Prediction model regularization. We add two standard regularization terms to the
prediction model used in our constraint, ŷw(y | z). The first is an `2 regularizer on the
regression weights, ||w||22, to help reduce overfitting. The second is an entropy penalty. As
ŷw(z) defines a categorical distribution over labels, we compute this as: −Eŷw(y|z)[log ŷw(y |
z)], which has been shown to be helpful for semi-supervised learning in (Grandvalet and
Bengio, 2004) and was used as part of the standardized training framework of (Oliver et al.,
2018). We allowed our hyperparameter optimization approach to select appropriate weights
for both terms.

L.4. Image pre-processing

For all of our image datasets, we rescale the inputs to the range [-1, 1]. For our NORB
classification results, we downsample each image to 48x48 pixels. For our SVHN classifi-
cation results, we convert images to greyscale to reduce the representational load on our
generative model. Before the grayscale conversion, we apply contrast normalization to better
disambiguate the colors within each image.

For the SVHN and NORB results, we follow the recommendation of a recent survey of
semi-supervised learning methods (Oliver et al., 2018) and apply a single data augmentation
technique: random translations by up to 2-pixels in each direction. For generative results,
we retained the original color images and trained with full labels.

For the CelebA dataset we use the aligned images, first cropping images to be square,
then rescaling to 96x96 and finally taking a center crop of 64x64 pixels to remove most of
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the background. We retained color, but applied contrast normalization as with SVHN. No
data augmentation was used for this dataset.

L.5. Likelihoods

For all experiments on the half-moon toy data, we used a normal likelihood. For all of our
image datasets except CelebA, we use the Noise-Normal likelihood for our CPC methods.

For our implementation of M2 for extensive experiments on MNIST we retained the
Bernoulli likelihood used by the original authors (Kingma et al., 2014). That is, we rescaling
each pixel’s numerical intensity value to the unit interval [0,1], and then sampled binary
values from a Bernoulli with probability equal to the intensity.

For our experiments on CelebA, we found that the Noise-Normal likelihood was unneces-
sary. Instead we employed a Normal likelihood, using the formulation suggested by (Rybkin
et al., 2020), which trains a single, global variance parameter, σ∗θ , that is shared across
all images/pixels: x ∼ N (µθ(z), σ

∗
θ). This likelihood was used for both the standard and

very-deep VAEs trained on Celeb-A.

L.6. Optimization with Minibatches that Balance Labeled and Unlabeled Sets

All models were trained using minibatch stochastic gradient descent via the ADAM (Kingma
and Ba, 2014) optimizer. Batch sizes were 100 for MNIST, 64 for SVHN/NORB and 32 for
CelebA. We decayed the learning rate according the cosine decay (Loshchilov and Hutter,
2016) strategy (without restarts).

Importantly, each minibatch was engineered to contain exactly 50% labeled and 50%
unlabeled samples. Several prior works in semi-supervised deep learning (Kingma et al., 2014;
Oliver et al., 2018) have employed a balanced stochastic gradient optimization approach
where training batches are selected to have equal numbers of labeled and unlabeled examples.
This prevents instances where batches have no labeled examples and reduces the variance of
stochastic training. We can implement a similar scheme for the consistency-constrained VAE
without changing the expectation of the objective.

Recall the (unconstrained) CPC-VAE objective from section 3:∑
x∈DU∪DS

LVAE(x; θ, φ)−
∑
x∈DU

γCU (x; θ, φ, w) +
∑

x,y∈DS
−λP(x, y;φ,w)− γCS(x, y; θ, φ, w),

We can rewrite an equivalent objective, separating out the supervised and unsupervised
terms:

1

|DS |
∑
x∈DS

|DS |LVAE(x; θ, φ)− 1

|DS |
∑

x,y∈DS
λ|DS |P(x, y;φ,w)− 1

|DS |
∑

x,y∈DS
γ|DS |CS(x, y; θ, φ, w)

(20)

+
1

|DU |
∑
x∈DU

|DU |LVAE(x; θ, φ)− 1

|DU |
∑
x∈DU

γ|DU |CU (x; θ, φ, w)

Rewriting in terms of expectations over the labeled and unlabeled datasets, leads to a
natural approach for optimizing via balanaced batches:

|DS |Ex,y∈DS
[
LVAE(x; θ, φ)− λP(x, y;φ,w)− γCS(x, y; θ, φ, w)

]
(21)

+|DU |Ex∈DU
[
LVAE(x; θ, φ)− γCU (x; θ, φ, w)

]
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We see that in our stochastic optimization, we can get an unbiased estimate of the objective
and its gradient by sampling labeled and unlabeled batches separately. With batch size B
for both labeled and unlabeled batches our estimated objective becomes:

|DS |
B

∑
x,y∈BS

[
LVAE(x; θ, φ)− λP(x, y;φ,w)− γCS(x, y; θ, φ, w)

]
(22)

+
|DU |
B

∑
x∈BU

[
LVAE(x; θ, φ)− γCU (x; θ, φ, w)

]
(23)

BS ∼ DS , BU ∼ DU

We may also normalize by an additional scale factor of 1
|DS |+|DU | to approximately remove

dependence on the dataset size.
In our experiments we remove the terms |DS | and |DU |, essentially treating the labeled

and unlabeled datasets as being of equal size. We found this approach simpler, though we
have not performed a thorough set of experiments to evaluate the practical differences.

L.7. Hardware

Experiments were run on a variety of hardware systems. Models for SVHN and Norb were
trained primarily on an Nvidia DGX-2 system with V100 GPUs. Experiments on MNIST
and Celeb-A were run on a workstation using a Titan RTX and 2080TI GPUs. Additional
MNIST and Celeb-A experiments were run using 2080TI GPUs rented through vast.ai.

L.8. Summary of hyperparameter settings for final results

Table 1 provides all hyperparameter settings used in our experiments.

Appendix M. Dataset Details

For each dataset considered in our paper, we provide a more detailed overview of its contents
and properties. We comply with the stated terms of use for all listed datasets and assert
that our work is for non-commercial research purposes.

M.1. MNIST

Overview. We consider a 10-way exclusive categorization task for MNIST digits.
We use 28-by-28 pixel grayscale images.
Public availability. We will make code to extract our version available after publication.

Data statistics. Statistics for MNIST are shown in Table 5.

M.2. SVHN

Overview. We consider a 10-way exclusive categorization task for SVHN digits.
We use 32x32 pixel grayscale images.
Public availability. We will make code to extract our version available after publication.

Data statistics. Statistics for SVHN are shown in Table 6.
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Hyperparameter MNIST (100)SVHN (1000)NORB (1000)CelebA (1000)

Encoder/decoder 2 FC layers WRN-28-2 WRN-28-2 WRN-20-2 (very-deep: see L.2)
Dense layer size 1000 units - - -
Network activations Softplus Leaky ReLU Leaky ReLU Leaky ReLU / GeLU (very-deep)
Latent dimension 50 200 200 50 / 16 (very-deep)
Pixel likelihood Noise-Normal Noise-Normal Noise-Normal (σ) Normal (Rybkin et al., 2020)

Prediction multiplier λ 25 140 80 150 / 25 (very-deep)
Consistency multiplier γ4.25λ 1.25λ 4λ 2λ
Aggregate consistency 0.1λ 0.2λ 0.2λ 0.5λ
β-VAE weight 1 1.3 2 1
Predictor reg. (||w||22) 1 1 1 0
Entropy reg. 0.5λ 0.5λ 0.5λ 0
(Epw(y|z)[log pw(y|z)]) -
Translation range 0.2 × W 0.2 × W 0.2 × W -
(α(1) = α(2))
Rotation range (α(3)) 0.4 rad 0.5 rad 0.4 rad -
Shear range (α(4)) 0.2 rad 0.2 rad 0.2 rad -
Scale range 1.5 1.5 1.5 -
(α(5) = α(6))

Optimizer ADAM ADAM ADAM ADAM
Learning rate 3× 10−4 3× 10−4 3× 10−4 3× 10−4

Table 4: Hyperparameter settings for semi-supervised learning experiments with our CPC-VAE. For
translation range, the symbol W denotes the image width (in pixels). Relevant difference between
the standard VAE and deep VAE trained on Celeb-A are noted.

split num. examples label distribution

labeled train 100 [0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]
unlabeled train 49900 [0.1 0.11 0.1 0.1 0.1 0.09 0.1 0.1 0.1 0.1]
labeled valid 10000 [0.1 0.11 0.1 0.1 0.1 0.09 0.1 0.1 0.1 0.1]
labeled test 10000 [0.1 0.11 0.1 0.1 0.1 0.09 0.1 0.1 0.1 0.1]

Table 5: MNIST dataset.

M.3. NORB

Overview.
We use 48x48 pixel grayscale images.
Public availability. We will make code to extract our version available after publication.
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split num. examples label distribution

labeled train 1000 [0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10]
unlabeled train 62257 [0.07 0.19 0.15 0.12 0.10 0.09 0.08 0.08 0.07 0.06]
labeled valid 10000 [0.07 0.19 0.14 0.12 0.10 0.09 0.08 0.08 0.07 0.06]
labeled test 26032 [0.07 0.20 0.16 0.11 0.10 0.09 0.08 0.08 0.06 0.06]

Table 6: SVHN dataset.

Data statistics. Statistics for NORB are shown in Table 7.

split num. examples label distribution

labeled train 1000 [0.2 0.2 0.2 0.2 0.2]
unlabeled train 21300 [0.2 0.2 0.2 0.2 0.2]
labeled valid 2000 [0.2 0.2 0.2 0.2 0.2]
labeled test 24300 [0.2 0.2 0.2 0.2 0.2]

Table 7: NORB dataset.

M.4. CelebA

Overview.
Labels for our verision of the CelebA dataset were generated from the provided at-

tributes. Our dataset used 4 classes: woman/neutral face, man/neutral face, woman/smiling,
man/smiling.

Public availability. We will make code to extract our version available after publication.

Data statistics. Statistics for CelebA are shown in Table 8.

split num. examples label distribution

labeled train 1000 [0.25 0.25 0.34 0.16]
unlabeled train 21300 [0.25 0.25 0.34 0.16]
labeled valid 2000 [0.25 0.25 0.34 0.16]
labeled test 24300 [0.27 0.23 0.35 0.15]

Table 8: CelebA dataset.
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Appendix N. Broader Impacts

Like many models used to make predictions, ours has the potential for both beneficial and
not-so-beneficial impact on human society. For any work that uses our models to make
real-world predictions, we recommend that users give thought about how even simple natural
image datasets may be biased towards certain regions and cultures (DeVries et al., 2019;
Merler et al., 2019; Shankar et al., 2017). We further suggest application developers should
invest in developing diagnostics to measure and report how predictions impact different
subpopulations (Mitchell et al., 2019). Future work could integrate constraints that enforce
various definitions of group-level fairness (Mitchell et al., 2018) into our approach, as have
been developed for other deep latent variable models (Madras et al., 2019).

Specifically for the CelebA dataset of celebrity faces, we acknowledge that some of its
recorded attributes may be used problematically (e.g. “big nose” or identification of specific
racial groups). We deliberately did not focus on such attributes but instead focused on two
attributes thought to be more benign: facial expression (neutral vs. smiling) and gender
(male vs. female). We acknowledge and affirm that human gender is not binary; our classifiers
learn the stereotypical patterns of celebrity photos from a specific human culture and time
period.

32


	Introduction
	Background: Semi-supervised VAEs
	Two-Stage SSL: VAE then Predict
	SSL of VAEs via Joint Likelihoods

	CPC Variational Autoencoders
	Prediction Constrained VAEs
	Improved Predictions via Consistency

	Experiments
	Code Availability
	Methods: Very Deep CPC-VAE
	Methods: Robust Likelihoods with Spatial Transformations
	Noise-Normal Likelihood
	Spatial Transformer VAE

	Related work
	Related work on SSL of VAEs since M2
	Related Work on Constrained Learning

	Ablation study
	Visualization of latent space
	CPC-VAEs as a decision network
	Results: Visualizations of Sampled Images from Generative Models
	Results: Training time comparison
	Results: Additional classification results
	Results: Sensitivity to constraint multiplier hyperparameters
	Experimental Protocol
	Hyperparameter optimization
	Network architectures
	Additional regularization
	Image pre-processing
	Likelihoods
	Optimization with Minibatches that Balance Labeled and Unlabeled Sets
	Hardware
	Summary of hyperparameter settings for final results

	Dataset Details
	MNIST
	SVHN
	NORB
	CelebA

	Broader Impacts

