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Abstract The automated processing of multiple seismic signals to detect and local-
ize seismic events is a central tool in both geophysics and nuclear treaty verification.
This paper reports on a project begun in 2009 to reformulate this problem in a Bayesian
framework. A Bayesian seismic monitoring system, NET-VISA, has been built com-
prising a spatial event prior and generative models of event transmission and detection,
aswell as an inference algorithm. The probabilisticmodel allows for seamless integration
of various disparate sources of information. Applied in the context of the International
Monitoring System (IMS), a global sensor network developed for the Comprehensive
Nuclear Test Ban Treaty (CTBT), NET-VISA achieves a reduction of around 60% in
the number of missed events compared with the currently deployed system. It also finds
events that are missed by the human analysts who postprocess the IMS output.

Introduction

The Comprehensive Nuclear Test Ban Treaty (CTBT),
which bans all nuclear explosions on Earth, is gaining re-
newed attention in light of growing worldwide interest in
mitigating the risks of nuclear weapons proliferation and
testing. To monitor compliance with the treaty, the Prepara-
tory Commission for the Comprehensive Nuclear Test Ban
Treaty Organization (CTBTO) has installed a suite of sensors
known as the International Monitoring System (IMS). The
IMS includes waveform sensor stations (seismic, hydroa-
coustic, and infrasound) connected by a worldwide commu-
nications network to a centralized processing system in the
International Data Center (IDC) in Vienna. The IDC operates
continuously and in real time, performing station processing
(analysis and reduction of raw seismic sensor data to detect
and classify signal arrivals at each station) and network
processing (association of signals from different stations that
have presumably come from the same event). Perfect perfor-
mance remains well beyond the reach of current technology:
the IDC’s automated system, a highly complex and well-
tuned piece of software, misses nearly one-third of all seis-
mic events in the magnitude range of interest, and about half
of the reported events are spurious. A large team of expert
analysts postprocesses the automatic bulletins to improve
their accuracy to acceptable levels.

The IDC results indicate that the network processing
problem is far from trivial. There are three primary sources
of difficulty: (1) the travel time between any two points on
Earth and the attenuation of various frequencies and wave
types are not known accurately; (2) each detector is subject
to local noise that may mask true signals and cause false

detections (as much as 90% of all detections are false); and
(3) many thousands of detections are recorded per day, so the
problem of proposing and comparing possible events (sub-
sets of detections) is daunting. These considerations suggest
that an approach based on probabilistic inference and com-
bination of evidence might be effective, and this paper dem-
onstrates that this is in fact the case. For example, such an
approach automatically takes into account nondetections as
negative evidence for a hypothesized event, something that
classical methods typically do not do.

The existing network processing algorithm in use at the
IDC, known as global association (GA) (Le Bras et al., 1994),
uses various heuristics to cluster arrivals, and then deter-
mines the location of the event in each cluster. The event
location algorithm is based on the original iterative linear
least squares method of Geiger (1910, 1912). Of course, the
algorithm has been enhanced considerably over the years, for
example, by the use of singular value decomposition to solve
the resulting matrix equations (Menke, 1989; Lay and Wal-
lace, 1995) and by the use of azimuth and slowness to con-
strain the solution (Magotra et al., 1987; Roberts et al., 1989).
However, in the words of Myers et al. (2007) (p. 1049), “Seis-
mic event location is—at its core—a minimization of the dif-
ference between observed and predicted arrival times.”
Further, all of these classical methods rely only on the asso-
ciated arrivals to locate an event. Even the multiple-event
location algorithms, such as those due to Waldhauser and
Ellsworth (2000) and Myers et al. (2007), ignore data from
stations that fail to detect an event.

In this paper, we present a probabilistic model of seismic
event occurrence, Pθ (see Table 1 for a list of all mathemati-
cal notations), and another probabilistic model of seismic
detections triggered by events (or noise), Pϕ. We also de-
scribe how the model parameters θ and ϕ are estimated from
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historical data and present an algorithm that infers the set of
seismic events given the observed detections. In simple terms,
let X be a random variable ranging over all possible collec-
tions of seismic events, with each event defined by time, lo-
cation, depth, and magnitude. Let Y range over all possible
signal observations at all seismic stations. Then Pθ�X� de-
scribes a parameterized generative prior over events, and
Pϕ�YjX� describes how the signal is propagated and measured
(including travel time, selective absorption and scattering,
noise, artifacts, sensor bias, sensor failures, etc.). Given ob-
servations Y � y, we are interested in the posterior distribu-
tion over events, P�XjY � y�, which is given by Bayes rule:

P�XjY � y� ∝ Pθ�X�Pϕ�Y � yjX�:
For the CTBT monitoring application, we are interested in the
value x� that maximizes this expression, that is, the most
likely explanation for all the sensor readings:

x� � argmax
x

Pθ�X � x�Pϕ�Y � yjX � x�:

Assuming that an algorithm can be devised to solve this
optimization problem, which turns out to be nontrivial, the
key determinant of the success of the Bayesian approach is
the accuracy of the probability models Pθ and Pϕ. These
models embody, in explicit form, elementary knowledge of
seismology and seismometry, as well as the residual uncer-
tainty inherent in that knowledge. Adding to and refining the
knowledge embodied in the models reduces residual uncer-
tainty and improves system performance.

Many other researchers have previously applied Baye-
sian techniques to geophysical problems (see Duijndam,
1988a,b for examples). Most of these applications involve in-
ference over a fixed set of continuous-valued parameters; the
event localization problem in particular is addressed byMyers
et al. (2007). The full monitoring problem involves inference
over a combinatorial discrete space (the number of events and
the association between events and observations), as well as a
continuous parameter space for each event. In this respect, it
resembles the data association problems arising in multitarget
tracking (Bar-Shalom and Fortmann, 1988).

Our overall project, VISA (vertically integrated seismic
analysis), is divided into two stages. The first stage, NET-
VISA, is the subject of the current paper. As the name sug-
gests, NET-VISA deals only with network processing and
relies upon the IDC’s pre-existing signal detection algorithm,
which converts the raw waveforms into a sequence of arriv-
als. Thus, the observations Y correspond to sets of arrivals
with measured attributes rather than raw waveform signals.
An example of the signal processing is shown in Figure 1.
Figure 1a displays a filtered seismic waveform, and Figure 1b
shows the typical short-term average to long-term average

Table 1
Mathematical Notations

Symbol Description

Pθ Prior probability distribution of events
Pθ;n Prior probability of the number of events
Pθ;t, Pθ;d, Pθ;l, Pθ;m Prior probability of event time, depth,

location, and magnitude
e Set of events; ei is the ith event
eit, eid, e

i
l, e

i
m Event time, depth, location, and

magnitude
Pϕ Probability of arrivals given an event
Pϕ;d Detection probability of an event
Pϕ;z, Pϕ;s, Pϕ;a, Pϕ;h Probability of arrival azimuth, slowness,

amplitude, and phase given event
Λ Set of arrivals associated to events
Λijk The arrival of event i’s jth phase at station

k
Λijk
t , Λijk

z , Λijk
s , Λijk

a , Λijk
h Arrival time, azimuth, slowness,

amplitude, and phase
ζ A special symbol that signifies the lack of

an arrival
Pω Probability of false arrivals
Pω;n Probability of number of false arrivals
Pω;t, Pω;z, Pω;s, Pω;a,
Pω;h

Probability of false arrival time, azimuth,
slowness, amplitude, and phase

ξ All false arrivals. ξk are the false arrivals
at station k, and ξkl is one of these false
arrivals

ξklt , ξklz , ξkls , ξkla , ξklh False arrival time, azimuth, slowness,
amplitude, and phase

Pγ Probability distribution of coda arrivals
Pγ;d Probability that a coda arrival is detected
Pγ;z, Pγ;s, Pγ;a Probability of coda azimuth, slowness,

and amplitude given previous arrival
Pγ;h Probability of coda phase
ηa Coda arrival generated by arrival a or ζ if

no coda
ηat , ηaz , ηas , ηaa Coda arrival’s time, azimuth, slowness,

and amplitude
η Set of all coda arrivals
A Set of all observed arrivals
Δik Great-circle distance between event i and

station k

(a)

(b)

Figure 1. Example of seismic waveform (station ASAR, chan-
nel SE), STA/LTA, and arrivals. At the bottom of the lower panel the
dotted lines are the automatically detected arrivals, while the solid
lines are the analyst marked arrivals. The color version of this figure
is available only in the electronic edition.
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ratio (STA/LTA) used to detect the arrivals. The dotted lines in
Figure 1b show the automatically detected arrivals, while the
solid lines show the analyst marked arrivals. The second
stage, SIG-VISA, will incorporate a signal waveform model
and thereby subsume the detection function.

As noted previously, NET-VISA computes a single most
likely explanation: a set of hypothesized events with their
associated arrivals, marking all other arrivals as noise. This
input–output specification, while not fully Bayesian in spirit,
enables direct comparison with the current automated system
bulletin, Standard Event List 3 (SEL3). Using the final
expert-generated bulletin, LEB, as ground truth, we com-
pared the two systems on seven days of held-out data. NET-
VISA reduces the number of missed events by 60% without
introducing more false events. Furthermore, taking data from
the more comprehensive NEIC (National Earthquake Infor-
mation Center) bulletin as ground truth for the continental
United States, we find that NET-VISA is able to detect events
in the IMS data that are not in the LEB report produced by
IDC’s expert analysts. We find similar results by corroborat-
ing with other regional networks as well. Thus, NET-VISA’s
true performance may be higher than the LEB-based calcu-
lation would suggest. Independent IDC evaluation confirms
the gist of our findings, as well as demonstrates that NET-
VISA can handle large aftershock sequences such as the
one following the March 2011 Tohoku earthquake in near
real time.

In the rest of this paper we describe the problem and our
approach in detail including some elementary seismology
(for readers who are not seismologists), the probability
model, the inference algorithm, the results, and finally, future
plans and conclusions.

The Seismic Association and Localization Problem

Seismic events are disturbances in the earth’s crust. Our
work is concerned primarily with earthquakes and explo-
sions (nuclear and conventional), but other types of events,
such as waves breaking, trees falling, or ice falling, may gen-
erate seismic waves, too. All such waves occur in a variety of
types: body waves that travel through the earth’s interior and
surface waves that travel on the surface. There are two types
of body waves: compression or P waves and shear or S
waves. There are also two types of surface waves: Love and
Rayleigh. Further, body waves may be reflected off different
layers of the earth’s interior; these are labeled distinctly by
seismologists. Each particular wave type generated by a
given event is called a phase. More than 100 distinct phases
are identified in standard tables (Storchak et al., 2003); in our
work, we consider 14 phases making up the vast majority of
IMS seismic detections: P, Pn, PKP, S, PKPbc, PcP, pP,
Lg, PKPab, PKKPbc, Pg, Rg, Sn, and ScP.

After traveling through the earth, these waves are picked
up in seismic stations as ground vibrations. Typically, seis-
mic stations have either a single three-axis detector or an
array of vertical-axis detectors spread over a scale of many

kilometers. Most detectors are sensitive to nanometer-scale
displacements and are quite susceptible to noise.

A typical monitoring system runs station-processing
software that preprocesses the raw seismometer measure-
ments, filtering out information that is not of interest and
computing short-term and long-term averages of the signal
amplitude. When the ratio of these averages exceeds a fixed
threshold, an arrival (also called a trigger or onset) is an-
nounced. (Please refer to Allen, 1978 for an early description
of this approach.) Various parameters of the arrival are mea-
sured: onset time, azimuth (direction from the station to the
source of the wave), slowness (related to the angle of decli-
nation of the signal path), amplitude, signal-to-noise ratio
(SNR), etc. Based on these parameters, a phase label may be
assigned to the arrival based on the standard International
Association of Seismology and Physics of the Earth’s
Interior (IASPEI) phase catalog (Storchak et al., 2003). It is
important to note that none of these measurements are perfect
and have uncertainty associated with them.

The problem that we attempt to solve in this paper is to
take a continuous stream of arrivals (with onset time, azi-
muth, slowness, amplitude, SNR, and phase label) from the
roughly 120 IMS seismic stations as input and produce a bul-
letin, a continuous stream of events and associations between
events and arrivals. The parameters of an event are its lon-
gitude, latitude, depth, time, and magnitude (mb or body-
wave magnitude). Precise details of the metrics for evaluat-
ing a bulletin are given in the Experimental Results section.

Generative Probabilistic Model

A generative model is one that describes the relation-
ships among all variables of interest (here, events and ob-
servations) in such a way that complete samples can be
generated from the joint distribution. The model is built from
several components, each of which is a conditional probabil-
ity distribution describing how some aspect of the underlying
physical process operates. For example, the conditional dis-
tribution that predicts the onset time of an arrival, given the
time of the event that caused it, embodies what seismologists
call the travel-time model as well as its associated residual
uncertainty.

The major components of our model are as follows:

• Events: This component describes the rate of occurrence,
geographical distribution, depth distribution, and magni-
tude distribution of seismic events (natural and man-
made).

• True arrivals: Each event is assumed to produce the 14
phases noted earlier; the detection probability model spec-
ifies the chance that a given phase from an event will be
detected by a given station; the various component models
for arrival attributes (onset time, azimuth, slowness, ampli-
tude, and phase label) describe the predicted measurements
resulting from station processing for detected phases. Note
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that measurements may include errors; for example, the
phase label may not match the actual phase.

• False arrivals: The model describes the rate of false (noise-
generated) arrivals at each station and their attribute distri-
butions.

• Coda arrivals: Any arrival may trigger further spurious
arrivals detected by the station-processing algorithms in
the coda or tail of the waveform, due to additional peaks
in the arriving amplitude. Attributes of coda arrivals are
usually correlated with those of the triggering arrival.

The following sections describe these components in de-
tail, giving their mathematical forms and methods of param-
eter estimation.

Events

In the following, we only consider events with body-
wave magnitude mb 2 or higher. All other events are consid-
ered noise, because they are too small to be relevant for treaty
monitoring purposes.

Event Rate and Time. Events are assumed to be generated
by a time-homogeneous Poisson process with a rate param-
eter, λe. If e is a set of events (of size jej), and T is the time
period under consideration (in seconds), the prior probability
of the number of events, Pθ;n�·�, is given by

Pθ;n�jej� �
�λeT�jej exp�−λeT�

jej! : (1)

For each event, ei, the event time, eit, is uniformly distributed
between 0 and T; in other words, the prior probability density
of the event time, Pθ;t�·�, is given by

Pθ;t�eit� �
1

T
: (2)

The parameter, λe, is estimated from the average historical
event frequencies as shown in Figure 2. The estimated value
of λe is 0.001266 per second or 4.6 per hour.

Event Location. The longitude and latitude of the ith event,
eil, are drawn from an event location density, Pθ;l�el�, on the
surface of the Earth. This density is a mixture of a uniform
density (to allow for explosions and de novo seismic activity
anywhere on the surface) and a density estimate based on
historical event locations. The historical density is modeled
by a kernel density obtained by placing a kernel function
Kb;x�·� of some fixed width parameter b at every known
event location, so the overall mixture has the form

Pθ;l�el� � :001
1

4πR2
� :999

1

H

XH
h�1

Kb;ghl
�el�;

where R is the Earth’s radius, H is the number of historical
events, and g1l ;…; gHl are the locations of those events. We
use an exponential kernel of the form

Kb;x�y� �
1� 1=b2

2πR2

exp�−Δxy=b�
1� exp�−π=b� ;

where Δxy is the great-circle distance between locations x
and y, measured in radians. Notice that in the limit as
b → ∞, the kernel tends to the uniform density over the
Earth’s surface.

The optimal value of b is chosen by leave-one-out cross
validation (LOOCV) over a random subset of 1000 event
locations in the dataset. We use a grid search to find the value
of b within 0 and 2 that maximizes the LOOCV value. We
initially use a grid size of 0.2 and refine the search with a
grid size of 0.05. Figure 3 plots the results of this search.
The best value of b that is chosen is 0.7. In Figure 4 we show
the event location prior log�Pθ;l�·��, using all of the training
dataset and the optimal bandwidth.

The depth of the event, eid, is uniformly distributed up to
a maximum depth D (700 km in our experiments); in other
words, the probability density of the event depth, Pθ;d�·�, is
given by

Figure 2. Estimating event rate. The color version of this figure
is available only in the electronic edition.

Figure 3. Event location average leave-one-out log likelihood
versus bandwidth. The color version of this figure is available only
in the electronic edition.
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Pθ;d�eid� �
1

D
: (3)

Event Magnitude. The Gutenberg–Richter law (Gutenberg
and Richter, 1954) posits that the number of events with
magnitude m or more is 10 times the number of events with
magnitude m� 1 or more. In terms of the event magnitude
probability of an arbitrary event: Pθ;m�eim ≥ m� �
10 · Pθ;m�eim ≥ m� 1�. We represent this prior knowledge
in our model with an exponential distribution defined for
eim ≥ 2 with rate λm � log�10�:

Pθ;m�eim� � λm exp�−λm�eim − 2��: (4)

Note that because we assume a minimummagnitude of 2, the
exponential distribution is shifted forward by this amount.
Although man-made events may not follow the Guten-
berg–Richter law, their frequency is too low to affect the
overall distribution significantly.

Overall Event Prior. Under the assumption that the event
location, depth, time, and magnitude are independent of each
other, the probability of a single event, ei, is given by the
product of the component terms:

Pθ�ei� � Pθ;l�eil�Pθ;d�eid�Pθ;t�eit�Pθ;m�eim�:

Substituting from equations (2), (3), and (4), we get

Pθ�ei� � Pθ;l�eil�
1

D
1

T
λm exp�−λm�eim − 2��: (5)

In our model, all the events are exchangeable and are gen-
erated independently, thus,

Pθ�e� � Pθ;n�jej� · jej! ·
Yjej
i�1

Pθ�ei�:

(Note that we are overloading Pθ�·� to refer to the distribution
over the set of events as well as the distribution of a single
event.) Substituting from equations (1) and (5),

Pθ�e� � exp�−λeT�
Yjej
i�1

Pθ;l�eil�
1

D
λeλm exp�−λm�eim − 2��:

(6)

If we define the following single-event quantity, which is
independent of the arbitrary interval T,

P̂θ�ei� � Pθ;l�eil�
1

D
λeλm exp�−λm�eim − 2��:

then we can simplify equation (6) to

Pθ�e� � exp�−λeT�
Yjej
i�1

P̂θ�ei�: (7)

As noted in the Future Work section, the time-homogeneity
and independence assumptions are violated by aftershock
phenomena.

True Arrivals

An event can generate at most one true arrival of each
phase type at a station. Whether or not the arrival is generated
depends on the detection probability.

Detection Probability. The probability that an event i’s jth
phase, 1 ≤ j ≤ J, is detected by a station k, 1 ≤ k ≤ K,
depends on the phase, the station, and the event’s magnitude,
depth, and distance to the station (eim, eid, andΔik). As noted
in the Future Work section, such a model ignores source
location and path effects as well as anisotropic radiation
patterns. Let Pjk

ϕ;d�ei� be the probability of this detection. The
phase- and station-specific detection distributions, Pjk

ϕ;d�·�,
were obtained using logistic regression models, which are a
standard tool for modeling true/false random variables. In
such models, a weighted linear expression is formed from the
inputs (and possibly additional features computed from the
inputs), and the probability that the output is true; in this
case, the detection of the phase is given by applying a soft
threshold logistic function to the value of the weighted linear
expression. The net effect is that the log odds of detection are
a linear function of the input features:

log
�

Pjk
ϕ;d�ei�

1 − Pjk
ϕ;d�ei�

�
�

X
w∈F d

μwjk
d · w�eim; eid;Δik�;

where F d is a set of feature functions such that for each
w∈F d, w: R3 → R. Also, μwjk

d is the weight for the feature
w. The complete set of features is defined in Table 2. Because
the event magnitude is one of the features, another way of
thinking about the previous equation is that a unit increase

Figure 4. Event location log density. The color version of this
figure is available only in the electronic edition.
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in the event magnitude would result in the odds of detection
increasing by a multiplicative constant. The exact constant is
the exponentiation of the corresponding weight of the mag-
nitude feature, and this is station dependent. In fact, if the
weight was negative then the detections odds would de-
crease; this is, in fact, the case for the travel-time feature.

Directly estimating the feature weights μwjk
d is not

always possible because many of the station–phase combi-
nations have very little data. To deal with this data sparsity
we used a hierarchical Bayesian procedure (Gelman et al.,
2004), which posits that the weight for a station–phase is
drawn from a global prior for that phase. This global prior
is, in turn, drawn from a weakly informative prior, as follows:

μwjk
d ∼N �μwj

d ; σwj
d � μwj

d ∼N �0; 100�
�σwj

d �−2 ∼ Γ�0:01; 100�;

where N and Γ are the Gaussian and the gamma distribu-
tions parameterized by their mean and standard deviation,
and shape and scale, respectively. Estimation of parameters
follows a coordinate ascent procedure. For each phase j, we
initialize μwj

d � 0 and σwj
d � 1, and then alternately optimize

μwjk
d :∀w, k, μwj

d :∀w, and σwj
d :∀w until convergence. In each

maximization step, the optimal value of μwjk
d is computed by

second-order optimization, while the remaining values have
a closed-form solution.

For each phase, the previously described procedure
ensures that if a station has a lot of data (both detections
and nondetections), then its feature weights will be deter-
mined almost entirely by its own data, whereas feature
weights for data-poor stations tend toward a global average
obtained from all stations. Thus, if most data-rich stations

have a positive weight for event magnitude for the P phase,
then a station with very little data will also have a positive
weight for this feature.

In Figure 5 we show the model prediction that is, the
probability of detection, for one phase at a station.

Arrival Attributes. If event i’s jth phase is detected by a
station k, we define Λijk as the corresponding arrival. For
notational convenience, we define Λijk � ζ whenever this
phase is not detected. Our model specifies a probability dis-
tribution for the measured attributes of this arrival: the onset
time Λijk

t , the azimuth Λijk
z , the slowness Λijk

s , the amplitude
Λijk
a , and the assigned phase label Λijk

h . The arrival time is

Λijk
t � eit � IjT�eid;Δik� � rijkt ;

where IjT is the prediction from the IASPEI travel-time model
(a function of the event depth and distance to the station), and
rijkt is a random residual. The residual distribution accounts
for the inhomogeneities in the Earth’s crust, which allow
seismic waves to travel faster or slower than the IASPEI pre-
diction. This distribution also accounts for any systematic
biases in picking seismic onsets from waveforms. Whereas
most authors assume Gaussian residuals, an assumption
implicit in the use of quadratic cost functions in the GA sys-
tem, we find experimentally that travel time and indeed most
other residuals are distributed according to a Laplacian
method. The parameters of a Laplacian distribution are the
mean μjk

t and scale bjkt , and the distribution is given by

Pjk
ϕ;t�Λijk

t jei�� 1

2bjkt
exp

�
−
jΛijk

t −eit− IT�eid;Δik�−μjk
t j

bjkt

�
:

Similarly, the arrival azimuth and slowness follow a Lapla-
cian distribution:

Table 2
Detection Features*

Feature Value

(Intercept) 1
mag eim
depth eid
dist Δik

dist0 N �Δik; 0; 5�
dist35 N �Δik; 35; 20�
dist40 N �Δik; 40; 20�
dist12520 N �Δik; 125; 20�
dist12540 N �Δik; 125; 40�
dist 145 N �Δik; 145; 10�
dist170 N �Δik; 170; 20�
dist175 N �Δik; 175; 30�
mag6 N �eim; 6; 5:5�
mag68 N �eim; 6; 8�
md �7 − eim� ·Δik

*List of features used for computing the probability of
detecting an arrival from an event i with magnitude eim, depth
eid, and distance Δik from station k. Here N �x;μ;σ� is the
standard Gaussian density with mean μ and standard deviation
σ measured at x.

Figure 5. Conditional detection probabilities for the P phase of
surface events between 3 and 4 mb at station ASAR. The color
version of this figure is available only in the electronic edition.
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Pjk
ϕ;z�Λijk

z jei� � 1

2bjkz
exp

�
−
jψ�Λijk

z ; Gz�skl ; eil�� − μjk
z j

bjkz

�
;

Pjk
ϕ;s�Λijk

s jei� � 1

2bjks
exp

�
−
jΛijk

s − Ijs�eid;Δik� − μjk
s j

bjks

�
:

Here the function ψ computes the difference in the observed
angle Λijk

z and the angle computed from the geographical
function Gz, which depends on the station location, skl , and
the event location, eil. Also, I

j
s is the slowness value com-

puted from the IASPEI model for phase j. Technically, the
fact that the domain of Laplace distributions is the entire real
line makes them inappropriate for azimuth and slowness var-
iables; but the model is reasonable given the small scale of
the residuals. It should be noted that the observed values of
azimuth and slowness referred to already include certain
CTBTO-defined, station-specific corrections called slowness
azimuth site corrections (SASC).

The estimation of all the station-and-phase-specific
means and scales, for example μjk

t and bjkt , is based on a hier-
archical model. In this model, each mean and scale is gener-
ated from a phase-global prior, which we describe for the
arrival time in the following equation:

rijkt ∼ Laplace�μjk
t ; b

jk
t � μjk

t ∼ Laplace�μj
t ; b

j
t �

�bjkt �−1 ∼ Γ�1; βj
t � μj

t ∼ Laplace�0; 100�
�bjt �−1 ∼ Γ�:01; 100� �βj

t �−1 ∼ Γ�:01; 100�:
For each phase j, we start by initializing μjk

t � 0, bjkt � 1 for
all stations k, μj

t � 0, bjt � 1, and βj
t � 1. Next, we itera-

tively optimize the values of μjk
t , b

jk
t for each station, and

the global values μj
t , b

j
t , and β

j
t . This is repeated until conver-

gence. Each of these optimization steps has a simple closed-
form solution. A similar procedure is adopted for estimating
the azimuth parameters, μjk

z and bjkz , and the slowness param-
eters, μjk

s , and b
jk
s . Examples for these three types of distribu-

tions are shown in Figures 6, 7, and 8.
The effect of the hierarchical model is similar in spirit to

the model for detection probabilities. For each phase, stations
with a lot of data will compute the mean and scale almost
exclusively from their own data, whereas parameters for
data-poor stations will tend to reflect the global average.

The arrival amplitude Λijk
a is similar to the detection

probability because it depends only on the event magnitude,
depth, and distance to the station. We model the log of the
amplitude via a linear regression model with Gaussian noise,

rijka � log�Λijk
a � −

X
w∈F a

μwjk
a · w�eim; eid; IjT�eid;Δik��;

rijka ∼N �0; σjk
a �;

where F a is a set of feature functions (see Table 3), and
μwjk
a is the weight for feature w. This implies that

Pjk
ϕ;a�Λijk

a jei� � 1������
2π

p
σjk
a
exp

�
−
�rijka �2
2σjk2

a

�
1

Λijk
a

:

Figure 6. Arrival time distribution around the IASPEI prediction
for P-phase arrivals at station ASAR. The color version of this fig-
ure is available only in the electronic edition.

Figure 7. Arrival azimuth distribution around the geographical
prediction (plus SASC correction) for P-phase arrivals at station
ASAR. The color version of this figure is available only in the elec-
tronic edition.

Figure 8. Arrival slowness distribution around the IASPEI pre-
diction (plus SASC correction) for P-phase arrivals at station ASAR.
The color version of this figure is available only in the electronic
edition.
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In order to estimate the feature weights, we use a hierarchical
model, as before, which assumes that for each phase the fea-
ture weights at a station are drawn from a global prior:

μwjk
a ∼N �μwj

a ; σwj
a � �σjk

a �−2 ∼ Γ�100; βj
a�

μwj
a ∼N �0; 100� �σwj

a �−2 ∼ Γ�:01; 100�
�βj

a�−1 ∼ Γ�:01; 100�:

Maximum a posteriori (MAP) inference of these weights is
along the lines of the method already described for other
parameters. Figure 9 has an example of a learned model.

Finally, the distribution for the assigned phase label Λijk
h

reflects the phase classification errors made by station
processing. We model this with a categorical distribution
whose parameters depends only on the true phase, j:

Pjk
ϕ;h�Λijk

h jei� � Pj
h�aijkh �:

Learning the categorical distributions Pj
h is a simple matter

of counting with add-one smoothing. The learned distribu-
tion is plotted as a heat map in Figure 10. The results indicate
that many phases are falsely classified as P by the station-
processing software.

Overall True Arrivals. We assume that all the measured
attributes of an arrival are conditionally independent of each
other, given the true event. Thus,

Pjk
ϕ �Λijkjei� � Pjk

ϕ;t�Λijk
t jei�Pjk

ϕ;z�Λijk
z jei�Pϕ;s�Λijk

s jei�
× Pjk

ϕ;a�Λijk
a jei�Pjk

ϕ;h�Λijk
h jei�:

Further, assuming that the arrivals are all conditionally inde-
pendent, and keeping in mind that the observed arrivals Λ
include by implication all the nondetections for every miss-
ing station–phase combination, we have

Pϕ�Λje� �
Yjej
i�1

YJ
j�1

YK
k�1

�1�Λijk � ζ��1 − Pjk
ϕ;d�ei��

� 1�Λijk

≠ ζ�Pjk
ϕ;d�ei�Pjk

ϕ �Λijkjei��: (8)

The term inside the product is either a nondetection proba-
bility or a detection probability times the arrival probability.

The indicator variable on the condition Λijk � ζ selects the
appropriate term.

These conditional independence assumptions are impor-
tant in reducing the number of model parameters, but they are
certainly open to question. Considering arrivals at two differ-
ent stations, the assumption implies that the residuals are un-
correlated; this is reasonable because IMS stations are widely
separated. For arrivals of two different phases at the same
station, the assumption of uncorrelated residuals ismore prob-
lematic. Our analysis of travel-time residuals for P and S
phases does show some correlation, but it is weak enough that
ignoring it does not seriously compromise performance.

Each station k also generates a set ξk of false arrivals,
that is, arrivals not associated with any event phase. These
are described by an overall distribution Pk

ω. The number of
false arrivals is distributed according to a time-homogeneous
Poisson process with rate λkf:

Pk
ω;n�jξkj� �

�λk
fT�jξ

kj exp�−λkfT�
jξkj! :

Table 3
Amplitude Features*

Feature Value

(Intercept) 1
mag eim
depth eid
t time IjT�eid;Δik�
t time0 N �IjT�eid;Δik�; 0; 50�

*List of features used for predicting the amplitude of a phase, j,
arrival from an event, i, at a station, k.

Figure 9. Arrival log amplitude distribution for the P phase of a
surface event of 3–4 mb at station ASAR. The color version of this
figure is available only in the electronic edition.

Figure 10. Arrival phase probability as function of the true
phase. The color version of this figure is available only in the elec-
tronic edition.
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The values of λkf are displayed in Figure 11. If ξkl is one of
this set of false arrivals, its time ξklt , azimuth ξklz , and slow-
ness ξkls are generated uniformly over their respective ranges:

Pk
ω;t�ξklt � �

1

T
; Pk

ω;z�ξklz � �
1

Mz
; Pk

ω;s�ξkls � �
1

Ms
;

where Mz and Ms are the range of values for azimuth and
slowness, respectively. The log amplitude log�ξkla � of the
false arrival is generated from either a uniform distribution
with probability 0.1 or a mixture of two Gaussians, which is
estimated from the data with a standard expectation maximi-
zation procedure. This distribution, fkω;a�·�, at one station is
displayed in Figure 12.

False Arrivals

The resulting distribution on the false arrival amplitude
is given by

Pk
ω;a�ξkla � � fkω;a�log�ξkla ��

1

ξkla
:

Finally, the phase label ξklh assigned to the false arrival fol-
lows a categorical distribution, Pk

ω;h�ξklh �. This is estimated
via the posterior mean under a uniform Dirichlet prior
(see Fig. 13).

Overall, assuming the false arrival attributes are inde-
pendently generated, we have

Pk
ω�ξkl� � Pk

ω;t�ξklt �Pk
ω;z�ξklz �Pk

ω;s�ξkls �Pk
ω;a�ξkla �Pk

ω;h�ξklh �:
Because the false arrivals at a station are exchangeable, the
probability for the set ξk is

Pk
ω�ξk� � Pk

ω;n�jξkj� · jξkj!
Yjξkj
l�1

Pk
ω�ξkl�

� exp�−λkfT�
Yjξkj
l�1

λkf
MzMs

Pk
ω;a�ξkla �Pk

ω;h�ξklh �:

As before, we have overloaded Pk
ω to refer to a distribution

over a set of arrivals as well as a single arrival. As before, we
can simplify the equations by defining

P̂k
ω�ξkl� �

λkf
MzMs

Pk
ω;a�ξkla �Pk

ω;h�ξklh �:

Now, assuming that the false arrivals at different stations are
independent of each other, the probability for the complete
set ξ of all false arrivals at all stations is

Pω�ξ� � exp
�
−
XK
k�1

λkfT
�YK

k�1

Yjξkj
l�1

P̂k
ω�ξkl�: (9)

Coda Arrivals

Following the initial onset and peak, the arriving energy
from a seismic phase does not decay smoothly, but exhibits
many subsidiary peaks, some of which may even be larger
than the initial peak. These subsidiary peaks may fool the
STA/LTA detector into announcing additional arrivals, called
coda arrivals; in the IMS data, up to half of all arrivals are of

Figure 11. The average false arrival rate per hour at all the
stations. The color version of this figure is available only in the elec-
tronic edition.

Figure 12. Amplitude distribution for false arrivals at station
ASAR. The color version of this figure is available only in the elec-
tronic edition.

Figure 13. Phase distribution for all false arrivals. The color
version of this figure is available only in the electronic edition.

NET-VISA: Network Processing Vertically Integrated Seismic Analysis 717



this type. An example of coda arrivals can be seen in Figure 1
around 20 s after the main arrival, which is at offset 100 s.
One might imagine that coda arrivals can be lumped in with
false arrivals, but it turns out that the attributes of coda arriv-
als are strongly correlated with those of the triggering arrival.
If the coda arrivals are not modeled explicitly, then our in-
ference will end up hypothesizing additional spurious events
as the most likely explanation for many of the coda arrivals.

We model the parameters of the coda arrival with a dis-
tribution Pγ , which is a function of the parameters of the trig-
gering arrival. Whether the triggering arrival was a false
arrival, or caused by an event, or itself triggered by another
arrival, is immaterial. We define ηa as the arrival triggered by
arrival a (at the same station), or ζ if there is no such trig-
gered arrival. Now, the probability that an arrival a triggers a
coda arrival is given by Pγ;d�a�, which is a function of the
amplitude of the arrival a. We estimate Pγ;d with a nonpara-
metric model by discretizing the log amplitude of the trigger-
ing arrival into buckets of size 0.25 between −4 and 10. This
distribution is displayed in Figure 14. Any points outside
these extreme values are mapped to the nearest bucket.

One problem that arises while training the model for
coda arrivals is that the IDC analysts do not annotate coda
arrivals in the LEB bulletin, which makes it hard to estimate
the parameters of Pγ . Our solution is to heuristically annotate
some of the unassociated arrivals as coda arrivals and use this
annotation to learn Pγ and also Pω. Our procedure searches
the training data for any unassociated arrivals within 30 s of a
prior arrival at the same station and with an azimuth and
slowness within 50° and 10 s per degree, respectively, of
the prior arrival’s values, and to mark such arrivals as coda.

We model the distribution of the time delay between the
coda arrival and the triggering arrival as a gamma distribu-
tion (see Fig. 15):

ηat − at ∼ Γ�ρt; νt�; i:e:

Pγ;t�ηat ja� �
1

Γ�ρt�νρtt
�ηat − at�ρt−1 exp

�
−
ηat − at

νt

�
:

The differences in azimuth, slowness, and log amplitude of
the coda versus the triggering arrival are all modeled as
Laplace distributions (Figs. 16, 17, and 18):

Figure 14. Coda detection probability as a function of the log
amplitude of the triggering arrival. The color version of this figure is
available only in the electronic edition.

Figure 15. Time delay for coda arrival after the triggering
arrival. The color version of this figure is available only in the elec-
tronic edition.

Figure 17. Coda slowness difference versus triggering arrival.
The color version of this figure is available only in the electronic
edition.

Figure 16. Coda azimuth difference versus triggering arrival.
The color version of this figure is available only in the electronic
edition.
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Pγ;z�ηaz ja� �
1

2νz
exp

�
−
jψ�ηaz ; az� − ρzj

νz

�

Pγ;s�ηas ja� �
1

2νs
exp

�
−
jηas − as − ρsj

νs

�

Pγ;a�ηaaja� �
1

2νa
exp

�
−
j log�ηaa� − log�aa� − ρaj

νa

�
1

ηaa
:

Finally, the coda arrival’s assigned phase label is a categori-
cal distribution, Pγ;h, that does not depend on the previous
arrival’s phase (see Fig. 19). The phase of the coda arrival is
uncorrelated with the phase of the triggering arrival because
these are mostly labeled using a slightly different algorithm
by station processing. Finally, it is worth noting that the coda
model is not station specific, hence data sparsity is not a
concern.

Overall, assuming that all the parameters of the coda
arrival are independent,

Pγ�ηaja� � Pγ;t�ηat jat�Pγ;z�ηat jaz�Pγ;s�ηas jas�
× Pγ;a�ηaajaa�Pγ;h�ηah�:

We will denote by η the generative process of all the coda
arrivals. η encapsulates the relationship between each arrival
and its coda arrival (if any), as well as the set of coda arrivals.
If Λ is the set of true arrivals, and ξ is the set of false arrivals,
then the complete set of arrivals A is given by

A � Λ∪ξ∪η:
Note that some of the coda arrivals are triggered by coda arriv-
als and others by noncoda arrivals. However, for each arrival
a decision is made whether or not to generate a coda. Assum-
ing that the coda arrivals are independent of each other,

Pγ�ηjΛ∪ξ� �
Y

a∈A∧ηa≠ζ
Pγ;d�a�Pγ�ηaja�

×
Y

a∈A∧ηa�ζ
�1 − Pγ;d�a��: (10)

The first product term in equation (10) accounts for the gen-
eration of all the coda arrivals, while the second term accounts
for all arrivals which do not generate any coda.

Summary of Model

Combining the model components developed in the pre-
ceding sections, the overall probability of any hypothesized
sequence of events e, true arrivals Λ, false arrivals ξ, coda
arrivals η, and the complete set of arrivals A, where Ak is the
set of arrivals at station k, is

P�e;Λ; ξ; η; A� � Pθ�e�Pϕ�Λje�Pω�ξ�P�ηjΛ∪ξ�1�A
� Λ⊕ξ⊕η�: (11)

Here the last term is required to ensure that any arrival is
in exactly one of the three sets Λ, ξ, and η. Other obvious
consistency requirements, such as requiring ξk⊆Ak, are left
out for brevity.

Inference

As noted in the Introduction, the goal of NET-VISA’s
inference algorithm is to find the most likely explanation
consistent with the observations,

arg max
e;Λ;ξ;η

P�e;Λ; ξ; ηjA� � arg max
e;Λ;ξ;η

P�e;Λ; ξ; η; A�;

where P�e;Λ; ξ; η; A� is given by equation (11). Because
arrivals from real seismic sensors are observed incrementally
and roughly in time-ascending order, our inference algorithm
also produces an incremental hypothesis that advances with
time. Our algorithm operates by a series of local moves,
modifications to the current hypothesis, that (with some ex-
ceptions) improve its probability score. It can be seen as a
form of optimization by gradient ascent, also known as greedy
local search (Cormen et al., 2009). Further wewill assume that
the coda arrivals form a contiguous chain, or in other words
ηa can be either ζ or the immediately following arrival.

Figure 18. Coda log amplitude difference versus triggering
arrival. The color version of this figure is available only in the elec-
tronic edition.

Figure 19. Coda phase. The color version of this figure is avail-
able only in the electronic edition.
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Let MT denote the maximum travel time for any phase.
Initially, we start with an event window of size W from t0 �
0 to t1 � W, and an arrival window of size W �MT from
t0 � 0 to t2 � W �MT . Then we perform a series of local
moves that add or update events in the event window, delete
existing events, or classify (as true arrival, false arrival, or
coda arrival) the arrivals in the arrival window. Next, the win-
dows are moved forward by a step size, S. At this point,
events older than t0 −MT become stable: none of the moves
modify either the events or arrivals associated with them.
These events are then output. While in theory this algorithm
never needs to terminate, our experiments continue until the
test dataset is fully consumed.

The algorithm’s initial hypothesis is that all new arrivals
added to the arrival window are false arrivals. This is refined
by classifying any arrival a (at station k), with the immedi-
ately preceding arrival a−, as a coda arrival if

Pγ;d�a−�Pγ�aja−� > �1 − Pγ;d�a−��Pk
ω�a�:

In simple terms, the condition expressed in the previous
equation states that it is more likely that the arrival a− gen-
erated a coda and this coda was a than that a− did not generate
a coda and a was a false arrival. This default classification for
an arrival is retained whenever it is no longer associated with
an event. For convenience we define

Υk�a� � maxfPγ;d�a−�Pγ�aja−�;
�1 − Pγ;d�a−��Pk

ω�a�g:
(12)

Next, the birth move generates new events in the event win-
dow. These events are added to the hypothesis with Λijk � ζ
for each new event i. Subsequently, we repeat the following N
times: one improve-arrival move for each arrival in the arrival
window, and one improve-event move for each event in the
event window. Finally, the death move kills some of the events,
and we repeat one round of improve-arrival and improve-event
moves. We describe these steps algorithmically next. The indi-
vidual moves will be described in more detail later.

1. t0 � 0; t1 � W; t2 � W �MT .
2. Repeat while t0 < max time.

I. Give a default classification to arrivals in t0 to t2.
II. Add events from birth move (t0, t1, fa:t0 ≤ at ≤ t2g).
III. Repeat N times.

i. For each arrival a, such that t0 ≤ at ≤ t2, im-
prove-arrival (a).

ii. For each event ei, such that t0 ≤ eit ≤ t1, im-
prove-event (ei).

IV. For all events ei, death move (ei).
V. For each arrival a, such that t0 ≤ at ≤ t2, improve-

arrival (a).
VI. For each event ei, such that t0 ≤ eit ≤ t1, improve-

event (ei).
VII. t0� � S, t1� � S, t2� � S.
VIII. Output ei, Λijk for all ei such that eit < t0 −MT .

3. Output any remaining ei.

In order to simplify the computations needed to compare
alternate hypotheses, we decompose the overall probability
of equation (11) into the contribution from each event. We
define the score Se of an event as the probability ratio of two
hypotheses: one in which the event exists, and another in
which the event does not exist and all of its associated arriv-
als have the default classification (false or coda). If an event
has score less than 1, an alternative hypothesis in which the
event is deleted clearly has higher probability. Critically, this
event score is unaffected by other events in the current hy-
pothesis. From equations (7), (8), (9), (10), and (12) we have

Se�ei� � Pθ�ei�
YJ
j�1

YK
k�1

�
1�Λijk � ζ��1 − Pjk

ϕ;d�ei��

� 1�Λijk ≠ ζ�Pjk
ϕ;d�ei�Pjk

ϕ �Λijkjei�
Υk�Λijk�

�
:

Note that the final fraction in the previous equation is a like-
lihood ratio comparing interpretations of the same arrival as
either the arrival of event i’s jth phase at station k, or as a
false arrival or a coda arrival. We can further decompose the
score into scores Sd for each arrival. The score of Λijk,
defined when Λijk ≠ ζ, is the ratio of the probabilities of
the hypothesis, where the arrival is associated with phase
j of event i at station k versus the default classification.

Sjkd �Λijkjei� � Pjk
ϕ;d�ei�

1 − Pjk
ϕ;d�ei�

Pjk
ϕ �Λijkjei�
Υk�Λijk� :

By definition, any arrival with a score less than 1 is more
likely to be a false or coda arrival. Also, the score of an indi-
vidual arrival is independent of other arrivals and events in
the hypothesis. These scores play a key role in the following
local search moves.

Birth Move

The birth move proposes events within a given time
range, based on a list of arrivals. It starts off by inverting each
of these arrivals to obtain an initial candidate list of event
locations and times. The ability to invert an event follows
from the fact that the slowness of an arrival is a monotonic
function of distance (with fixed depth). If one assumes that
an arrival is the P phase of a surface event, one can obtain a
distance estimate from the slowness, which, combined with
the arrival azimuth and time, gives an estimate for an event
location and time. In Figure 20 we show the statistics of the
distance between the inverted locations obtained from all
arrivals in a one-week period and the corresponding ground-
truth events during the same time period. The statistics in the
figure show that for the great majority of events there is some
arrival with an inverted location within 5°.

Having proposed a location and time by inverting one
arrival, the birth move next attempts to construct the best
possible event in a 5°-ball around the candidate location
in steps of 2.5° using all available detections. Event depth
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is fixed to the surface, and two possible magnitude values are
used (3 and 4). The event time is computed from the IASPEI
model using the current event location and the arrival time.
The best such event is further optimized using the improve-
arrival and improve-event moves and then set aside. This
process is repeated as long as the best event has a score
greater than 1. An event is not allowed to use arrivals asso-
ciated with events found earlier in this process. Finally, all
the events generated in this process are returned (without
their associated arrivals). In algorithmic form, the process
is as follows:

1. Given t0, t1, and arrivals A.
2. Repeat for each a in A.

I. Invert a to obtain a candidate location ιa.
II. Repeat for each location e in a ball around ιa.

i. Initialize Λe.
ii. Repeat for each arrival a in A (let k be a’s station).

•Determine the phase j with the maximum
score Sjkd �aje�.
•If Sjkd �aje� > Sjkd �Λjkje� or if Λjk � ζ and
Sjkd �aje� > 1, then set Λjk � a.

3. Let e be the event with the maximum score Se�e� in
step 2.

4. Repeat 100 times.

I. Invoke improve-event �e�.
II. Invoke improve-arrival (a) for all a in A with e as the

only potential event.
5. If Se�e� > 1, then set aside event e, and remove arrivals

in Λejk from A, then go to step 2.
6. Return set-aside events.

Note that the design of the birth move allows for easy
parallelization using threads. On a machine with multiple
CPU cores, a simple variant of the previously described birth

move is employed. In step 2, the arrivals are divided equally
among the threads. Each thread uses its arrivals to compute its
candidate events that are then evaluated against all the arrivals
to compute the best event. Finally, in step 3 the overall best
event from among all the threads is computed in serial.

Improve-Arrival Move

For each arrival in the arrival window, we consider all
possible phases j of all events i up to MT seconds earlier.
We then associate the best event–phase pair for this arrival
that is not already assigned to an arrival with higher score
at the same station k. If this best event–phase pair has score
Sjkd �Λijkjei� < 1, the arrival is changed to its default status
(one of false or coda). In more precise terms:

1. Given arrival a at station k.
2. Repeat for each event e.

• Determine the phase j with the maximum score
Sjkd �Λejkje�.

3. Let e be the event with the maximum score Sjkd �Λejkje�.
4. If Sjkd �aje� > Sjkd �Λejkje� or if Λejk � ζ and Sjkd �aje� >

1, then set Λejk � a.

Improve-Event Move

For each event ei, we consider 100 points chosen uni-
formly at random in a small ball around the event (2° in lon-
gitude and latitude, 100 km in depth, 5 s in time, and 2 units
of magnitude), and choose those attributes with the highest
score Se�ei�.

Death Move

Any event ei with score Se�ei� < 1 is deleted, and all of
its currently associated arrivals are marked as false alarms.

(a) (b)

Figure 20. Distance between events and inverted locations within 10° and 100 s. (a) The figure shows the distance from a true event and
the nearest inverted location. (b) The figure shows the converse, that is, the distance from an inverted location to the nearest true event. The
color version of this figure is available only in the electronic edition.
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Note that the birth move is not a greedy move: the pro-
posed event will almost always have a score Se�ei� < 1 until
some number of arrivals are assigned in subsequent moves.
The overall structure of these moves could be easily con-
verted to a Markov chain Monte-Carlo (MCMC) method or

simulated annealing algorithm. However, in our experiments
this search outperformed simple MCMC methods in terms of
speed and accuracy.

Experimental Results

Metrics

We compute the accuracy of an event history hypothesis
by comparison to a chosen ground-truth history. A bipartite
graph is created between predicted and true events. An edge
is added between a predicted and a true event that is at most
5° in distance and 50 s in time apart. The weight of the edge is
the distance between the two events. Finally, a minimum
weight–maximum cardinality matching is computed on the
graph. We report three quantities from this matching, preci-
sion (percentage of predicted events that are matched), recall
(percentage of true events that are matched), and average er-
ror (average distance in kilometers between matched events).

Summary of Results

A visual analysis of events appearing in the NET-VISA
and SEL3 bulletins highlights the obvious differences be-
tween them. In Figure 21 we show all the SEL3 and LEB
events for a week, and in Figure 22 we show all the NET-
VISA and LEB events for the same week. The figures show
that the NET-VISA events are much more closely aligned to
the LEB events.

For a more formal comparison, we quantify our results
by measuring the precision, recall, and average error of our
predictions with respect to an assumed ground truth. We first

Figure 21. Distribution of all the events predicted by the SEL3
(circles) and the LEB (stars). The color version of this figure is avail-
able only in the electronic edition.

Figure 22. Distribution of all the events predicted by NET-
VISA (squares) and the LEB (stars). The color version of this figure
is available only in the electronic edition.

Figure 23. Precision-recall performance of the proposed NET-
VISA and deployed SEL3 algorithms, treating the analyst-generated
LEB as ground truth. The color version of this figure is available
only in the electronic edition.

Table 4
Recall (mb)

SEL3 NET-VISA

mb Count Recall Error Recall Error

Unknown 74 64.9 101 83.8 76
2–3 36 50.0 186 88.9 130
3–4 558 66.5 104 88.0 107
>4 164 86.6 70 92.1 66
All 832 69.7 99 88.5 97

Recall and average error (km) subdivided by the LEB event
magnitude (mb).

Table 5
Recall (Azimuth Gap)

SEL3 NET-VISA

Azimuth Gap Count Recall Error Recall Error

0–90 55 100.0 22 100.0 33
90–180 260 93.5 66 96.5 55
180–270 273 59.7 120 88.3 105
270–360 244 48.8 173 77.0 161

All 832 69.7 99 88.5 97

Recall and average error (km) subdivided by the LEB event
azimuth gap.
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treat the IDC analyst-generated LEB as the ground truth, and
compare the performance of our NET-VISA algorithm to the
currently deployed GA system and the SEL3 bulletin it pro-
duces. Because there is a natural trade-off between precision
and recall, for example, perfect recall can be achieved at the
expense of precision by reporting events in all locations at all
times, it is common in statistics and machine learning to
compute a precision–recall curve showing the best recall that
can be achieved for each possible level of precision (or vice
versa). In NET-VISA, the curve is generated by adjusting the
score threshold for including events in the bulletin: a higher
threshold increases precision but lowers recall (see Fig. 23).
Because we are not able to adjust the GA software, we have
marked SEL3 on the graph as a single point. NET-VISA has
at least 18% more recall at the same precision as the SEL3,
and at least 38% more precision at the same recall as the
SEL3. Put another way, NET-VISA reduces the number of
missed events by about 60%.

Also in this figure, we show an extrapolated precision–
recall curve for the SEL3 using scores from a Support Vector
Machine trained to classify true and false SEL3 events from
the work of Mackey et al. (2009). Next, we discuss further
the right (high-precision) end of this curve.

For completeness, we note the following run-time statis-
tics: The NET-VISA inference algorithm used a window size,
W, of 30minutes; a step size, S, of 15 minutes; andN � 1000

iterations. The inference for 1weekof data took about 4.5 days
on a single CPU core running at 2.5 GHz. Estimating model
parameters from2.5months of training data took about 1 hour.

The arrivals include those from both the primary and
auxiliary stations in the IMS network. Although both the
NET-VISA bulletin and the SEL3 were produced using the
same set of arrivals, the GA algorithm treats arrivals from
auxiliary IMS stations differently. These arrivals are not

allowed to drive event formation. NET-VISA makes no such
distinction, and thus enjoys a slight advantage.

Underconstrained Events

To further understand why NET-VISA is able to find
events missed by the SEL3, we subdivide the NET-VISA and
the SEL3 recall and average error by two different criteria. In
Table 4 we subdivide by the LEB event magnitude. For mag-
nitudes up to 4, NET-VISA has nearly 20% higher recall with
similar error. In Table 5 we subdivide by the LEB event
azimuth gap. The azimuth gap of an event is the largest differ-
ence between successive event-to-station azimuths for sta-
tions where the automated processing detected an arrival for
the event. Large gaps indicate that the event location is under-
constrained. For example, if all stations are to the southwest of
an event, the gap is greater than 270°, and the event will be
poorly localized along a line running from southwest to north-
east. The results in these two tables highlight a common
theme: NET-VISA performs significantly better than the SEL3
whenever there are less data available. Under these circum-
stances the additional information in the NET-VISA model,
location prior, amplitude, nondetections, etc., plays a critical
role in determining a better location for the events.

In Table 6 we show the location of one such undercon-
strained LEB event, origin-ID 5287957, the nearest NET-
VISA event, which is 2° and 18 s away, and the nearest
SEL3 event, which is 8° and 52 s away. Although there are
very few arrivals to help locate this event, and the azimuth
gap is more than 270°, it is worth noting that NET-VISA is
able to use the event location prior, shown in the last column
of Table 6, to choose a more likely location for the event. Fur-
ther, NET-VISA associates this event with an Sn phase at sta-
tion URZ (Urewera, New Zealand) without a corresponding
Pn phase at the same station, something SEL3 would avoid.
The associations of the events to the automatically detected
arrivals are displayed in Table 7. In fact, the human analysts
only associated the Sn phase because they manually added a
new arrival, which they associated as thePn phase. Of course,
the additional Pn arrival was not available to either NET-
VISA or the SEL3. This particular event also demonstrates
the perils of choosing the MAP event location. In Figure 24
we plot the contours of max�Se�el � ·; em;t � eLEBm;t �,
Se�el � ·; em;t � eNET-VISAm;t �. Or, in other words, at each point
we plot the score of an event using either the LEB event
magnitude, time, depth, and associations or the corresponding
values for the NET-VISA event, whichever is better for that

Table 6
LEB Origin-ID 5287957 Locations

Bulletin Longitude (°) Latitude (°) Depth (km) mb Time Se�·� Pθ;l�·�
LEB 177.67 −33.29 0.0 3.5 1237691617.7 13.3 −10.9
NET-VISA −179:61 −33.50 0.7 3.3 1237691599.7 16.0 −9.9
SEL3 170.48 −32.42 0.0 3.8 1237691669.5 −1:8 −17.2

The locations of various bulletin events around the LEB origin-ID 5287957.

Table 7
LEB Origin-ID 5287957 Associations

Bulletin Station: Phase Station: Phase Station: Phase

LEB URZ: Sn ASAR: P WRA: P
Sd�·� 7.8 13.1 15.0

NET-VISA URZ: Sn ASAR: P WRA: P
Sd�·� 8.8 12.6 14.8
SEL3 PLCA: P ASAR: P WRA: P
Sd�·� 1.2 13.0 15.1

The station–phase associations of various bulletin events around
the LEB origin-ID 5287957.
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location. As this figure suggests, the posterior event location
density is multimodal. The mode picked by NET-VISA hap-
pens to be 2° away from the mode near the LEB location.

Phase Association

Another factor contributing to the better results of NET-
VISA is that it associates many more phases per event than
GA. Figure 25 shows a histogram of the number of additional
associations for events located by both. We have already
alluded to one reason for this. Global association follows cer-
tain rules for its associations; for example, an Sn phase can
only be associated if a Pn phase is associated. NET-VISA, on
the other hand, allows greater flexibility in associations. For
example, it allows for the possibility that the Pn phase might
be missed, but the Sn phase is detected. Another reason for
the additional phases is that GA is unable to change a phase
label once this is determined early in the processing pipeline.
In contrast, NET-VISA distinguishes between true phase and
the phase label assigned by station processing and can revise
its phase hypotheses to optimize the bulletin.

The distribution of additional phases is shown in
Figure 26. This graph shows that NET-VISA is getting many
more of the first-arriving P phases, which are critical for
event location.

Depth

As described in equation (3), NET-VISA assumes
a priori that seismic events are equally likely at all depths.
This assumption gives it a slight disadvantage in areas of
known deep seismicity. In such areas, prior knowledge of
likely event depths could have helped constrain the event
location. Table 8 summarizes the relative performance of the
SEL3 andNET-VISAbroken downby event depth. The results

Figure 24. SEL3 (circle), LEB (triangle), and NET-VISA
(square) locations and posterior log odds ratio around the LEB ori-
gin-ID 5287957. The color version of this figure is available only in
the electronic edition.

Figure 25. The number of additional phases associated by
NET-VISA versus the SEL3 for common events. The color version
of this figure is available only in the electronic edition.

Figure 26. The average number of additional phases associated
per event by NET-VISA versus the SEL3 for common events. The
color version of this figure is available only in the electronic edition.

Table 8
Recall (Depth)

SEL3 NET-VISA

Depth Count Recall Error Recall Error

0 595 66.2 105 86.4 101
0–100 93 86.0 64 100.0 52
100–200 79 75.9 87 98.7 98
200–300 21 81.0 75 100.0 166
300–400 13 69.2 55 92.3 102
400–500 15 73.3 211 66.7 121
500–600 12 58.3 131 41.7 108
600–700 4 50.0 164 50.0 182

All 832 69.7 99 88.5 97

Recall and average error (km) subdivided by the LEB
event depth.
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in the table suggest that NET-VISA has slightly poorer results
for events at depth more than 400 km, although there are too
few deep events in this dataset to support a definite finding.

Comparison with Regional Bulletins

Returning to Figure 23, the gap between the SEL3
extrapolation and NET-VISA on the lower right end of the
figure suggests that NET-VISA is predicting spurious events
with extremely high confidence. In reality, many of these
events are indeed real events that are missed by the human
analysts and hence absent from the LEB. To understand the
true scope of the LEB, we have compared it against various
regional bulletins, which are based on data from many more
stations than in the IMS. In Table 9 we consider both the LEB
and NET-VISA bulletins restricted to specific regions of the
earth and evaluate them against the corresponding regional
bulletins. This table shows that in all regions NET-VISA finds
new events not appearing in the LEB, most notably in the
United States and Kazakhstan. The results in the continental
United States are further subdivided by the local magnitude
(ML) in Table 10. These results indicate that NET-VISA is
able to find roughly half of the events with ML between 3
and 4.5, as well as some weaker events, while the LEB finds
only 7% of events with ML between 3 and 4.5 and none be-
low this.

The exact demarcations of these regions and the bulletins
used are described in Table 11. The NEIC bulletin was used as
the ground truth for the continental United States. This bul-
letin was downloaded from the Incorporated Research Insti-
tutions for Seismology (IRIS). For the other regions we relied
upon the raw bulletins from the International Seismological
Center (ISC; see Data and Resources). The relevant agency
codes are displayed in the table.

ISC Event 13437052. As a concrete examplewe display the
waveforms of one of the events in central Asia that is absent in
the SEL3 and the LEB, but is found by NET-VISA and con-
firmed by a regional bulletin. This event has been given the
event identifier 13437052 by ISC. (See Table 12 for the event
location.) NET-VISA forms the events using regional phases
(Pn, Pg, Sn, Lg) at three IMS stations (MKAR, AAK, and
KURK). The waveforms for the three stations are displayed

in Figures 27, 28, and 29, respectively. In all three figures
the first arrival comes in around 12 s into the waveform. The
figures show the rawwaveforms, two filtered versions, and the
STA/LTA for the higher frequency filtered waveform. The
automatic arrivals are marked with the STA/LTA as dotted ver-
tical lines. Of these three, MKAR is a primary IMS seismic
station, while the other two are auxiliary seismic stations.
While the event satisfies the criteria for inclusion in the LEB,
it lacks the three primary stations required for inclusion in the
Reviewed Event Bulletin (REB); had the event been found by
NET-VISA and presented to an analyst, it is possible that
further primary arrivals could have been added manually.

IDC Evaluation

Finally, we present results of an independent evaluation
of NET-VISA by the IDC. The results were broadly similar to

Table 9
Regional Results

LEB NET-VISA

Region Count Precision Recall Error Precision Recall Error

Japan 1565 100.0 1.9 38 83.3 2.2 104
U.S. 132 100.0 3.0 33 90.5 14.4 93
Italy 96 50.0 1.0 49 66.7 2.1 55
Kazakhstan 65 73.3 16.9 57 70.4 29.2 63

Precision, recall, and average error (km) of the LEB and NET-VISA measured
against various regional bulletins.

Table 10
Continental U.S. Results (ML)

LEB NET-VISA

ML Count Recall Error Recall Error

Unknown 13 23.1 35 23.1 60
1.0–2.0 23 0.0 – 0 –
2.0–2.5 48 0.0 – 4.2 112
2.5–3.0 35 0.0 – 20.0 118
3.0–4.5 13 7.1 28 53.8 78
All 132 3.0 33 14.4 93

Recall and average error (km) subdivided by event
magnitude (ML) in the continental United States.

Table 11
Regional Boundaries

Region Longitude (°) Latitude (°) Ground Truth

Japan 130 to 145 30 to 45 JMA bulletin (ISC)
U.S. −125 to −70 25 to 50 NEIC bulletin (IRIS)
Italy 6 to 19 36 to 48 ROM bulletin (ISC)
Kazakhstan 46 to 86 40 to 55 NNC bulletin (ISC)

The definition of the various regions used for the regional evaluation
and the corresponding ground-truth bulletin.
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those reported in the preceding paragraphs, but the evalu-
ation criteria used by IDC differed from ours in two aspects.
First, the Reviewed Event Bulletin was used as ground truth
instead of the LEB. The REB is a subset of the LEB events that
satisfy certain rules, the most critical of these rules being that
three primary IMS stations must detect each event. Second,
an REB event was considered matched if it was within 18° of
epicentral distance and 120 s of time of the predicted event
and if it shared at least two time-defining arrivals with a pre-
dicted event (where time-defining arrivals are those satisfy-
ing a set of rules designed to ensure accuracy).

The IDC evaluation was conducted for two different time
periods. First, a three-month interval with normal seismic ac-
tivity was considered. During this time period, NET-VISA
and GA (SEL3) were running concurrently on the same set
of arrivals in near real time. For the second time period,
NET-VISA was evaluated on historical data from the large
aftershock sequence following the March 2011 Tohoku
earthquake. These results are summarized in Table 13.
The table also reports under the unmatchable column the
subset of REB events that lacked two automatically picked
time-defining arrivals. These events are effectively unmatch-
able by both the SEL3 and NET-VISA, which are built ex-
clusively from automatically picked arrivals. The most
striking result from the Tohoku evaluation is that nearly
all (98.4%, to be precise) of the NET-VISA events matched

an REB event, while at the same time matching 15% more
events than the SEL3. A possible explanation for this unusu-
ally small false positive rate from NET-VISA is that most of
the events in the Tohoku aftershock sequence are fairly large
events that are detected across many stations in the IMS

Table 12
ISC Event 13437052 Location

Bulletin Longitude (°) Latitude (°) Depth (km) mb Time Se�·�
NNC 81.53 42.37 3.9 3.2 1237760634.43
NET-VISA 82.7 42.5 0.4 2.2 1237760637.8 47.2

The location of ISC event 13437052 in the regional bulletin (NNC) and NET-VISA.

Figure 27. Waveforms at station MKAR (channel BHZ) for
ISC event 13437052. The color version of this figure is available
only in the electronic edition.

Figure 28. Waveforms at station AAK (channel BHZ) for ISC
event 13437052. The color version of this figure is available only in
the electronic edition.

Figure 29. Waveforms at station KURK (channel BHZ) for ISC
event 13437052. The color version of this figure is available only in
the electronic edition.
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network, and in particular many primary stations, thus
satisfying the criteria for REB inclusion.

The other important metric measured in this evaluation
was the running time of NET-VISA. For a normal period, this
would not be a concern because NET-VISA easily keeps up
in real time on a machine with six CPU cores. For a large
aftershock sequence, on the other hand, the running time
can be considerably higher. To obtain near-real-time perfor-
mance for the Tohoku sequence, NET-VISA was run on a
machine with 160 CPU cores. The running time of NET-
VISA on each 30-minute interval of the Tohoku workload
on this large machine is shown as a scatter plot in Figure 30.
The x axis is the number of arrivals considered by the birth
move (i.e., the number of arrivals in the 30-minute birth win-
dow plus the subsequent 2000 seconds), and the y axis is the
number of events produced by the birth move. In this graph,
all running times above 30 minutes are marked with trian-
gles. For visualization purposes, a best-fit hyperplane and
the residuals are also drawn in this figure. The graph shows
that the running time is very nearly linear in the number of
birth events and arrivals. Most importantly, it shows that
given a sufficiently powerful machine, NET-VISA can keep
up in near real time on the most punishing IDC workload
to date.

For a small subset (26 hours) of the three-month work-
load, IDC analysts also manually reviewed the NET-VISA
bulletin confirming the salient points of the evaluation pre-
sented in this paper. Full details of that analysis are provided
in Arora et al. (2012).

Future Work

Our current model makes a number of simplifying as-
sumptions that we plan to address in our future work. We
outline a few of the important ones.

Our assumption that seismic events occur independently
of each other breaks down in the aftershock sequence of a
large earthquake. For example, the rate of aftershocks in the
immediate vicinity of the 2011 Tohoku earthquake was five
times the rate of seismic events for the whole earth. One sol-
ution that we are pursuing is to continuously update our
model parameters after every time interval. For example,
the expected rate of seismic events at each spot on the earth
can be adjusted upward or downward based on the actual
number and magnitude of events in the last interval. Omori
(1894) has proposed a specific model for how such adjust-
ments should be made.

Another aspect of our model that seems to be untenable
after a large event is the assumption that the event detection
probabilities and the noise arrival distributions remain con-
stant. Because a large earthquake can considerably increase
the background noise levels for many days, it can dramati-
cally alter the detection probabilities; for example, some
aftershocks with magnitude 6 can become almost undetect-
able by most stations. Continuously relearning the models is
one approach to address this shortcoming. Another approach
is to incorporate the current background noise level directly
into the model, for example, as a detection probability feature
in Table 2.

Our model also includes many conditional independ-
ence assumptions that may be questionable. For example,
the detection probabilities in our model do not depend on
azimuth. In fact, due to the local geology around a station,
it is quite conceivable that a station might have widely vary-
ing detection probabilities for similar-sized events coming in
from different directions. Moreover, earthquakes do not ra-
diate energy uniformly in all directions, and hence might be
preferentially detected by stations in certain event-to-station
azimuths over others. Similar considerations hold for the
arrival amplitude model as well. A comprehensive solution
would be to build an azimuth-specific detection model for

Table 13
Results of IDC Evaluation

Time Period REB SEL3 NET-VISA

Start Duration Total Unmatchable Total Matched Total Matched

11 June 2012 3 months 7898 340 12,458 5921 13,575 6814
05:30 11 March 2011 27.5 hrs 1078 66 1208 747 876 862

Figure 30. Running times on Tohoku workload versus the
number of birth events and arrivals. The triangles mark run times
in excess of 30 minutes. The graph includes a best-fit hyperplane
and the residuals. The color version of this figure is available only in
the electronic edition.
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each station and to add the moment tensor as an event attrib-
ute in the model. The energy radiation pattern for a seismic
event is clearly very important for the CTBTO because it
could be used as a discriminant for explosions and earth-
quakes. The radiation pattern can also account for the corre-
lations between the detection probabilities of nearby stations,
as well as the correlations between different phases at the
same station.

Elaborating the model by adding dependencies and new
hidden variables (such as the moment tensor) is certainly
feasible, but may require additional historical data to estimate
the necessary parameters. Whether such steps improve mon-
itoring performance remains to be seen. As noted in the
Introduction, we are also extending the generative model
downward to include waveform characteristics. In this way,
detection becomes part of a globally integrated inference
process and hence susceptible to top-down influences, rather
than being a purely local, bottom-up, hard-threshold decision.

Conclusions

Our results demonstrate that a Bayesian approach to seis-
mic monitoring can improve significantly on the performance
of classical systems. The NET-VISA system cannot only
reduce the human analyst effort required to achieve a given
level of accuracy, but it can also lower the magnitude thresh-
old for reliable detection. Given that the difficulty of seismic
monitoring was cited as one of the principal reasons for non-
ratification of the CTBT by the United States Senate in 1999,
one hopes that improvements in monitoring may increase the
chances of final ratification and entry into force.

Putting monitoring onto a sound probabilistic footing
also facilitates further improvements such as continuous es-
timation of local noise conditions, travel time, and attenuation
models without the need for ground-truth calibration experi-
ments (controlled explosions). Moreover, it facilitates an
open-source approach, whereby various expert groups can de-
vise and test more refined and accurate model components
and contribute them as modules in an open probabilistic
architecture.

Data and Resources

A three-month dataset of IMS arrivals, covering the
period 22 March to 20 June 2009, was made available by
the CTBTO through the Virtual Data Exploitation Center,
or vDEC (Vaidya et al., 2009). All of the results described here
except for the IDC evaluation were produced using seven days
of data from the validation set (22 March to 29March). There
were a total of 832 LEB events during this period and roughly
120,000 arrivals. The training set was 2.5 months (5 April to
20 June), including 8313 LEB events and 1,163,848 arrivals.

Additional data were obtained for regional bulletin com-
parisons from IRIS at http://www.iris.edu/SeismiQuery/sq
‑events.htm (last accessed January 2012) and from ISC at
http://www.isc.ac.uk/iscbulletin/search/catalogue/ (last ac-

cessed July 2011). International Seismological Center is
available at http://www.isc.ac.uk (last accessed July 2011).
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