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Michael J. Black BLACK@TUE.MPG.DE

Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany
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Abstract
In applications of graphical models arising in do-
mains such as computer vision and signal pro-
cessing, we often seek the most likely config-
urations of high-dimensional, continuous vari-
ables. We develop a particle-based max-product
algorithm which maintains a diverse set of pos-
terior mode hypotheses, and is robust to initial-
ization. At each iteration, the set of hypothe-
ses at each node is augmented via stochastic pro-
posals, and then reduced via an efficient selec-
tion algorithm. The integer program underlying
our optimization-based particle selection mini-
mizes errors in subsequent max-product mes-
sage updates. This objective automatically en-
courages diversity in the maintained hypotheses,
without requiring tuning of application-specific
distances among hypotheses. By avoiding the
stochastic resampling steps underlying particle
sum-product algorithms, we also avoid common
degeneracies where particles collapse onto a sin-
gle hypothesis. Our approach significantly out-
performs previous particle-based algorithms in
experiments focusing on the estimation of human
pose from single images.

1. Introduction
Algorithms for computing most likely configurations, or
modes, of posterior distributions play a key role in many
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applications of probabilistic graphical models. The max-
product variant of the belief propagation (BP) message-
passing algorithm can efficiently identify these modes for
many discrete models (Wainwright & Jordan, 2008). How-
ever, the dynamic programming message updates underly-
ing max-product have cost that grows quadratically with
the number of discrete states. In domains such as com-
puter vision and signal processing, we often need to es-
timate high-dimensional continuous variables for which
exact message updates are intractable, and accurate dis-
cretization is infeasible. Monte Carlo methods like sim-
ulated annealing provide one common alternative (Geman
& Geman, 1984; Andrieu et al., 2003), but in many appli-
cations they are impractically slow to converge.

Inspired by work on particle filters and sequential Monte
Carlo methods (Cappé et al., 2007), several algorithms
employ particle-based approximations of continuous BP
messages. In these approaches, a non-uniform discretiza-
tion adapts and evolves across many message-passing itera-
tions (Koller et al., 1999; Sudderth et al., 2003; Isard, 2003;
Ihler & McAllester, 2009). This literature focuses on the
sum-product BP algorithm for computing marginal distri-
butions, and corresponding importance sampling methods
are used to update particle locations and weights. These
stochastic resampling steps may lead to instabilities and de-
generacies unless the number of particles is large.

Motivated by complementary families of maximum a pos-
teriori (MAP) inference problems, we instead develop a di-
verse particle max-product (D-PMP) algorithm. We view
the problem of approximating continuous max-product BP
messages from an optimization perspective, and treat each
particle as a hypothesized solution. Particle sets are kept
to a computationally tractable size not by stochastic resam-
pling, but by an optimization algorithm which directly min-
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imizes errors in the max-product messages. We show that
the D-PMP algorithm implicitly seeks to maintain all sig-
nificant posterior modes, and is substantially more robust to
initialization than previous particle max-product methods.

We begin in Section 2 by reviewing prior particle BP al-
gorithms, and contrast the MAP objective of max-product
BP with the more widely studied marginalization problem
of sum-product BP. We develop the D-PMP particle selec-
tion criterion and algorithm in Section 3. Section 4 pro-
vides an extensive validation on the challenging problem
of articulated human pose estimation from single images,
demonstrating state-of-the-art performance and significant
improvements over other particle max-product algorithms.

2. Particle-Based Message Approximations
Consider a pairwise Markov random field (MRF), in which
edges (s, t) ∈ E link pairs of nodes, and each node s ∈ V
is associated with a continuous random variable xs:

p(x) ∝
∏
s∈V

ψs(xs)
∏

(s,t)∈E

ψst(xs, xt). (1)

BP algorithms (Wainwright & Jordan, 2008) focus on a pair
of canonical inference problems: sum-product computation
of marginal distributions ps(xs), or max-product computa-
tion of modes x̂ = arg maxx p(x). Exact inference is in-
tractable for most non-Gaussian continuous x, and numeri-
cal approximations based on a fixed discretization are only
feasible for low-dimensional models. Particle-based infer-
ence algorithms instead aim to dynamically find a good,
non-uniform discretization for high-dimensional models.

2.1. Sum-Product Particle Belief Propagation

For all BP algorithms, the local belief µs(xs) is determined
by multiplying the local potential ψs(xs) with messages
mts(xs) from neighbors Γ(s) = {t | (s, t) ∈ E}:

µs(xs) ∝ ψs(xs)
∏

t∈Γ(s)

mts(xs). (2)

For sum-product BP, this belief is an estimate of the
marginal distribution ps(xs), and messages are defined as

mts(xs) ∝
∫
Xt

ψst(xs, xt)ψt(xt)
∏

k∈Γ(t)\s

mkt(xt) dxt, (3)

where Xt is the continuous domain of xt. However, this
continuous BP update does not directly provide a realizable
algorithm: the integral over Xt may be intractable, and the
message function mts(xs) may not have an analytic form.

Importance Sampling Because BP messages are non-
negative and (typically) normalizable, the BP message up-
date can be viewed as an expectation of the pairwise po-
tential function ψst(xs, xt). Importance sampling meth-
ods (Andrieu et al., 2003) provide a general framework for

approximating such expectations via weighted samples:

E[g(x)] =

∫
X
g(x)p(x) dx ≈

N∑
i=1

g(x(i))w(x(i)),

x(i) ∼ q(x), w(x) ∝ p(x)

q(x)
,

N∑
i=1

w(x(i)) = 1. (4)

The proposal distribution q(x) is used to approximate the
expectation of g(x) with respect to the target p(x). Under
fairly general conditions, this estimator is asymptotically
unbiased and consistent (Andrieu et al., 2003).
Particle BP Returning to the message update of Eq. (3),
let Mts(xt) = ψt(xt)

∏
k∈Γ(t)\smkt(xt) denote the mes-

sage foundation. GivenN particles Xt = {x(1)
t , . . . , x

(N)
t }

sampled from some proposal distribution x(i)
t ∼ qt(xt), let

m̂ts(xs) =

N∑
i=1

ψst(xs, x
(i)
t )wt(x

(i)
t ), (5)

where wt(xt) ∝ Mts(xt)/qt(xt). We can then construct a
belief estimate µ̂s(xs) by substituting the message approx-
imation m̂ts(xs) in Eq. (2). Koller et al. (1999) and Ihler
& McAllester (2009) take qt(xt) = µ̂t(xt) so that parti-
cles are sampled from the approximate marginals, but other
proposal distributions are also possible. In some cases,
Metropolis-Hastings MCMC methods are used to itera-
tively draw these proposals (Kothapa et al. (2011)).

For junction tree representations of Bayesian networks,
Koller et al. (1999) describe a general framework for ap-
proximating clique marginals given appropriate marginal-
ization and multiplication operations. The nonparametric
BP (Sudderth et al., 2003) and PAMPAS (Isard, 2003) al-
gorithms approximate continuous BP messages with ker-
nel density estimates, and use Gibbs samplers (Ihler et al.,
2004) to propose particles from belief distributions. The
sum-product particle belief propagation (PBP) algorithm
of Ihler & McAllester (2009) associates particles with
nodes rather than messages or cliques, and thus avoids the
need for explicit marginal density estimates.

2.2. Max-Product Particle Belief Propagation

Rather than approximating marginal expectations, the max-
product algorithm solves the optimization problem of find-
ing posterior modes. The standard max-product algorithm
is similar to sum-product BP, but the integration in Eq. (3)
is replaced by a maximization over all xt ∈ Xt. The beliefs
µs(xs) then become max-marginal distributions (Wain-
wright & Jordan, 2008) encoding the probability of the
most likely joint configuration with any fixed xs.

While max-product message updates are sometimes sim-
pler than sum-product, this optimization remains in-
tractable for many continuous graphical models. However,
given any set of N particles Xt, we may approximate the
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Figure 1. PMP flowcharts We compare the Metropolis PMP (M-PMP) of Kothapa et al. (2011), the Greedy PMP (G-PMP) of Trinh
& McAllester (2009), the PatchMatch BP (T-PMP) of Besse et al. (2012), and our novel Diverse PMP (D-PMP) algorithm.

true continuous max-product messages as follows:

m̂ts(xs) = max
xt∈Xt

ψst(xs, xt)ψt(xt)
∏

k∈Γ(t)\s

m̂kt(xt). (6)

Because we do not seek an unbiased estimator of an inte-
gral, there is no need for the importance weighting used
in the particle sum-product message updates of Eq. (5), or
even for knowledge of the distribution from which particles
were drawn. Since X ⊂ X for any candidate particle set,
particle max-product updates lower-bound the true mode:

max
x∈X

log p(x) ≤ max
x∈X

log p(x). (7)

The bound is tight whenever X contains the true MAP con-
figuration. Various particle max-product (PMP) algorithms
(see Fig. 1) have been devised for optimizing this bound.

Metropolis Particle Max-Product (M-PMP) Building
directly on the sum-product PBP algorithm of Ihler &
McAllester (2009), Kothapa et al. (2011) approximately
sample particles x(i)

t from the current max-marginal es-
timate µ̂t(xt) using a Metropolis sampler with Gaussian
random walk proposals. Because the entire particle set is
replaced at each iteration, discovered modes may be lost
and the bound of Eq. (7) decrease. While drawing parti-
cles from max-marginals does explore important parts of
the state space, the Metropolis acceptance-ratio computa-
tion requires an expensive O(N2) message update.

Greedy Particle Max-Product (G-PMP) Rather than
using conventional resampling rules, Trinh & McAllester
(2009) employ a greedy approach which selects the single
particle with highest max-marginal value at each iteration,
x∗s = arg maxxs∈Xs

µ̂s(xs). New particles are then gen-
erated by adding Gaussian noise, x(i)

s ∼ N(x∗s,Σ). This
approach can be guaranteed to monotonically increase the
MAP objective by retaining x∗s in the particle set, but dis-
cards all non-maximal modes after each iteration, and thus
is fundamentally local in its exploration of hypotheses.

PatchMatch & Top-N Particle Max Product (T-PMP)
Besse et al. (2012) recently proposed a PatchMatch BP
algorithm specialized to models arising in low-level com-
puter vision. At each iteration, the particle sets at each node
are augmented with samples generated from their neigh-
bors. Max-marginals µ̂s(xs) are computed on the aug-
mented set, and the N particles with largest max-marginal

are retained. This approach produces monotonically in-
creasing MAP estimates, but their proposal distribution is
specialized to pairwise MRFs in which potentials prefer
neighboring nodes to take identical values. To provide a
baseline for the more sophisticated selection rules defined
in Sec. 3, we define a T-PMP method which employs the
PatchMatch particle selection rule, but employs neighbor-
based proposals appropriate for arbitrary potentials.

2.3. Discovering Diverse Solutions

Statistical models of complex phenomena are often approx-
imate, and the most probable hypotheses may not be the
most accurate (Meltzer et al., 2005; Szeliski et al., 2008).
However, given many candidate solutions (modes) from an
approximate model, one can then rerank them based on
more complex non-local features. This approach has lead
to state-of-the-art results in natural language parsing (Char-
niak & Johnson, 2005), image segmentation (Yadollahpour
et al., 2013), and computational biology problems like pro-
tein design (Fromer & Yanover, 2009).

Several algorithms for finding the “M-Best” joint state con-
figurations have been developed (Nilsson, 1998; Yanover
& Weiss, 2003; Fromer & Globerson, 2009). However,
especially for models derived from some discretization of
underlying continuous variables, the top solutions are typ-
ically slight perturbations of the same hypothesis. Batra
et al. (2012) propose an alternative algorithm for selecting
the “Diverse M-Best” modes of a discrete model. Given
the global MAP, they iteratively find the next best solu-
tion which differs from all previous solutions according to
some externally provided dissimilarity metric. However,
for general models it may be difficult to define and tune
such a metric, and it is unclear how to solve the correspond-
ing optimization problems for graphs with continuous vari-
ables. We develop an alternative approach which leverages
the model potentials to implicitly encourage diversity, at a
scale automatically tuned to the graphical model of interest,
with no need for an explicit dissimilarity measure.

3. Diverse Particle Max-Product (D-PMP)
Our diverse particle max-product (D-PMP) algorithm re-
places the typical resample-update paradigm employed by
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Figure 2. Greedy diverse selection of particles at xt to preserve the message mts(xs). The model is a two-node correlated Gaus-
sian pairwise potential ψst(xs, xt) = N(x | µst,Σst), and unary potentials of evenly-weighted mixtures of two Gaussians. To aid
visualization, particles are arranged on a regular grid (dashed lines). The first three plots show successive message approximations
m̂

(0)
t , m̂

(1)
t , m̂

(2)
t (green, Eq. (12)), which lower-bound the true message mt (blue, Eq. (10)). Indicies a1, a2, a3 denote locations of

maximum approximation error (red, Eq. (13)). The message foundation matrix M (second from right) shows particles selected with
indicies b1, b2, b3 as horizontal lines (green, Eq. (14)). The objective function values are shown (right, Eq. (11)) versus the number of
particles selected by our greedy algorithm, the optimal IP solution (via exhaustive enumeration), a standard linear programming (LP)
relaxation lower bound, and the LP solution rounded to a feasible integer one.

NBP and particle BP, and more broadly by most particle
filters, with an optimization-guided stochastic search. As
shown in Figure 1, we first use stochastic proposals to aug-
ment the set of particles with a candidate set of hypotheses.
We then update the messages over the new particle set us-
ing the PMP message updates of Eq. (6). Finally, we select
the subset of particles (or hypotheses) which preserve the
current message values.

For simplicity, we formulate D-PMP for a pairwise MRF,
however this should not be viewed as a limitation of the al-
gorithm. We allocate N particles to each node at the start
of each iteration. Stochastic proposals augment these sets
to contain αN particles for some α > 1; in our later exper-
iments, α = 2. Updated max-product messages are then
used to select N particles for the subsequent iteration.

3.1. Augmentation step

GivenN particles Xs from the preceding iteration, we draw
(α − 1)N new particles Xprop

s by independently sampling
from some proposal distribution qs(xs | Xs). Rather than
discarding current particles as in typical resampling rules,
we define an augmented set Xaug

s = Xs
⋃
Xprop
s containing

αN particles. Various proposal distributions can be ran-
domly or deterministically interleaved across iterations.
Data-Driven A distribution proportional to the observa-
tion potential, qdata

s (xs) ∝ ψs(xs), can often be either ex-
actly or approximately sampled from. These data-driven
proposals explore modes of the local likelihood function.
Neighbor-Based By conditioning on a single particle x̄t
for each neighboring node, we define a local conditional
distribution qnbr

s (xs) ∝
∏
t∈Γ(s) ψst(xs, x̄t) as in Gibbs

samplers. Such proposals can lead to global propagation of
good local hypotheses, resulting in high-probability global
modes. As sampling from a product of pairwise poten-
tials is not generally tractable, we propose an approxima-
tion based on the mixture importance sampler of Ihler et al.
(2004). For each new particle, we first sample some neigh-
boring particle x̄t ∼ µt(xt) according to the current max-

marginal estimate, and then take qnbr
s (xs) ∝ ψst(xs, x̄t).

Several samples are drawn with respect to each t ∈ Γ(s).

Random-walk We also utilize a Gaussian random walk
proposal qwalk

s (xs) = N(xs | x(i)
s ,Σ), where proposals are

sampled with respect to various x(i)
s ∈ Xs. The proposal

covariance matrix Σ can be tuned to favor refinement of
existing hypotheses, or exploration of new hypotheses.

3.2. Particle selection step

For each node t ∈ V we now have an augmented particle
set Xaug

t containing αN particles. While we would pre-
fer to never discard hypotheses, storage and computational
constraints force us to reduce to only N important parti-
cles Xnew

t ⊂ Xaug
t . We propose to do this by minimizing

the maximum error between max-product messages com-
puted on the augmented and reduced sets. The resulting in-
teger program (IP) encourages diversity among the selected
particles without any need for explicit distance constraints.
Instead, the goal of message preservation automatically al-
locates particles near each non-trivial max-marginal mode.

IP formulation The particle message approximation
m̂ts(xs) in Eq. (6) is a continuous function of xs, which we
seek to preserve on the augmented particle set Xaug

s . Letting
a = 1, . . . , αN index particles at node s, and b index parti-
cles at node t, define a message foundation matrix as

Mst(a, b) = ψst(x
(a)
s , x

(b)
t )ψt(x

(b)
t )

∏
k∈Γ(t)\s

m̂kt(x
(b)
t ), (8)

where Mst ∈ RαN×αN. The message foundation gives
a compact representation for computing the message be-
tween two nodes over the augmented particle set.

Because node t sends messages to all d = |Γ(t)| of its
neighbors, we construct a “stacked” matrix of the message
foundations for all neighbors Γ(t) = {s1, . . . , sd}:

Mt =
[
MT
s1t, . . . ,M

T
sdt

]T ∈ RdαN×αN . (9)
The maximal values of the rows of the message foundation
matrix are then the max-product messages m̂ts(x

(a)
s ) sent
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to all particles a at all neighbors s ∈ Γ(t):
mt(a) = max

1≤b≤αN
Mt(a, b). (10)

Selecting a set of particles corresponds to choosing a sub-
set of the message foundation columns. We let ztb = 1 if
column b (particle x(b)

t ) is selected, and ztb = 0 otherwise.
Particles are selected to minimize the maximum absolute er-
ror in the message approximations to all neighbors:

arg min
zt

[
max

1≤a≤dαN

(
mt(a)− max

1≤b≤αN
ztbMt(a, b)

)]
subject to

αN∑
b=1

ztb = N, zt ∈ {0, 1}αN . (11)

The solution vector zt directly provides a new set ofN par-
ticles Xnew

t . The IP of Eq. (11) is likely NP hard in general,
and so we develop an approximation algorithm.

Greedy approximation algorithm We begin with an
empty particle set, and at each iteration k = 1, . . . , N a
single particle with index bk is selected to produce an im-
proved approximation m̂(k)

t ∈ RdαN of the outgoing mes-
sages mt of Eq. (10). Because maximization is associative,

m̂
(k)
t (a) = max

{
m̂

(k−1)
t (a), Mt(a, bk)

}
, (12)

where m̂(0)
t = ~0 for the empty initial particle set. To choose

a particle to add, we first identify the neighboring parti-
cle index ak ∈ {1, . . . , dαN} with the largest message
approximation error, and greedily select the particle index
bk∈ {1, . . . , αN} which minimizes this error:

ak = arg max
1≤a≤dαN

mt(a)− m̂(k−1)
t (a), (13)

bk = arg max
1≤b≤αN

Mt(ak, b). (14)

The particle selection of Eq. (14) always eliminates errors
in the max-product message for particle ak, because

m̂t(ak) = Mt(ak, bk) = max
b
Mt(ak, b) = mt(ak).

It may also reduce or eliminate errors in messages for par-
ticles a where ψst(x

(a)
s , x

(bk)
t ) is large.

See Figure 2 for a graphical depiction of the greedy selec-
tion procedure on a Gaussian mixture model. Each step of
Eq. (12,13,14) requires O(dαN) time, so the overall cost
of selectingN particles isO(dαN2). This quadratic cost is
comparable to the max-product message updates of Eq. (6).
While our experiments treat N as a fixed parameter trading
off accuracy with computational cost, it may be useful to
vary the number of selected particles across nodes or iter-
ations of D-PMP, for example by selecting particles until
some target error level is reached.

4. Application to Human Pose Estimation
D-PMP is particularly well suited to applications in com-
puter vision, where the unknown quantities are typically

Figure 3. Human pose estimation Left: The DS upper body
model, encoded as a tree-structured 6-node MRF (circles). Right:
Human silhouettes posed to spell “ICML” with the MAP pose in
red (top), the edge-based distance map likelihood (middle, small
distances in blue), and an uninformative initialization based on
200 particles per node sampled uniformly at random (bottom).

high-dimensional continuous random variables, and weak
likelihoods lead to multimodal density functions with many
local optima. In addition, D-PMP places no restrictions
on the parametric form of the model potentials, allowing
for complex likelihood functions. In this section we ap-
ply D-PMP to human pose and shape estimation from sin-
gle images. We employ the deformable structures (DS)
model (Zuffi et al., 2012), an articulated part-based human
body representation which models pose and shape varia-
tion. Discrete approximations are infeasible due to the
high-dimensionality of the DS latent variables, making it
an ideal model for demonstrating D-PMP inference.

4.1. Deformable Structures

The DS model specifies a pairwise MRF with nodes s ∈ V
for each body part, and links kinematic neighbors with
edges (s, t) ∈ E (Figure 3). Shape is represented by learned
PCA coefficients zs. With global rotation θs, scale ds, and
center os, the state of part s is

xs = (zs, os, sin(θs), cos(θs), ds)
T . (15)

A pair (s, t) of neighboring body parts is connected by
joints with locations pst and pts, respectively. To model
their relationships, we first capture the parts’ relative dis-
placement qts = pts−pst, relative orientation θts = θt−θs,
and scale difference dts = dt − ds via the transformation

Tst(xs, xt) = (zs, zt, sin(θts), cos(θts), qts, dts)
T . (16)

Our truncated Gaussian pairwise potential is ψst(xs, xt) ∝
N(Tst(xs, xt) | µst,Σst)IA(ds, θs)IA(dt, θt), (17)

where the indicator function IA(·) enforces valid angular
components and non-negativity of the scale parameters by
the constraint set A = {d, θ | d > 0, sin2θ + cos2θ = 1}.

The likelihood of pose xs is obtained via contour points
cs = Bszs + ms defined in object-centered coordinates.
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The mean ms and transformation matrix Bs are learned
via a PCA analysis of part-specific training data. A rota-
tion matrixR(θs), scaling ds, and translation t(os) are then
applied to draw the contour points in the image:
is(xs) = dsR(θs)cs + t(os), cs = Bszs +ms. (18)

Image likelihoods ψs(xs) for our synthetic-data experi-
ments are determined from the distance of contours is(xs)
to the closest observed edge, as shown in Figure 3. For real
images, two complementary potentials capture information
about boundary contours and skin color:

ψs(xs) = ψcontour
s (xs)ψ

skin
s (xs). (19)

The contour likelihood is based on an SVM classifier
trained on histogram of oriented gradients (HOG, Dalal
& Triggs (2005)) features hs(is(xs)). SVM scores
fs(hs(is(xs))) are mapped to calibrated probabilities via
logistic regression (Platt, 1999), using a weight as and
bias bs learned from validation data:

ψcontour
s (is(xs)) =

1

1 + exp(asfs(hs(is(xs))) + bs)
. (20)

The skin color likelihood ψskin
s (is(xs)) captures the ten-

dency of lower arms to be unclothed, and is derived from a
histogram model of skin appearance (Zuffi et al., 2012).

4.2. Synthetic Images

In this section we compare D-PMP with baseline methods
on a set of synthetic images sampled from the DS model.
Two experiments are conducted: in the first we assess each
method’s ability to retrieve the global MAP configuration,
and in the second we evaluate how well each method re-
tains multiple significant hypotheses in the posterior. For
all methods we use 200 particles and run for 300 iterations.
Global MAP Estimate For this experiment we use a
hand-constructed image containing four silhouettes ar-
ranged to spell “ICML” (Figure 3). The smooth distance
likelihood produces significant modes of comparable size
for each of the four figures, and their relative posterior
probability is largely driven by the prior density. The third
figure from the left (the letter “M”) turns out to correspond
to the global MAP since it is near the prior mean.

We assume a broadly sampled initial set of particles (Fig-
ure 3) and measure average error in body joints, across 10
runs, between the MAP estimate of all methods and the
true MAP. Figure 4 shows a box plot of average body joint
errors for each method. Other particle methods typically
fail to discover the true MAP estimate, resulting in larger
joint error compared to D-PMP, which locates the global
MAP estimate in all but a single run. While both D-PMP
and T-PMP typically produce high-probability configura-
tions (Figure 4), the latter is sensitive to local optima, con-
centrating all particles on a single configuration (Figure 5).
We also consider a hybrid method, D/T-PMP, in which D-
PMP is run for the first 200 iterations and T-PMP for the

final 100. This approach produces refined estimates which
are near the global MAP in all runs, and have higher prob-
ability (better alignment) than either D-PMP or T-PMP.

Preserving Multiple Hypotheses In this experiment we
sample, from the DS model prior, 9 puppets arranged in a
3× 3 grid. A series of 6 images are generated, varying the
relative distance between the puppets, and we measure the
ability of each method to preserve hypotheses about signif-
icant modes as occlusion is increased (Figure 6). We use
an oracle to select the torso particle closest to each ground-
truth figure, and a Viterbi-style backward pass generates
the modes consistent with each torso hypothesis. Figure 4
shows a line plot of median joint error versus puppet dis-
tance. Nine lines are plotted for each method, each line
corresponding to a puppet. D-PMP maintains significantly
better mode estimates compared to other methods.

Figure 6 shows the final particle locations for one example
run of each method. We observe sensitivity to local optima
in T-PMP and G-PMP, which generally capture only one
mode. M-PMP scatters particles widely, but does a poor
job of concentrating particles on modes of interest.

4.3. Real Images

We demonstrate the robustness of our proposed algorithm
on the Buffy the Vampire Slayer dataset (Ferrari et al.,
2008), a widely used benchmark for evaluating pose esti-
mation methods based on part-based models. The dataset
consists of a standard partition of 276 test images and
about 500 training images. We use a recent set of stick-
men annotations for all figures in the dataset (Ladický et al.,
2013). Images are partitioned into single- and multi-person
groups, and results are reported on each set separately using
different evaluation criteria. Detailed results for all images
are provided in the supplemental material.

Inference and learning details We initialize with 100
particles for each body part sampled around candidate hy-
potheses generated from the flexible mixture of parts (FMP)
pose estimation method (Yang & Ramanan, 2013). We
prune FMP candidates with scale below a value of 0.5, and
apply non-maximal suppression with overlap threshold 0.8.
We run D-PMP, and our baseline particle methods, for 100
iterations per image. We also compare to the N-best max-
imal decoders computed on the raw FMP detections (Park
& Ramanan, 2011), which uses a similarity metric to pro-
duce a diverse set of solutions, and has been shown to be
more accurate than non-maximal suppression.

Detecting a single person For single-person images we
use the standard evaluation criteria for this dataset, the
percentage of correctly estimated parts (PCP), which is a
detection metric based on the annotated stick representa-
tion. For a ground-truth part segment with endpoints g1

and g2, a predicted part segment with endpoints p1 and
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Figure 4. Synthetic image experiments Left: Box plots for 10 trials of the “ICML” experiment, where the joint error equals the L2

distance from the true MAP pose, averaged over all joints. Center: Log-probability of the most likely configuration identified by each
method. Right: Median joint error in the distance experiment of Figure 6, plotted versus the distance separating the 9 poses.
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Figure 5. Typical pose estimation results We show the final MAP estimate (top) and 200 particles per part (bottom) for each method.

G-PMP T-PMP M-PMP D-PMP

Figure 6. Preserving multiple modes Figures do not overlap at the furthest spacing (top), but extremities overlap at the closest spacing
(bottom). Each method is run for 300 iterations from 30 random 200-particle initializations. The top 9 modes (red) are obtained by
selecting the closest torso particle to each ground truth puppet, and from this a Viterbi backward pass generates the remaining limbs.

p2 is detected if the average distance between endpoints is
less than one-half the length of the ground truth segment:
1
2 (‖g1 − p1‖+ ‖g2 − p2‖) ≤ 1

2‖g1 − g2‖. The PCP score
is the fraction of the full set of parts which are detected.1

1Ferrari et al. (2008) compute PCP relative to the number of
images in the dataset which contain a detection, creating irregu-
larities when varying the number of hypotheses. We instead nor-
malize by the fixed number of images in the dataset.

Pose hypotheses are sorted according to their max-marginal
value (or FMP score), and we report total PCP versus the
number of hypothesized poses in Figure 8. We report
scores averaging over all body parts, and separately for
only the left and right lower arms, as these parts are the
most difficult to detect accurately. While scores for the
arms are uniformly lower as compared to total PCP, the
trend is similar: given an identical model, D-PMP is sub-
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Single Person Multiple People

Figure 7. Preserving multiple hypotheses Left: Single person images showing a MAP estimate (red) with poor arm placement. The
second and third ranked solutions preserved by D-PMP, by max-marginal values, are shown for upper (magenta-cyan) and lower arms
(white-green); they offer much greater accuracy. Right: The full set of particles at the final iteration of D-PMP shows multiple hypotheses
retained about multiple people (top). For each person, we also plot the best pose in the set of retained hypotheses (bottom, red).
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Figure 8. Detection results for single person images Average
PCP score versus the number of hypotheses for all parts (left),
and for only the lower arms (right). D-PMP shows the highest
detection accuracy overall, with its diverse selection providing in-
creasing gains as more hypotheses are considered.

stantially more accurate than conventional particle max-
product algorithms. We offer qualitative examples of how
D-PMP preserves alternative (upper and lower arm) hy-
potheses in Figure 7.

Detecting multiple people For multiple people we report
precision-recall, a standard metric for multi-class object de-
tection. Figure 9 shows precision-recall for each method,
where a body is considered detected if the torso or head
PCP score is 1. We evaluate the challenging lower arm de-
tection problem separately. The first point on each curve
reports precision and recall based on the top-scoring pose
in each image, and the curves are traced out by considering
the top two, three, etc. hypotheses in each image.2 D-
PMP again outperforms all other methods, both for body
detection as well as for lower arm detection. Figure 7 of-
fers qualitative examples of D-PMP’s ability to preserve
hypotheses about multiple people in an image. Without an
explicit model of multiple people, we are able to infer their

2This differs slightly from the approach in the PASCAL VOC
challenges, which consider the single top-scoring pose over all
images, resulting in a curve starting at the top left corner.
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Figure 9. Detection results for multi-person images
Precision-recall curves for body detections (left) and lower
arm detections (right), determined via a PCP threshold of 0.5. A
body is detected if either the torso or head is detected. D-PMP
maintains fairly good precision for much higher levels of recall.

existence by finding multiple diverse posterior modes.

5. Discussion
The diverse particle max-product (D-PMP) provides
a general-purpose MAP inference algorithm for high-
dimensional, continuous graphical models. While most ex-
isting methods are sensitive to initialization and prone to
poor local optima, D-PMP’s ability to preserve multiple lo-
cal modes allows it to better reason globally about com-
peting hypotheses. On a challenging pose estimation task,
we show that D-PMP is robust to initialization, and we ob-
tain accurate pose estimates for images depicting multiple
people even without an explicit multi-person model. We
believe the stability and robustness of D-PMP will prove
similarly useful in many other application domains.
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