
Supplementary Material
The Nonparametric Metadata Dependent Relational Model

1. MCMC Inference Details
Here we outline the basic MCMC updates performed for all explicitly sampled (e.g. non-collapsed) variables:
v (topic advications), η (block-specific metadata weights), s, r (source and receiver block assignments), and
hyperparamters λ. Note that block relations matrix W is collapsed and not explicitly represented, as required
by our retrospective MCMC technique.

1.1. Independence Sampler for Topic Activations V

The posterior of v:i does not have a closed analytical form due to the nonlinearity associated with the logistic
mapping of our stick-breaking weights π:i. We instead perform a Metropolis-Hastings update with an indepen-
dence proposal q(v∗:i | v:i, η, φ:i, λV ) = N(v∗:i | ηTφ:i, λ

−1
V IK), which represents a sample from our prior. Since our

proposal distributions are equal to the prior we need to evaluate in our acceptance ratio A(v∗:i, v:i), these terms
cancel and we are left with a simple ratio between our likelihood terms so that A(v∗:i, v:i) is now:

=
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(1)

where we let Bki denote the total number of both source and receiver indicators attached to node i assigned
to community k. Formally, Bki =

∑M
m=1

∑N
j=1 δ(sijm, k) + δ(rjim, k). The proposal is then accepted with

probability min(A(v∗:i, v:i), 1).

1.2. Link-specific membership indicator variables sijm, rijm
Recall that for directed edge i to j in relation m, sijm denotes the community through which node i “sends” of
the connection, and rijm indicates the community through which j “receives” this connection. We note that for
fixed i, j,m, we can sample these assignments in an alternating fashion from conditional distributions, or in a
blocked fashion from their joint distribution. We find the joint sampling to provide significant runtime speed up
in implementation, although little seems gained in terms of mixing efficiency. Thus, we present the alternating
sampling scheme here since its exposition is a bit clearer. We update our source community indicator variable
sijm by marginalizing out the beta prior on W::m and fixing its complementary receiver variable rijm as well as
values for πi and πj . In general form, we express the conditional posterior on sijm as

p(sijm|rijm, s−i,j,m, r−i,j,m, Y, π) ∝ p(Yijm|sijm, rijm, s−i,j,m, r−i,j,m, Y−i,j,m)p(sijm|πi) (2)

We use several sufficient statistics about observed edges to make this calculation possible. Recall that an edge i′

to j′ in relation m′ is present if Yi′,j′,m′ = 1, and absent if Yi′,j′,m′ = 0. Missing/unobserved edges Yi′,j′,m′ =?
are ignored during inference.

Suppose rijm = ` and consider setting sijm = k. Let A
\ij
k`m be the total number of present edges with latent

community pairs k, ` excluding Yijm. Furthermore, let B
\ij
k`m be the same for absent edges excluding Yijm. With

these sufficient statistics, our posterior reduces to

p(sijm = k|rijm = `, . . .) ∝ πki

(
(A
\ij
k`m + γa)yijm(B

\ij
k`m + γb)

1−yijm

(A
\ij
k`m +B

\ij
k`m + γa + γb)

)
(3)

Note that πki comes from the logistic mapping of our latent Gaussian variable v:i and that the marginalization
of W will be required when we implement our retrospective MCMC technique to automatically determine the
cardinality of K.
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1.3. Block-Specific Metadata Weights ηk
To sample η:k, the linear function relating metadata to topic k, we condition on all our features φ as well as
λV , µ and Λ, where Λ = λF IF . Columns of η are conditionally independent where the posterior η:k is now:

∝ N(η:k | µ,Λ−1)N(vTk: | φT η:k, λ−1V IN ) (4)

∝ N(η:k | Ση(λV φv
T
k: + Λµ), Ση) (5)

where Ση = (Λ + λV φφ
T )−1, the posterior covariance for η:k. Conditioning on the feature regression weights η,

the mean weight µf in our hierarchical prior for each feature f has a Gaussian posterior:

∝ N(µf | 0, λ−1S )

K∏
k=1

N(ηfk | µf , λ−1F ) (6)

∝ N(µf |
∑K
k=1 ηfk

K + λ−1F
, (λS + kλF )−1) (7)

1.4. Hyperparameters

We place a gamma prior to control the variability of the mean associated with η. The gamma prior that we
place on λS is conjugate so that:

∝ Gam(λS | aS , bS)
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N(µf | 0, λ−1S ) (8)
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2
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Similarly, the precision parameter λF comes from a gamma prior and controls the variability of the feature
weights associate with each topic.

∝ Gam(λF | aF , bF )
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Similarly, the precision parameter λV has a gamma prior and posterior where L = λV I:

∝ Gam(λV | aV , bV )

N∏
i=1

N(v:i | ηTφ:i, L−1) (12)
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2. Link Prediction Experiments
After training the model on the observed edges (e.g. both present and absent), we wish to predict values for
missing edges (those marked Yijm =?). Our MCMC inference provides samples for π, S,R and K (cardinality
of the community set) at each iteration. After running the sampler for sufficiently many iterations, we discard
the first half of samples as burn in and train on the remaining samples. Given T samples indexed by t for each
hidden variable, we predict the value Y ∗ij of the link between i and j given observed edges Y for a particular
relation as follows

E(Y ∗i,j |Y, {π, S,R}Tt=1) =
1

T

T∑
t=1

f(Y ∗i,j |πt, St, Rt,Kt, Y ) (14)

f(Y ∗i,j |π, S,R,K, Y ) =

K∑
k=1

L∑
`=1

p(si,j = k)p(ri,j = l)p(Y ∗i,j = 1|Y, si,j = k, ri,j = l) (15)

=

K∑
k=1

L∑
`=1

πi,kπj,`
Ak` + γa

Ak` +Bk` + γa + γb
(16)

where A and B are sufficent statistic counts over the observed edges Y defined above.

3. Computational Complexity
Here, we compare the per-iteration cost of inference for MMSB and NMDR models with K active communities.
For both models, the cost of resampling the s, r assignments for all edges is comparable, scaling as O(KN2).
NMDR’s non-conjugate community membership prior requires an additional O(KN) operations to resample
the node-specific community weights v; in practice this dominates updates to η and other parameters. This
additional cost scales linearly with the network size, is parallelizable, and allows the NMDR to capture metadata
and avoid model selection issues. Our non-optimized Matlab implementation can be applied, with reasonable
computational time, to networks containing a few thousand nodes.

4. Generating Metadata Graphs
Let φ̃:i be an Fx1 feature vector representing one possible organism indexed i. We then generate T = 1000
samples of v:it ∼ N(ηT φ̃:i, λ

−1
V I) where η and λV are samples from the last iteration of our MCMC chain. We

then obtain an estimate for π̃:i = 1
T

∑T
t=1 π:it where π:it is calculated by the deterministic function in (1) which

determines the logistic mapping of v:it into its stick breaking weights. We repeat this task for all organisms (42
for the figure we show) to generate a set of π̃ vectors. We then generate potential links between these metadata
derived organism types so that a link xijt ∼ Bern(π̂T:itŴ::tπ̂:jt) where Ŵk`t ∼ Beta(Ak`+γA, Bk`+γb) is a sample
of our stochastic block matrix generated from the last sample of our MCMC chain. Finally, we take a Monte
Carlo estimation for this edge so that x̃ij = 1

T

∑T
t=1 xijt, which represents the likelihood of a predator prey

relationship between predator type i and prey type j.

5. Lazega Lawyers Experiments
For all the NMDR link prediction tasks, we ran our models for 10000 MCMC samples across two chains for each
experiment type. The NMDR model used a sequential initialization scheme that incorporates our likelihood
terms to find a useful configuration for our community assignments s and r. We then chose the model that
resulted in the highest log probability for Y between 2 chains and utilized the last 1000 MCMC samples to
calculate E(Y ) as described in section 2 of the supplementary material.


