
Unbiased Learning of Deep Generative Models
with Structured Discrete Representations

Harry Bendekgey, Gabriel Hope, Erik B. Sudderth
{hbendekg, hopej, sudderth}@uci.edu

Department of Computer Science, University of California, Irvine

Abstract

By composing graphical models with deep learning architectures, we learn gen-
erative models with the strengths of both frameworks. The structured variational
autoencoder (SVAE) inherits structure and interpretability from graphical models,
and flexible likelihoods for high-dimensional data from deep learning, but poses
substantial optimization challenges. We propose novel algorithms for learning
SVAEs, and are the first to demonstrate the SVAE’s ability to handle multimodal
uncertainty when data is missing by incorporating discrete latent variables. Our
memory-efficient implicit differentiation scheme makes the SVAE tractable to learn
via gradient descent, while demonstrating robustness to incomplete optimization.
To more rapidly learn accurate graphical model parameters, we derive a method
for computing natural gradients without manual derivations, which avoids biases
found in prior work. These optimization innovations enable the first comparisons
of the SVAE to state-of-the-art time series models, where the SVAE performs com-
petitively while learning interpretable and structured discrete data representations.

1 Introduction

Advances in deep learning have dramatically increased the expressivity of machine learning models at
great cost to their interpretability. This trade-off can be seen in deep generative models that produce
remarkably accurate synthetic data, but often fail to illuminate the data’s underlying factors of
variation, and cannot easily incorporate domain knowledge. The structured variational autoencoder
(SVAE, Johnson et al. [29]) aims to elegantly address these issues by combining probabilistic
graphical models [64] with the VAE [33], gaining both flexibility and interpretability. But since its
2016 introduction, SVAEs have seen few applications because their expressivity leads to optimization
challenges. This work proposes three key fixes that enable efficient training of general SVAEs.

SVAE inference requires iterative optimization [64, 20] of variational parameters for latent vari-
ables associated with every observation. Johnson et al. [29] backpropagate gradients through this
multi-stage optimization, incurring prohibitive memory cost. We resolve this issue via an implicit
differentiation scheme that shows empirical robustness even when inference has not fully converged.
Prior work [29] also identifies natural gradients [2, 23] as an important accelerator of optimization
convergence, but apply natural gradients in a manner that requires dropping parts of the SVAE loss,
yielding biased learning updates. We instead derive unbiased natural gradient updates that are easily
and efficiently implemented for any SVAE model via automatic differentiation.

Basic VAEs require carefully tuned continuous relaxations [27, 44] for discrete latent variables, but
SVAEs can utilize them seamlessly. We incorporate adaptive variational inference algorithms [24, 25]
to robustly avoid local optima when learning SVAEs with discrete structure, enabling data clustering.
SVAE inference easily accommodates missing data, leading to accurate and multimodal imputations.
We further improve training speed by generalizing prior work on parallel Kalman smoothers [58].

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Walking Sitting

Posing Taking photo

States predictive of walking States predictive of sitting States predictive of posing States predictive of photo Other common states Uncommon states

Figure 1: The SVAE-SLDS segments each sequence of human motion, which we display as a sequence of
discrete colors. Discrete variables are interpretable: Below each segmentation, we show five segmentations
of other subjects performing the same action, noting similarity across semantically similar series. Discrete
variables are compact representations: Drawing multiple samples from the generative model conditioned on
ground-truth segmentations yields the stick figures in grey, which track closely with the observed data.

We begin in Sec. 2 and 3 by linking variational inference in graphical models and VAEs. Our
optimization innovations (implicit differentiation in Sec. 4, unbiased natural gradients in Sec. 5,
variational inference advances in Sec. 6) then enable SVAE models to be efficiently trained to their full
potential. Although SVAEs may incorporate any latent graphical structure, we focus on temporal data.
In Sec. 8, we are the first to compare SVAE performance to state-of-the-art recurrent neural network-
and transformer-based architectures on time series benchmarks [21], and the first to demonstrate that
SVAEs provide a principled method for multimodal interpolation of missing data.

2 Background: Graphical Models and Variational Inference

We learn generative models that produce complex data x via lower-dimensional latent variables z.
The distribution p(z|θ) is defined by a graphical model (as in Fig. 2) with parameters θ, and z is
processed by a (deep) neural network with weights γ to compute the data likelihood pγ(x|z).
Exact evaluation or simulation of the posterior pγ(z, θ|x) is intractable due to the neural network
likelihood. Variational inference (VI [64]) defines a family of approximate posteriors, and finds the
distribution that best matches the true posterior by optimizing the evidence lower bound (ELBO):

L[q(θ; η)q(z;ω), γ] = Eq(θ;η)q(z;ω)

[
log

p(θ)p(z|θ)pγ(x|z)
q(θ; η)q(z;ω)

]
≤ log pγ(x). (1)

Here, q(θ; η)q(z;ω) ≈ pγ(z, θ|x) are known as variational factors. We parameterize these distribu-
tions via arbitrary exponential families with natural parameters η, ω. This implies that

q(z;ω) = exp{⟨ω, t(z)⟩ − logZ(ω)}, Z(ω) =

∫
z

exp{⟨ω, t(z)⟩} dz. (2)

An exponential family is log-linear in its sufficient statistics t(z), where the normalizing constant
Z(ω) ensures it is a proper distribution (see App. C.1 for properties of exponential families). For
models where pγ(x|z) has a restricted conjugate form (rather than a deep neural network), we can
maximize Eq. (1) by alternating optimization of η, ω; these coordinate ascent updates have a closed
form [64]. Stochastic VI [23] improves scalability (for models with exponential-family likelihoods)
by sampling batches of data x, fitting a locally-optimal q(z;ω) to the latent variables in that batch,
and updating q(θ; η) by the resulting (natural) gradient.
Amortized VI. Because it is costly to optimize Eq. (1) with respect to ω for each batch of data,
VAEs employ amortized VI [32, 47, 55] to approximate the parameters of the optimal q(z;ω) via
a neural network encoding of x. The inference network weights ϕ for this approximate posterior
qϕ(z|x) are jointly trained with the generative model. A potentially substantial amortization gap
exists [14, 36]: the inference network does not globally optimize the ELBO of Eq. (1) for all x.
Structured VAEs. For a fixed q(θ), the true optimizer (across all probability distributions) of Eq. (1)
is given by q(z) ∝ p0(z; η)pγ(x|z), where p0(z; η) ∝ exp{Eq(θ;η)[log p(z|θ)]} is an expected prior
on z (see App. C.2 for derivations). This simple product of expected prior and likelihood cannot be
normalized because of the neural network parameterization of pγ(x|z). Rather than approximating

2

𝑧! 𝑧" 𝑧#

𝑥! 𝑥" 𝑥#

𝑧! 𝑧" 𝑧#

𝑥! 𝑥" 𝑥#

𝑧! 𝑧" 𝑧#

𝑘" 𝑘#

𝑥! 𝑥" 𝑥#

𝑘" 𝑘#

𝑧! 𝑧" 𝑧#

𝑥! 𝑥" 𝑥#

Linear	Dynamical	System	(LDS)

𝑘!"# 𝑘! 𝑘!$#

𝑧!"# 𝑧!

𝑘!"# 𝑘! 𝑘!$#

𝑧!"# 𝑧!

Switching	Linear	Dynamical	System	(SLDS)

𝑝(𝑧|𝜃)

𝑞%(𝑧|𝑥; 𝜂)

Algorithm 1
Structured Mean Field Variational Inference
Require: graphical model potentials η, network poten-

tials λ = encode(x;ϕ) defining ℓ̂ϕ(z|x).
(µ1, . . . , µM)← init_expected_stats(η, λ)
while not converged do

for m← 1 to M do
ωm ← MF(µ−m; η)
µm ← BP(ωm; η, λ)

return ω = concat(ω1, . . . , ωM)

Figure 2: Left: Generative (above) and inference (below) graphical models for SVAE-LDS and SVAE-SLDS.
For the SLDS, we show the prior and posterior as factor graphs [38]. qϕ(z|x) combines potentials from the
inference network with the true prior. Structured variational inference separates continuous from discrete latent
variables for tractability, and mean field messages are propagated across residual edges between disentangled
factors. Right: General form of iterative mean-field (MF) and belief-propagation (BP) updates for SVAE
inference in a model where q(z) factorizes into M groups of latent variables. For the SVAE-SLDS, M = 2.

this whole posterior as in amortized VI, the SVAE [29] only approximates the likelihood function,
and explicitly multiplies it by the known expected prior to obtain an approximate posterior.

In more detail, the SVAE approximates the likelihood ℓ(z) = pγ(x|z) with a function parameterized
by a neural network ℓ̂ϕ(z|x). The optimal posterior given this approximation is then equal to

qϕ(z|x; η) = argmax
q(z)

L̂[q(θ; η)q(z), ϕ] = argmax
q(z)

Eq(θ;η)q(z)

[
log

p(θ)p(z|θ)ℓ̂ϕ(z|x)
q(θ; η)q(z)

]
. (3)

The posterior that optimizes the surrogate loss L̂[·, ϕ] of Eq. (3) is qϕ(z|x; η) ∝ p0(z; η)ℓ̂ϕ(z|x). If
ℓ̂ϕ(z|x) is chosen to be conjugate to p(z|θ), this multiplication and normalization is easy for many
exponential families. Note that ℓ̂ϕ(z|x) does not need to be normalized, as any multiplicative factors
would disappear when the posterior is normalized. The overall ELBO is then L[q(θ; η)qϕ(z|x; η), γ].

If the encoder’s approximate likelihood ℓ̂ϕ is (up to normalization) close to the true likelihood ℓ,
the surrogate loss L̂ will closely approximate the true loss L, and there will be little amortization
gap. SVAE inference has the advantage that qϕ(z|x; η) depends on the learned posterior q(θ; η) of
graphical model parameters, so as learning improves the graphical generative model, the coupled
inference model remains closely aligned with the generative process. The ladder VAE [59] and related
hierarchical VAEs [61, 12] also incorporate generative parameters in amortized variational inference,
but impose a restricted generative hierarchy that is less flexible and interpretable than the SVAE.
Example 1: Standard Normal. For a basic VAE, θ is fixed and z ∼ N (0, I). The SVAE inference
network outputs a Gaussian ℓ̂ϕ(z | µ = µ(x;ϕ), τ = τ(x;ϕ)) ∝ N (z;µ, diag(τ−1)) with mean µ
and inverse-variance (precision) τ . The product of this Gaussian with the standard normal prior has a
simple form: qϕ(z|x) = N (z; τ

τ+1µ, diag((τ +1)−1)). This reparameterization of the standard VAE
posterior imposes the (useful) constraint that posterior variances must be smaller than prior variances.
Example 2: Linear Dynamical System (LDS). A LDS model for temporal data assumes the latent
state variables evolve linearly with Gaussian noise: zt ∼ N (Atzt−1 + bt, Qt), z1 ∼ N (µ1,Σ1). In
this case, we expand the exponential family distribution q(z;ω) as a sum across time steps:

q(z;ω) = q(z1)

T∏
t=2

q(zt|zt−1) = exp
{
⟨ω1, t(z1)⟩+

T∑
t=2

⟨ωt, t(zt−1, zt)⟩ − logZ(ω)
}
, (4)

where ω = concat(ωt) and the prior p(z|θ) belongs to this family. The prior induces temporal
dependence between the zt, but we assume the likelihood factorizes as pγ(x|z) =

∏
t pγ(xt|zt).

For models like the LDS, approximating the likelihood function with conjugate, time-independent
Gaussian distributions is a much simpler task than approximating the temporally-coupled posterior.
In addition, as the generative parameters At, bt, Qt of p(z|θ) are learned through optimization of
q(θ), the inference routine shares those parameters, improving accuracy. These advantages were not
present in the standard normal VAE, where the prior on z lacks structure and is not learned. Inference,
normalization, and sampling of qϕ(z|x; η) in the LDS model is feasible via a Kalman smoothing
algorithm [4] that efficiently (with cost linear in T) aggregates information across time steps.

3

3 Structured Variational Inference

For complex graphical models, the distributions p(z|θ) and q(z) typically factorize across subsets of
the latent variables z, as illustrated in Fig. 2. We thus generalize Eq. (4) by partitioning z into local
variable groups, and representing the dependencies between them via a set of factors F :

q(z;ω) = exp
{ ∑

f∈F

⟨ωf , t(zf)⟩ − logZ(ω)
}
. (5)

For certain factor graphs, we can efficiently compute marginals and draw samples via the belief
propagation (BP) algorithm [50, 38]. However, exact inference is intractable for many important
graphical models, making it impossible to compute marginals or normalize the qϕ(z|x; η) defined
in Sec. 2. SVAE training addresses this challenge via structured variational inference [20, 65, 64],
which optimizes the surrogate loss across a restricted family of tractable distributions. We connect
structured VI to SVAEs in this section, and provide detailed proofs in App. C.2.

3.1 Background: Block Coordinate Ascent for Mean Field Variational Inference

Let {zm}Mm=1 be a partition of the variables in the graphical model, chosen so that inference within
each zm is tractable. We infer factorized (approximate) marginals qϕ(zm|x; η) for each mean field
cluster by maximizing L̂[q(θ; η)

∏
m q(zm), ϕ]. The optimal qϕ(zm|x; η) inherit the structure of

the joint optimizer qϕ(z|x; η), replacing any factors which cross cluster boundaries with factorized
approximations (see Fig. 2). The optimal parameters for these disentangled factors are a linear
function of the expected statistics of clusters connected to m via residual edges. These expectations
in turn depend on their clusters’ parameters, defining a stationary condition for the optimal ω:

ωm = MF(µ−m; η), µm = BP(ωm; η, ϕ, x). (6)
Here, BP is a belief propagation algorithm which computes expected statistics µm for cluster m,
and the linear mean field function MF updates parameters of cluster m given the expectations of
other clusters µ−m along residual edges. We solve this optimization problem via the block updating
coordinate ascent in Alg. 1, which is guaranteed to converge to a local optimum of L̂[q(θ)

∏
m q(zm)].

3.2 Reparameterization and Discrete Latent Variables

While optimizing qϕ(zm|x; η) at inference time requires some computational overhead, it allows us
to bypass the typical obstacles to training VAEs with discrete latent variables. To learn the parameters
ϕ of the inference network, conventional VAE training backpropagates through samples of latent
variables via a smooth reparameterization [32], which is impossible for discrete variables. Many
alternatives either produce biased gradients [6] or extremely high-variance gradient estimates [52, 28].
Continuous relaxations of discrete variables [44, 27, 7] produce biased approximations of the true
discrete ELBO, and are sensitive to annealing schedules for temperature hyperparameters.

SVAE training only requires reparameterized samples of those latent variables which are direct inputs
to the generative network pγ(x|z). By restricting these inputs to continuous variables, and using
other discrete latent variables to capture their dependencies, discrete variables are marginalized via
structured VI without any need for biased relaxations. With a slight abuse of notation, we will denote
continuous variables in z by zm, and discrete variables by km.
Example 3: Gaussian Mixture. Consider a generalized VAE where the state is sampled from a
mixture model: k ∼ Cat(π), z ∼ N (µk,Σk). The likelihood pγ(x|z) directly conditions on only the
continuous latent variable z. Variational inference produces disentangled factors qϕ(z|x; η)qϕ(k|x; η),
and we evaluate likelihoods by decoding samples from qϕ(z|x; η), without sampling qϕ(k|x).
Example 4: Switching Linear Dynamical System (SLDS). Consider a set of discrete states
which evolve according to a Markov chain k1 ∼ Cat(π0), kt ∼ Cat(πkt−1

), and a continuous state
evolving according to switching linear dynamics: z0 ∼ N (µ0,Σ0), zt ∼ N (Akt

zt−1 + bkt
, Qkt

).
The transition matrix, offset, and noise at step t depends on kt. Exact inference in SLDS [48, 49]
is intractable [39], but structured VI [20] learns a partially factorized posterior qϕ(z|x; η)qϕ(k|x; η)
that exactly captures dependencies within the continuous and discrete Markov chains.

BP for SLDS uses variational extensions [5, 4] of the Kalman smoother to compute means and
variances of continuous states, and forward-backward message-passing to compute marginals of
discrete states (see App. D). Let ktj = 1 if the SLDS is in discrete state j at time t, ktj = 0 otherwise,

4

Time of gradient step (ms)
Method B = 1 B = 32 B = 64 B = 128

Implicit + Parallel 603 922 1290 2060
Unrolled + Parallel 659 1080 n/a n/a

Implicit + Sequential 2560 3160 3290 3530
Unrolled + Sequential 2660 3290 3980 n/a

Table 1: Time of ELBO backpropagation in an SVAE-SLDS with K = 50 discrete states, dimension D = 16,
and T = 250 time steps. For varying batch sizes B, we compare capped implicit gradients to unrolled gradients
for L = 10 block updates of two inference algorithms: standard sequential BP, and our parallel extension. For
large batch sizes, unrolled gradients crashed because it attempted to allocate more than 48GB of GPU memory.

and θ̄j = Eq(θ;η)[θj] be the expected (natural) parameters of the LDS for discrete state j. Structured
VI updates the natural parameters of discrete states ωktj , and continuous states ωzt,zt+1 , as follows:

ωzt,zt+1
=

∑
j

Eq[ktj]θ̄j , ωktj
= ⟨θ̄j ,Eq[t(zt−1, zt)]⟩. (7)

4 Stable and Memory-Efficient Learning via Implicit Gradients

When qϕ(z|x) is computed via closed-form inference, gradients of the SVAE ELBO may be obtained
via automatic differentiation. This requires backpropagating through the encoder and decoder
networks, as well as through reparameterized sampling z ∼ qϕ(z|x; η) from the variational posterior.

For more complex models where structured VI approximations are required, gradients of the loss
become difficult to compute because we must backpropagate through Alg. 1. For the SLDS this
unrolled gradient computation must backpropagate through repeated application of the Kalman
smoother and discrete BP, which often has prohibitive memory cost (see Table 1).

We instead apply the implicit function theorem (IFT [34]) to compute implicit gradients ∂ω
∂η , ∂ω

∂ϕ

without storing intermediate states. We focus on gradients with respect to η for compactness, but
gradients with respect to ϕ are computed similarly. Let ω(1), . . . , ω(L) be the sequence of ω values
produced during the “forward” pass of block coordinate ascent, where ω(L) are the optimized
structured VI parameters. The IFT expresses gradients via the solution of a set of linear equations:

∂ω(L)

∂η
=

(
∂g(ω; η, ϕ, x)

∂ω

)−1
∂g(ω; η, ϕ, x)

∂η
, g(ω) = ω − MF(BP(ω; η, ϕ, x); η). (8)

Here we apply the BP and MF updates in parallel for all variable blocks m, rather than sequentially
as in Eq. (6). At a VI fixed point, these parallel updates leave parameters unchanged and g(ω) = 0.

For an SLDS with latent dimension D and K discrete states, ω has O(K +D2) parameters at each
time step. Over T time steps, ∂g

∂ω is thus a matrix withO(T (D2+K)) rows/columns andO(T 2D2K)
non-zero elements. For even moderate-sized models, this is infeasible to explicitly construct or solve.

We numerically solve Eq. (8) via a Richardson iteration [56, 66] that repeatedly evaluates matrix-
vector products (I−A)v′ to solveA−1v. Such numerical methods have been previously used for other
tasks, like hyperparameter optimization [43] and meta-learning [51], but not for the training of SVAEs.
The resulting algorithm resembles unrolled gradient estimation, but we repeatedly backpropagate
through updates at the endpoint of optimization instead of along the optimization trajectory.

Richardson:
∂ω(L)

∂η
≈ −

J∑
j=0

(
I − ∂g(ω(L); η, ϕ, x)

∂ω

)j
∂g(ω(L); η, ϕ, x)

∂η
. (9)

Unrolled:
∂ω(L)

∂η
≈ −

L∑
ℓ=0

[L∏
i=ℓ

(
I − ∂g(ω(i); η, ϕ, x)

∂ω

)]
∂g(ω(ℓ); η, ϕ, x)

∂η
. (10)

Lorraine et al. [43] tune the number of Richardson steps J to balance speed and accuracy. However,
there is another reason to limit the number of iterations: when the forward pass is not iterated until
convergence, ω(L) is not a stationary point of g(ω) and therefore Eq. (9) is not guaranteed to converge
as J → ∞. For batch learning, waiting for all VI routines to converge to a (local) optimum might be
prohibitively slow, so we might halt VI before ω(L) converges to numerical precision.

Seeking robustness even when the forward pass has not converged, we propose a capped implicit
gradient estimator that runs one Richardson iteration for every step of forward optimization, so that

5

2 5 10 20 50
Number of Block Update (Forward Pass) Steps

10 1

100

rM
SE

/N
o

So
lv

e
rM

SE

Implicit + Cap + Thresh
Implicit + Cap
Implicit
Unrolled

2 5 10 20 50
Number of Block Update (Forward Pass) Steps

10 3

10 2

10 1

100

101

rM
SE

/N
o

So
lv

e
rM

SE

Implicit + Cap + Thresh
Implicit + Cap
Implicit
Unrolled

100 101 102 103 104

Step

60000

50000

40000

30000

20000

Lo
ss

Non-Nat
Biased Nat
Unbiased Nat

Figure 3: We compare implicit gradient estimators’ stability (left, middle), and gradient conditioning methods’
loss trajectory (right), on human motion capture data (Sec. 8). Stability: Gradient estimate rMSE relative to
the No-Solve estimator (smaller is better) for various numbers of VI block updates L, and SVAE-SLDS models
taken from the start of training (left) and after 20 epochs (middle). Solid lines show median rMSE ratio across a
batch of 128 data points, and dashed lines show 90th percentiles. Conditioning: Convergence of SVAE-LDS
negative-ELBO loss versus number of optimization steps (log-scale) for conventional (non-natural) gradients,
biased natural gradients [29], and unbiased natural gradients computed via automatic differentiation (Sec. 5).

J = L. In this regime, implicit gradient computation has a one-to-one correspondence to unrolled
gradient computation, while requiring a small fraction of the memory. This can be thought of as a
form of gradient regularization: if we take very few steps in the forward pass, we should have low
confidence in the optimality of our end-point and compute fewer terms of the Neumann series (9).

Experiments. In Fig. 3 (left, middle) we compute the accuracy of different approximate gradient
estimators for training a SVAE-SLDS as in Fig. 2. To our knowledge, we are the first to investigate the
quality of implicit gradients evaluated away from an optimum, and we compare our capped implicit
proposal to other gradient estimators. Ground truth gradients are computed as the implicit gradient at
the optimum, and we compare the root-mean-squared-error (rMSE) of various gradient estimators to
that of the naïve No-Solve solution, which replaces the inverted matrix in Eq. (8) with Identity.

We consider two models: one with randomly initialized parameters, and one that has been trained for
20 epochs. The newly-initialized model requires more forward steps for the block updating routine
to converge. We compare the memory-intensive unrolled estimator (Unrolled) to three versions
of the implicit gradient estimator. First, an uncapped version (Implicit) always performs J = 50
Richardson iterations regardless of the number of forward iterations, thus incurring high computation
time. Note that evaluating implicit gradient far from an optimum can produce high error; in the
newly-initialized model, many of these iterations diverge to infinity when fewer than 20 forward
steps are taken. Second, we consider a capped implicit estimator (Implicit+Cap) which sets J = L
to match the number of forward steps. Finally, we consider a capped implicit estimator which also
includes a threshold (Implicit+Cap+Thresh): if the forward pass has not converged in the specified
number of steps, the thresholded estimator simply returns the No-Solve solution. This gradient is
stable in all regimes while retaining desirable asymptotic properties [66]. Our remaining experiments
therefore use this method for computing gradients for SVAE training.

Prior work. Johnson et al. [29] consider implicit differentiation, but only very narrowly. They derive
implicit gradients by hand in cases (like the LDS) where exact inference is tractable, so the linear
solve in Eq. (8) cancels with other terms, and gradients may be evaluated via standard automatic
differentiation. For models requiring structured VI (like the SLDS), [29] instead computes unrolled
gradients for inference network weights ϕ, suffering high memory overhead. They compute neither
unrolled nor implicit gradients with respect to generative model parameters η; in practice they set
the gradient of the inner optimization to 0, yielding a biased training signal. Our innovations instead
enable memory-efficient and unbiased gradient estimates for all parameters, for all graphical models.

5 Rapid Learning via Unbiased Natural Gradients

SVAE training must optimize the parameters of probability distributions. Gradient descent implicitly
uses Euclidean distance as its notion of distance between parameter vectors, which is often a poor
indicator of the divergence between two distributions. The natural gradient [2] resolves this issue by
rescaling the gradient by the Fisher information matrix Fη of q(θ; η), given by:

Fη = Eq(θ;η)

[(
∇ηq(θ; η)

)
·
(
∇ηq(θ; η)

)T]
. (11)

6

Johnson et al. [29] demonstrate the advantages of natural gradients for the SVAE, drawing parallels
to the natural gradients of stochastic VI (SVI [23]). SVI extends the variational EM algorithm to
mini-batch learning: similar to the SVAE, it fits q(z) in an inner optimization loop and learns q(θ; η)
in an outer loop by natural gradient descent. The key difference between SVI and the SVAE is that
SVI’s inner optimization is done with respect to the true loss function L, whereas the SVAE uses a
surrogate L̂. SVI can only do this inner optimization by restricting all distributions to be conjugate
exponential family members, giving up the flexibility provided by neural networks in the SVAE.

Let µη be the expected sufficient statistics of q(θ; η). Exponential family theory tells us that ∂µ
∂η = Fη

[30, 45], allowing Johnson et al. [29] to derive the natural gradients of the SVAE loss:

∂L
∂η

F−1η =
∂L
∂µ

∂µ

∂η
F−1η =

∂L
∂µ

,
∂L
∂µ

=

SVI update︷ ︸︸ ︷
η0 + Eqϕ(z|x;η)[t(z)]− η+

correction term︷ ︸︸ ︷
∂L
∂ω

· ∂ω
∂η

. (12)

This gradient differs from the SVI gradient by the final term: because SVI’s inner loop optimizes ω
with respect to the true loss L, ∂L

∂ω = 0 for conjugate models. Johnson et al. [29] train their SVAE by
dropping the correction term and optimizing via the SVI update equation, yielding biased gradients.

There are two challenges to computing unbiased gradients in the SVAE. First, in the structured mean
field case ∂ω

∂η involves computing an implicit or unrolled gradient, as addressed by our numerical
methods in Sec. 4. Second, including the correction term in the gradient costs us a desirable property
of the SVI natural gradient: for step size less than 1, any constraints on the distribution’s natural
parameters are guaranteed to be preserved, such as positivity or positive-definiteness.

We resolve this issue by reparameterizing η into an unconstrained space, and computing natural
gradients with respect to those new parameters. Letting η̃ be an unconstrained reparameterization
of η, such as η = Softplus{η̃} = log(1 + eη̃) for a positive precision parameter, we have:

∂L
∂η̃

F−1η̃ =
∂L
∂µ

· ∂η
∂η̃

−T
=

(
∂η̃

∂η
· ∇µL

)T

. (13)

See App. F for proof. This differs from the non-natural gradient in two ways. First, the Jacobian of the
η → µ map is dropped, as before. Unlike Johnson et al. [29], we do not hand-derive the solution; we
employ a straight-through gradient estimator [6] to replace this Jacobian with the identity. Then, the
Jacobian of the η̃ → η map is replaced by its inverse-transpose. This new gradient can be computed
without any matrix arithmetic by noting that the inverse of a Jacobian is the Jacobian of the inverse
function. Thus Eq. (13) can be computed by replacing the reverse-mode backpropagation through the
η̃ → η map with a forward-mode differentiation through the inverse η → η̃ map.

In Fig. 3 (right) we show the performance benefits of our novel unbiased natural gradients with
stochastic gradient descent, compared to regular gradients with an Adam optimizer [31], and stochastic
gradient descent via biased natural gradients [29] that drop the correction term. Results are shown for
an SVAE-LDS model whose pre-trained encoder and decoder are fixed.

6 Adapting Graphical Model Innovations
Efficient implementations of BP inference, parameter initializations that avoid poor local optima,
and principled handling of missing data are well-established advantages of the graphical model
framework. We incorporate all of these to make SVAE training more efficient and robust.
Parallel inference. The BP algorithm processes temporal data sequentially, making it poorly suited
for large-scale learning of SVAEs on modern GPUs. Särkkä & García-Fernández [58] developed a
method to parallelize the usually-sequential Kalman smoother algorithm across time for jointly Gaus-
sian data. Their algorithm is not directly applicable to our VI setting where we take expectations over
q(θ) instead of having fixed parameters θ̂, but we derive an analogous parallelization of variational
BP in App. D.2. We demonstrate large speeds gains from this adaptation in Table 1.
Initialization. Poor initialization of discrete clusters can cause SLDS training to collapse to a single
discrete state. This problem becomes worse when the graphical model is trained on the output of a
neural network encoder, which when untrained produces outputs which do not capture meaningful
statistics of the high-dimensional data. We therefore propose a three-stage training routine: a basic
VAE is trained to initialize pγ(x|z), and then the output of the corresponding inference network
is used for variational learning of graphical model parameters [25]. Once the deep network and
graphical model are sensibly initialized, we refine them via joint optimization while avoiding collapse.
For details of this initialization scheme, see App. A.5.

7

Example Sequence Transformer Generation

SVAE SLDS Generation (Ours) SIN SLDS Generation

DKS Generation SRNN Generation

DKS+Straight Through Generation DKS+Concrete Generation

20

15

10

5

0

5

10

de
cib

le
s

Figure 4: Unconstrained generation of 513-dim. speech spectrogram data over T = 500 time-steps (horizontal;
models are trained on data with T = 50). An example sequence of real speech data is shown. For models
which use discrete latent variables, the sequence of discrete states is shown as a changing colorbar beneath the
generation, with a solid colorbar meaning a constant discrete state for the entire sequence.

Missing data. The structure provided by the SVAE graphical model allows us to solve marginal
and conditional inference queries not seen at training time. In particular, we explore the ability of
a trained SVAE to impute data that is missing for an extended interval of time. By simply setting
ℓ̂ϕ(zt|xt; η) to be uniform at a particular timestep t, our posterior estimate of zt is only guided by the
prior, which aggregates information across time to produce a smooth estimate of the posterior on zt.

While discriminative methods may be explicitly trained to impute time series, we use imputation
performance as a measure of generative model quality, so do not compare to these approaches. Unlike
discriminative methods, SVAE imputation does not require training data with aligned missing-ness.

7 Related Work
Dynamical VAEs. Girin et al. [21] provide a comprehensive survey of dynamical VAEs (DVAEs)
for time series data, which use recurrent neural networks to model temporal dependencies. The
Stochastic Recurrent Neural Network (SRNN [17]), which has similar structure to the Variational
Recurrent Neural Network (VRNN [13]), is the highest-performing model in their survey; it models
data via one-step-ahead prediction, producing probabilities p(xt|z, xt−1). This model therefore
reconstructs x using more information than is encoded in z by skipping over the latent state and
directly connecting ground truth to reconstruction, reducing the problem of sequence generation to a
series of very-local one-step predictions. On the other hand, the Deep Kalman Smoother (DKS [35])
extension of the Deep Kalman Filter [37] is the best-performing model which generates observations
independently across time, given only information stored in the latent encoding z.

RNNs lack principled options for handling missing data. Heuristics such as constructing a dummy
neural network input of all-zeros for unobserved time steps, or interpolating with exponentially
decayed observations [11], effectively require training to learn these imputation heuristics. RNNs
must thus be trained on missing-ness that is similar to test missing-ness, unlike the SVAE.

Transformers [63] have achieved state-of-the-art generative performance on sequential language
modeling. However, Zeng et al. [68] argue that their permutation-invariance results in weak per-
formance for time-series data where each observation carries low semantic meaning. Unlike text,
many time series models are characterized by their temporal dynamics rather than a collection of
partially-permutable tokens. Lin et al. [42] propose a dynamical VAE with encoder q(zt|x1:T),
decoder p(xt+1|x1:t, z1:t+1), and latent dynamics p(zt+1|x1:t, z1:t) parameterized by transformers.
Structured VAEs. We, as in Johnson et al. [29], only consider SVAEs where the inference network
output factorizes across (temporal) latent variables. Orthogonal to our contributions, Yu et al. [67]
investigate the advantages of taking the SVAE beyond this restriction, and building models where the
recognition network outputs proxy-likelihood functions on groups of latent variables.

In recent independent work, Zhao & Linderman [69] also revisit the capabilities of the SVAE.
However, their work differs from ours in a few key respects. First, because their experiments are
restricted to the LDS graphical model (which requires no mean field factorization nor block updating),
they do not need implicit differentiation, and do not explore the capacity of the SVAE to include
discrete latent variables. Second, because they optimize point-estimates θ̂ of parameters instead of
variational factors q(θ), they do not make use of natural gradients. In this point-estimate formulation,

8

(SVAE-SLDS) (SIN-SLDS) (SRNN)
Figure 5: Interpolations of human motion capture data. Red figures (covering 150 time steps) are generated by
each model to interpolate between the black figures four times. We see that our SVAE-SLDS provides varied
and plausible imputations with corresponding segmentations (colors shared with Fig. 1). During training the
SIN-SLDS [41] collapses to only use a single discrete state, and thus cannot produce diverse imputations. The
SRNN [17] produces varied sequences, but autoregressive generation is sometimes unstable and unrealistic, and
its inability to account for future observations prevents smooth interpolation with the observed sequence end.

they apply the parallel Kalman smoother [58] off-the-shelf, whereas we derive a novel extension for
our variational setting. Finally, their experimental results are confined to toy and synthetic data sets.

The most directly comparable model to the SVAE is the Stochastic Inference Network (SIN [41]),
which employs a graphical model prior p(z|θ) but estimates q(z) through traditional amortized
inference; a parameterized function that shares no parameters with the graphical model produces
variational posteriors. The authors consider discrete latent variable models like the SLDS, but due
to the intractability of discrete reparameterization, their inference routine fits the continuous latent
variables with a vanilla LDS. Thus training pushes the SIN to reconstruct, and therefore model, the
data without the use of switching states. (Experiments in [41] consider only the LDS, not the SLDS.)

The Graphical Generative Adversarial Network [40] integrates graphical models with GANs for
structured data. Experiments in [40] solely used image data; we compared to their implementation,
but it performed poorly on our time-series data, generating unrecognizable samples with huge FID.
Vector Quantization. Vector-Quantized VAEs (VQ-VAEs [62]) are another family of deep gen-
erative models that make use of discrete latent representations. Rather than directly outputting an
estimated posterior, the encoder of a VQ-VAE outputs a point in an embedding space which is
quantized to one of K learnable quantization points. The encoder is trained using a straight-through
estimator [6]. While discrete SVAE-SLDS states switch among multiple continuous modes, the VQ-
VAE representation is purely discrete, limiting information encoded by a latent variable to log2K bits.
In order to generate plausible and diverse samples, VQ-VAEs require large values of K, structured
collections of discrete variables, and/or post-hoc training of autoregressive priors [53, 54, 16, 15].

8 Experiments
We compare models via their test likelihoods, the quality of generated data, and the quality of
interpolations. We consider joint positions from human motion capture data (MOCAP [10, 26]) and
audio spectrograms from recordings of people reading Wall Street Journal headlines (WSJ0 [19]);
see Table 2. MOCAP has 84-dimensional data and training sequences of length T = 250. WSJ0 has
513-dimensional data and training sequences of length T = 50. See App. A.2 for further details.

Generation quality is judged via a modified Frechét inception distance (FID [18]) metric. We re-
place the InceptionV3 network with appropriate classifiers for motion capture and speech data (see
App. A.3). SVAE-SLDS-Bias runs the SVAE as presented by Johnson et al. [29], with unrolled gradi-
ents, dropped correction term, sequential Kalman smoother, and no pre-training scheme. We match
encoder-decoder architectures for all SVAE and SIN models using small networks (about 100,000
total parameters for motion data). The DKS, SRNN, and Transformer DVAE have approximately
300,000, 500,000, and 1.4 million parameters each; see App. A.5 for details.

To demonstrate the SVAE’s capacity to handle discrete latent variables in a principled manner, we
compare to two DVAE baselines which incorporate discrete variables via biased gradients: the
straight-through estimator [6] and the concrete (Gumbel-softmax) distribution [27, 44]. To our
knowledge, no one has successfully integrated either method into dynamical VAEs for temporal data.
Thus to make comparison possible, we have devised a new model which adds discrete latent variables
to the generative process of the DKS. Specifications for this model is provided in App. A.4. We
evaluated this model with both gradient estimators, and reported the results in Table 2.

9

Interpolation FIDs (↓)
Method log p(x) ≥ (↑) Sample FID (↓) 0.0-0.8 0.2-1.0 0.2-0.8

Human Motion Capture (h3.6m)
SVAE-SLDS 2.39 12.3 ± 0.2 7.9 ± 0.2 7.5 ± 0.2 2.8 ± 0.02

SVAE-SLDS-Bias [29] 2.36 34.6± 0.7 28.8± 0.2 25.8± 0.3 6.71± 0.12

SVAE-LDS 2.28 34.0± 0.3 19.3± 0.2 21.9± 0.2 7.90± 0.13

SIN-SLDS [41] 2.36 33.7± 0.4 12.38± 0.12 8.97± 0.08 3.27± 0.05

SIN-LDS [41] 2.33 65.2± 1.4 18.3± 0.2 15.5± 0.2 6.24± 0.09

Transformer [42] 2.82 421± 11 234± 9 228± 5 113± 5

SRNN [17] 2.94 62.7± 0.7 43.5± 0.7 24.2± 0.6 14.2± 0.3

DKS [35] 2.31 136± 6 46.7± 1.7 33.3± 1.1 9.0± 0.3

DKS+Concrete 1.70 144± 3 88± 3 89± 2 34.0± 1.4

DKS+Straight-Through 2.09 22± 3 22.6± 0.3 17.15± 0.14 13.8± 0.2

Audio Spectrogram (WSJ0)
SVAE-SLDS 1.54 9.61 ± 0.15 7.5 ± 0.2 8.14 ± 0.12 4.88 ± 0.08

SVAE-SLDS-Bias 1.45 18.6± 0.2 15.0± 0.2 15.2± 0.2 7.6± 0.12

SVAE-LDS 1.56 19.1± 0.3 17.9± 0.2 16.6± 0.3 7.2± 0.3

SIN-SLDS 1.53 20.0± 0.4 17.2± 0.3 14.9± 0.3 9.5± 0.2

SIN-LDS 1.54 17.8± 0.2 17.21± 0.11 13.2± 0.4 10.1± 0.2

Transformer 1.88 10.0± 0.2 12.0± 0.3 8.2 ± 0.2 5.7± 0.4

SRNN 1.94 23.6± 0.3 19.4± 0.5 17.4± 0.3 12.7± 0.4

DKS 1.55 12.9± 0.2 10.8± 0.2 10.8± 0.14 7.7± 0.05

DKS+Concrete 1.45 16.6± 0.2 12.8± 0.2 11.3± 0.2 8.2± 0.2

DKS+Straight-Through 1.48 15.51± 0.13 10.07± 0.11 9.02± 0.18 6.29± 0.13

Table 2: Comparison of model performance on log-likelihood (higher is better), FIDs of unconditionally
generated samples (lower is better), and FIDs of interpolations on augmented human motion capture and audio
spectrogram data. Each interpolation column corresponds to a masking regime where the shown range of
percentiles of the data is masked, e.g. 0.0-0.8 means the first 80% of time steps are masked.

Interpretability. In Fig. 1 we show the SVAE-SLDS’s learned discrete encoding of several joint
tracking sequences. While sitting sequences are dominated by a single dynamic mode, walking is
governed by a cyclic rotation of states. Posing and taking photo contain many discrete modalities
which are shared with other actions. The discrete sequences provide easily-readable insight into
sequences, while also compactly encoding the high-dimensional data.
Generation. In Fig. 4 we show example generated sequences from each model of audio data. Like
true speech, the SVAE-SLDS moves between discrete structures over time representing individual
sounds. In contrast, the SIN-SLDS [41] and DKS+Concrete baselines collapse to a single discrete
modality, blending together continuous dynamics. While the DKS+Straight-Through model does not
collapse, it uses discrete states too coarsely to inform the high-frequency dynamics of speech.
Interpolation. Amortized VI cannot easily infer q(zt) at time steps where the observations xt are
missing. Thus, given observations at a subset of times xobs, we can encode to obtain q(zobs) and infer
the missing latent variables by drawing from the generative prior p(zmissing|zobs, θ). Because baseline
models parameterize p(z|θ) by one-directional neural networks, they can only condition zmissing on
zobs at previous time steps, leading to discontinuity at the end of the missing window. For further
specifications and for details of the SVAE approach described in Sec. 6, see App. A.6. An alternative
approach of in-filling missing data with zeros causes models to reconstruct the zeros; see App. Fig. 7.

In Fig. 5, we see the SVAE-SLDS uses discrete states to sample variable interpolations, while the
SRNN’s one-step-ahead prediction scheme cannot incorporate future information in imputation,
producing discontinuities. We also note that despite achieving the highest test likelihoods, the SRNN
produces some degenerate sequences when we iterate next-step prediction, and has inferior FID
(see Table 2). The SIN-SLDS collapses to a single discrete state in training, resulting in uniform
imputations that lack diversity. Example imputations for all models are provided in App. Fig. 6.
Transformers for time series. The permutation-invariance of transformers is visible in its varied
performance on these two tasks. A lack of sequential modeling can lead to discontinuities in the data
sequence which are naturally present in speech. For MOCAP, joint locations are continuous across
time, making transformer-generated samples unrealistic (see Fig. 6 and Table 2).

9 Discussion
The SVAE is uniquely situated at the intersection of flexible, high-dimensional modeling and inter-
pretable data clustering, enabling models which both generate data and help us understand it. Our
optimization innovations leverage automatic differentiation for broad applicability, and provide the
foundation for learning SVAEs with rich, non-temporal graphical structure in other domains.

10

Acknowledgements

This research supported in part by NSF RI Award No. IIS-1816365, ONR Award No. N00014-23-1-
2712, and the HPI Research Center in Machine Learning and Data Science at UC Irvine.

References
[1] Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. Optuna: A next-generation hyper-

parameter optimization framework. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2019.

[2] Amari, S.-I. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276,
1998.

[3] Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

[4] Barber, D. and Chiappa, S. Unified inference for variational Bayesian linear Gaussian state-space
models. In Advances in Neural Information Processing Systems, 2007.

[5] Beal, M. J. Variational algorithms for approximate Bayesian inference. University College
London, 2003.

[6] Bengio, Y., Léonard, N., and Courville, A. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[7] Berliner, A., Rotman, G., Adi, Y., Reichart, R., and Hazan, T. Learning discrete structured
variational auto-encoder using natural evolution strategies. In International Conference on
Learning Representations, 2022.

[8] Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula,
G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL http://github.com/google/jax.

[9] Cao, H., Cooper, D. G., Keutmann, M. K., Gur, R. C., Nenkova, A., and Verma, R. CREMA-D:
Crowd-sourced emotional multimodal actors dataset. IEEE transactions on affective computing,
2014.

[10] Catalin Ionescu, Fuxin Li, C. S. Latent structured models for human pose estimation. In
International Conference on Computer Vision, 2011.

[11] Che, Z., Purushotham, S., Cho, K., Sontag, D., and Liu, Y. Recurrent neural networks for
multivariate time series with missing values. Scientific reports, 8(1):6085, 2018.

[12] Child, R. Very deep VAEs generalize autoregressive models and can outperform them on images.
In International Conference on Learning Representations, 2021.

[13] Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A. C., and Bengio, Y. A recurrent latent
variable model for sequential data. In Advances in Neural Information Processing Systems,
2015.

[14] Cremer, C., Li, X., and Duvenaud, D. Inference suboptimality in variational autoencoders. In
International Conference on Machine Learning, 2018.

[15] Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A., and Sutskever, I. Jukebox: A
generative model for music. arXiv preprint arXiv:2005.00341, 2020.

[16] Dieleman, S., van den Oord, A., and Simonyan, K. The challenge of realistic music generation:
modelling raw audio at scale. In Advances in Neural Information Processing Systems, 2018.

[17] Fraccaro, M., Sønderby, S. K., Paquet, U., and Winther, O. Sequential neural models with
stochastic layers. In Advances in Neural Information Processing Systems, 2016.

11

http://github.com/google/jax

[18] Fréchet, M. Sur la distance de deux lois de probabilité. In Annales de l’ISUP, volume 6, pp.
183–198, 1957.

[19] Garofolo, J., Graff, D., Paul, D., and Pallett, D. Csr-i (wsj0) sennheiser ldc93s6b. Web Download.
Philadelphia: Linguistic Data Consortium, 1993.

[20] Ghahramani, Z. and Hinton, G. E. Variational learning for switching state-space models. Neural
Computation, 12:831–864, 2000.

[21] Girin, L., Leglaive, S., Bie, X., Diard, J., Hueber, T., and Alameda-Pineda, X. Dynamical
variational autoencoders: A comprehensive review. Foundations and Trends in Machine
Learning, 15(1-2):1–175, 2021.

[22] Hendrycks, D. and Gimpel, K. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

[23] Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. Stochastic variational inference. Journal
of Machine Learning Research, 2013.

[24] Hughes, M. C. and Sudderth, E. Memoized online variational inference for dirichlet process
mixture models. In Advances in Neural Information Processing Systems, 2013.

[25] Hughes, M. C., Stephenson, W. T., and Sudderth, E. Scalable adaptation of state complexity for
nonparametric hidden markov models. In Advances in Neural Information Processing Systems,
2015.

[26] Ionescu, C., Papava, D., Olaru, V., and Sminchisescu, C. Human3.6m: Large scale datasets
and predictive methods for 3d human sensing in natural environments. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2014.

[27] Jang, E., Gu, S., and Poole, B. Categorical reparameterization with Gumbel-softmax. In
International Conference on Learning Representations, 2017.

[28] Ji, G., Sujono, D., and Sudderth, E. B. Marginalized stochastic natural gradients for black-box
variational inference. In International Conference on Machine Learning, 2021.

[29] Johnson, M. J., Duvenaud, D. K., Wiltschko, A., Adams, R. P., and Datta, S. R. Composing
graphical models with neural networks for structured representations and fast inference. In
Advances in Neural Information Processing Systems, 2016.

[30] Khan, M. E. and Nielsen, D. Fast yet simple natural-gradient descent for variational inference in
complex models. In 2018 International Symposium on Information Theory and Its Applications
(ISITA), 2018.

[31] Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

[32] Kingma, D. P. and Welling, M. Auto-encoding variational Bayes. In International Conference
on Learning Representations, 2014.

[33] Kingma, D. P. and Welling, M. An introduction to variational autoencoders. Foundations and
Trends in Machine Learning, 12(4):307–392, 2019.

[34] Krantz, S. G. and Parks, H. R. The implicit function theorem: history, theory, and applications.
Springer Science & Business Media, 2002.

[35] Krishnan, R., Shalit, U., and Sontag, D. Structured inference networks for nonlinear state space
models. In Proceedings of the AAAI Conference on Artificial Intelligence, 2017.

[36] Krishnan, R., Liang, D., and Hoffman, M. On the challenges of learning with inference networks
on sparse, high-dimensional data. In AISTATS, pp. 143–151, 2018.

[37] Krishnan, R. G., Shalit, U., and Sontag, D. Deep kalman filters. arXiv preprint
arXiv:1511.05121, 2015.

12

[38] Kschischang, F. R., Frey, B. J., and Loeliger, H.-A. Factor graphs and the sum-product algorithm.
IEEE Trans. Info. Theory, 47(2):498–519, February 2001.

[39] Lerner, U. and Parr, R. Inference in hybrid networks: Theoretical limits and practical algorithms.
In Conference on Uncertainty in Artificial Intelligence, 2001.

[40] Li, C., Welling, M., Zhu, J., and Zhang, B. Graphical generative adversarial networks. In
Advances in Neural Information Processing Systems, 2018.

[41] Lin, W., Hubacher, N., and Khan, M. E. Variational message passing with structured inference
networks. In International Conference on Learning Representations, 2018.

[42] Lin, X., Bie, X., Leglaive, S., Girin, L., and Alameda-Pineda, X. Speech modeling with a
hierarchical transformer dynamical vae. In IEEE International Conference on Acoustics, Speech
and Signal Processing, 2023.

[43] Lorraine, J., Vicol, P., and Duvenaud, D. Optimizing millions of hyperparameters by implicit
differentiation. In International Conference on Artificial Intelligence and Statistics, 2020.

[44] Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete distribution: A continuous relaxation
of discrete random variables. In International Conference on Learning Representations, 2017.

[45] Malagò, L., Matteucci, M., and Pistone, G. Towards the geometry of estimation of distribution
algorithms based on the exponential family. In Proceedings of the 11th workshop proceedings
on Foundations of genetic algorithms, pp. 230–242, 2011.

[46] Marcel, S. and Rodriguez, Y. Torchvision the machine-vision package of torch. In Proceedings
of the 18th ACM international conference on Multimedia, 2010.

[47] Mnih, A. and Gregor, K. Neural variational inference and learning in belief networks. In
International Conference on Machine Learning, 2014.

[48] Pavlovic, V., Rehg, J. M., Cham, T.-J., and Murphy, K. P. A dynamic Bayesian network approach
to figure tracking using learned dynamic models. In Proceedings of the IEEE International
Conference on Computer Vision, volume 1, pp. 94–101, 1999.

[49] Pavlovic, V., Rehg, J. M., and MacCormick, J. Learning switching linear models of human
motion. Advances in Neural Information Processing Systems, 13, 2000.

[50] Pearl, J. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman, San Mateo, 1988.

[51] Rajeswaran, A., Finn, C., Kakade, S. M., and Levine, S. Meta-learning with implicit gradients.
In Advances in Neural Information Processing Systems, 2019.

[52] Ranganath, R., Gerrish, S., and Blei, D. Black Box Variational Inference. In Proceedings of the
Seventeenth International Conference on Artificial Intelligence and Statistics, 2014.

[53] Rasul, K., Park, Y.-J., Ramström, M. N., and Kim, K.-M. Vq-ar: Vector quantized autoregressive
probabilistic time series forecasting. arXiv preprint arXiv:2205.15894, 2022.

[54] Razavi, A., Van den Oord, A., and Vinyals, O. Generating diverse high-fidelity images with
vq-vae-2. In Advances in Neural Information Processing Systems, 2019.

[55] Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic backpropagation and approximate
inference in deep generative models. In International Conference on Machine Learning, 2014.

[56] Richardson, L. F. Ix. the approximate arithmetical solution by finite differences of physical
problems involving differential equations, with an application to the stresses in a masonry dam.
Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a
Mathematical or Physical Character, 210(459-470):307–357, 1911.

[57] Rybkin, O., Daniilidis, K., and Levine, S. Simple and effective vae training with calibrated
decoders. In International Conference on Machine Learning, 2021.

13

[58] Särkkä, S. and García-Fernández, Á. F. Temporal parallelization of bayesian smoothers. IEEE
Transactions on Automatic Control, 2020.

[59] Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K., and Winther, O. Ladder variational
autoencoders. In Advances in Neural Information Processing Systems, 2016.

[60] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. Rethinking the inception
architecture for computer vision. In Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016.

[61] Vahdat, A. and Kautz, J. NVAE: A deep hierarchical variational autoencoder. In Advances in
Neural Information Processing Systems, 2020.

[62] Van Den Oord, A., Vinyals, O., et al. Neural discrete representation learning. In Advances in
Neural Information Processing Systems, 2017.

[63] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. Attention is all you need. In Advances in Neural Information Processing Systems,
2017.

[64] Wainwright, M. J., Jordan, M. I., et al. Graphical models, exponential families, and variational
inference. Foundations and Trends in Machine Learning, 1, 2008.

[65] Xing, E. P., Jordan, M. I., and Russell, S. A generalized mean field algorithm for variational
inference in exponential families. In Conference on Uncertainty in Artificial Intelligence, 2003.

[66] Young, D. M. Iterative Solution of Large Linear Systems. Academic Press, New York, 1971.

[67] Yu, C., Soulat, H., Burgess, N., and Sahani, M. Amortised inference in structured generative
models with explaining away. In Advances in Neural Information Processing Systems, 2022.

[68] Zeng, A., Chen, M., Zhang, L., and Xu, Q. Are transformers effective for time series forecasting?
In Proceedings of the AAAI conference on artificial intelligence, 2023.

[69] Zhao, Y. and Linderman, S. W. Revisiting structured variational autoencoders. In International
Conference on Machine Learning, 2023.

14

A Experimental Protocol

A.1 Implementation

Code can be found at https://github.com/hbendekgey/SVAE-Implicit. All methods were
implemented with the JAX library [8].

A.2 MOCAP Dataset

Our motion capture experiments were conducted using a variant of the H3.6M dataset [26]. The
original data consists of high-resolution video data of 11 actors performing 17 different scenarios,
captured with 4 calibrated cameras. Following the procedure of [21] our tests use the extracted
skeletal tracks, which contain 3D-coordinates for 32 different joints (for 96 observation dimensions),
sampled at 25hz. Joint positions are recorded in meters relative to the central pelvis joint. Our only
changes from the pre-processing of [21] are (i) we remove dimensions with 0 variance across data
sequences, resulting in 84 observation dimensions; (ii) we extract 250-step-long sequences instead
of 50-step-long ones, corresponding to an increase from 2 seconds of recording to 10 seconds; (iii)
we add Gaussian noise with variance of 1mm to the data to reduce overfitting; and (iv) we employ
a different train-valid-test split. In total, our training dataset consisted of 53,443 sequences, our
validation set contained 2,752 sequences, and our test set contained 25,893 sequences.

While [21] split across subjects, we found this lead to substantially different training, validation,
and testing distributions. We instead split across “sub-acts”, or the 2 times each subject did each
action. Thus the training set contained 7 actors doing 17 actions once, and the validation and test
set combined contained the second occurrence of each act. The validation set contained 3 subjects’
second repetition of each action, and the test set contained the other 4. Two corrupted sequences were
found in the validation set, 7-phoning-1 and 7-discussion-1, which were removed.

We model the likelihood p(x|z) of joint coordinates using independent Gaussian distributions.
Following the work of [57] we fit a single global variance parameter to each feature dimension (as
part of training), rather than fixing the likelihood variances or outputting them from the decoder
network. We found this leads to more stable training for most methods.

FID Scores The InceptionV3 [60] network typically used to compute Frechet Inception Distance
[18] scores was trained on natural images and is therefore inappropriate for evaluating the generative
performance of the H3.6M motion capture data. To resolve this, we compute the same score using
a different underlying network. We trained a convolutional network to predict which of the 15
different motions was being performed in each sequence (note that in H3.6M, motions are distinct
from actions/scenerios, which may include more subtle variations). We used a residual network
architecture, where each residual block consists of 2 1-D convolutional layers with batch normalization
and a skip connection. We chose 1-D convolutions (across time) as they are more appropriate for
our temporal motion capture data. We used the Optuna library [1] to search across model depths,
activations and layer sizes to find a network within our design space that performed optimally on a
validation dataset (25% of the original training data). Our final network architecture is summarized in
table 3. As with the original FID score, we use the output of final average pooling layer to compute
the score.

A.3 WSJ0 Dataset

The WSJ0 dataset [19] contains recordings of people reading news from the Wall Street Journal. We
followed all pre-processing of [21], which resulted in sequences of length 50 with 513-dimensional
observations at each time step. We modeled the spectrogram data via a Gamma distribution with
fixed concentration parameter 2, equivalent to modeling the complex Fourier transform of the data
with a mean 0 complex normal distribution. We remove subject 442 from the test data set, as several
of the recordings are substantially different from all others in the train and validation sets: instead of
being isolated audios, some of these recordings include background noises and beeps which cannot
be fit at training time. The encoder takes as input the log of the data and the decoder outputs the log
rate of the gamma distribution, as the data spans many orders of magnitude. In total, our training
dataset contained 93,215 sequences, our validation set contained 2,752 sequences, and our test set
contained 4,709 sequences.

15

https://github.com/hbendekgey/SVAE-Implicit

(SVAE-SLDS) (SIN-SLDS) (SRNN)

(SVAE-LDS) (SVAE-SLDS-bias) (Transformer)

(DKS+Concrete) (DKS+Straight-Through) (DKS)

Figure 6: Interpolations of human motion capture data. Red figures (covering 150 time steps) are generated by
each model to interpolate between the black figures four times (see App. A.6 for methodology). Segmentation
colorbars are shown below models which use discrete latent variables; all non-SVAE-SLDS models collapse to a
single discrete state throughout training. Amortized VI models draw missing data conditioned on previous data,
introducing discontinuities at the end of the missing window.

Residual Block Downsampling block
Mocap Classifier
Activation: Relu
Conv. window: 3

Conv.
Batch Norm
Activation
Conv.
Batch Norm
Activation
Add input

Conv.
Batch Norm
Activation
Conv. (stride 2)
Batch Norm
Activation
Add downsampled input

Residual block 128
Downsampling block 128
Residual block 128
Residual block 128
Global average pool
Dense

Table 3: Summary of classifier network architecture used to compute FID scores for Mocap data.

FID Scores As with the H3.6M dataset, it is necessary to define a different base network to evaluate
generative FID scores for the WSJ0 dataset. As the WSJ0 dataset does not have an appropriate set
of labels to use to train a classifier, we chose to instead train a classifier on the CREMA-D dataset
[9], which consists of similar speech clips. We preprocessed each audio sequence in CREMA-D
identically to the WSJ0 dataset and trained a classifier to predict one of 6 different emotions that was
expressed. For architecture, we used a efficientnet_v2_s model from the torchvision package
[46] on the data in log space.

16

Full Sequence SVAE-SLDS SVAE-SLDS-Bias DKS (zero fill) SRNN (zero fill)

Continuous Latent Variable

z1
z2

0

20

40

60

80

DKS (from prior) SRNN (from prior)

0 50 100 150 200

Time

St
at

e

Discrete Latent Variable

0 10 20 30 40 50 60 70 80

Time
0 10 20 30 40 50 60 70 80

Time
0 10 20 30 40 50 60 70 80

Time
0 10 20 30 40 50 60 70 80

Time

Figure 7: Segmentation and Imputation. An SLDS SVAE is trained on synthetic data with feature dimension
100, sequence length T = 250 and 4 distinct dynamics. We show the SVAE’s latent representation of the
pictured sequence via the means of the 2-dimensional continuous latent variable and the probability distributions
over 8 discrete states (which has coalesced its posterior probability into a single state at nearly every time step).
In the following columns we show model imputations when time steps 20 to 70 are not provided. For the DKS
and SRNN, we show one imputation using the infill-with-zeros method, and 2 imputations drawn from the
learned latent variable prior, conditioned on the preceding latent variables for which a posterior is properly
defined.

A.4 Discrete Deep Kalman Smoother Baselines

To our knowledge, time series VAEs that utilize Concrete [44] or straight-through gradient estimators
have not been previously evaluated in literature. In order to perform a fair comparison to these
approaches to gradient estimation with discrete latent variables, we have devised a new model that
extends the Deep Kalman Smoother (DKS) [37] to incorporate both discrete and continuous latent
variables. We can define the generative model as follows:

pθk(kt | zt−1, kt−1) = Cat(λθk(zt−1, kt−1)) (14)
pθz (zt | zt−1, kt) = N (µθz (zt−1, kt), σθz) (15)

pγ(xt | zt) = N (µγ(zt), σθx) (16)

Here λθk(zt−1, kt−1), µθz (zt−1, kt) and µγ(zt) are neural networks, while σθz and σθx are learnable
variance parameters. µθx(zt) uses the same decoder architecture as our implementation of the standard
DKS model. λθk(zt−1, kt−1), µθz (zt−1, kt) use the following architecture in our experiments:

λ(·) µ(·)
Layer Norm Layer Norm
Dense 64 Dense 64
Gelu Gelu
Layer Norm Layer Norm
Dense 64 Dense 64
Gelu Gelu
Layer Norm Layer Norm
Dense Dense
Softmax

The inference model can be written as:
qϕk

(kt | xt:T , zt−1, kt−1) = Cat(λϕk
(gϕ(xt:T), zt−1, kt−1)) (17)

qϕz
(zt | xt:T , zt−1, kt) = N (µϕz

(gϕ(xt:T), zt−1, kt), σϕz
) (18)

Here gϕ(xt:T) is same encoder network used by our DKS implementation (see Table 4), while λϕk
(·)

and µϕk
(·) are networks with the same architecture as λθk(·) and µθk(·) shown above. We note that

the output of gϕ(xt:T) is shared by both parts of the inference model.

17

In our experiments we match the latent dimension and number of discrete states to the corresponding
SVAE SLDS model. For “DKS + Straight-Through” we use straight-through estimates of the gradient
of samples of kt. In this case we can directly compute the KL-divergence between pθk(kt | zt−1, kt−1)
and qϕk

(kt | xt:T , zt−1, kt−1) in closed form.

For “DKS + Concrete” we replace the Categorical distribution in equations 14 and 17 with a Concrete
distribution. As the KL-divergence between concrete distributions does not have a closed-form
expression, we estimate the KL-divergence between the two distributions by sampling. During
training, we anneal the temperature parameter for each distribution from 1. to 0.02.

A.5 Architectures and Training Specifications

All experiments use latent space with dimension D = 16. We train using the Adam [31] optimizer for
neural network parameters, and stochastic natural gradient descent for graphical model parameters,
with a batch size of B = 128 and learning rate 10−3 (the transformer DVAE uses learning rate 10−4,
which improved performance). We train all methods for 200 epochs on MOCAP and 100 epochs
on WSJ0 (including VAE-pre-training for 10 epochs for SVAE/SIN methods), which we found was
sufficient for convergence.

For the SVAE-SLDS, we initialize the graphical model parameters after these 10 epochs of VAE
pre-training of the networks. We found that the discrete latent variables could not meaningfully
cluster the continuous latent variable at the beginning of training, when the encoder outputs do not
yet contain high mutual information with the observations. After VAE pre-training, we sampled 100
sequences and encoded them. We then normalized the resulting approximate likelihood functions and
sampled to obtain plausible sequences in the latent space. We trained an auto-regressive HMM model
on the resulting sequences using memoized variational inference, which uses adaptive proposals to
avoid local optima as implemented in bnpy [24, 25], to initialize the parameters η of q(θ).

Table 4 summarizes the network architectures used, numbers of parameters, and compute needed to
run the main experiments of this paper. Note that “Rev. LSTM” denotes a reverse-order LSTM and
“TF-LSTM” refers to the “teacher-forcing” LSTM that is shared between the encoder and decoder
[21]. For the transformer, attention modules in the decoder include causal masks, and all attentions are
single-headed. Skip connections are not listen in the table. For a full specification of the architecture,
see [42] (Table 4 outlines the architecture choices at each layer of that paper’s framework).

For each model, we list the number of parameters for the MOCAP dataset. Even though the same
architecture is used for both models, WSJ0 has a higher data dimension (513 vs 84) resulting in
109,824 more parameters in the encoder (via the first layer) and the decoder (in the last layer). The
total amount of computation across both datasets amounts to 6 GPU days for A10G GPUs on an EC2
instance.

A.6 Interpolation Procedure

Let xmissing, xobs be a partition of data into missing and observed sequences. For the following
explanations, we assume that the observed data is the beginning and end of the sequence xobs =
x0.0−0.2 ∪ x0.8−1.0 (first 20% and last 20% as in our results) leaving xmissing = x0.2−0.8.

To interpolate missing data we begin by encoding xobs to obtain q(zobs) (in the
DKS/transformer/SRNN case) or ℓ̂ϕ(zobs|xobs) (in the SVAE/SIN case), where zobs is the subset
of z corresponding to the observed time steps. For models which are separable across time this is
trivial, and we handle the LSTMs in the SRNN and DKS encoders by encoding every connected
block of observations separately so that we do not need to hand missing or infilled data into the
encoders.

For the DKS and its extensions, we then sample the remaining z from the generative prior given
the last encoded latent variable that precedes the missing chunk. In the regime above, we therefore
sample from p(z0.2−0.8|z0.0−0.2) as we cannot easily condition on later timesteps of a forward deep
recurrent model. Finally, we decode zmissing ∪ zobs to obtain the reconstruction and interpolation.

For the SRNN and the transformer, due to their autoregressive nature we sample a value of z at a
single timestep (i.e. the first timestep in z0.2−0.8) and decode to obtain a new x. We then repeat this

18

Method Encoder arch. Enc. ParamsDecocder arch. Dec. ParamsLatent paramsRuntime

SVAE-SLDS

Dense 256
Gelu [22]
Layer Norm [3]
Dense 128
Gelu
Layer Norm
Dense 16

57,504

Dense 128
Gelu
Layer Norm
Dense 256
Gelu
Layer Norm
Dense

57,640 30,668
(50 states)

16.4 GPU hours
(MOCAP)
12.5 GPU hours
(WSJ0)

SVAE-LDS

Dense 256
Gelu
Layer Norm
Dense 128
Gelu
Layer Norm
Dense 16

57,504

Dense 128
Gelu
Layer Norm
Dense 256
Gelu
Layer Norm
Dense

57,640 716

9 GPU hours
(MOCAP)
4.6 GPU hours
(WSJ0)

SIN-SLDS

Dense 256
Gelu
Layer Norm
Dense 128
Gelu
Layer Norm
Dense 16

57,504

Dense 128
Gelu
Layer Norm
Dense 256
Gelu
Layer Norm
Dense

57,640 34,018
(50 states)

7.3 GPU hours
(MOCAP)
3.6 GPU hours
(WSJ0)

SIN-LDS

Dense 256
Gelu
Layer Norm
Dense 128
Gelu
Layer Norm
Dense 16

57,504

Dense 128
Gelu
Layer Norm
Dense 256
Gelu
Layer Norm
Dense

57,640 1516

7.3 GPU hours
(MOCAP)
3.6 GPU hours
(WSJ0)

Transformer

Dense 256
Gelu
Layer Norm
Positional Enc.
Self Attention
Layer Norm
Dense 256
Gelu + Skip
Layer Norm
Dense

360,480

Dense 256
Gelu
Layer Norm
Positional Enc.
Self Attention
Layer Norm
Cross Attention
Layer Norm
Dense 256
Gelu
Layer Norm
Dense

532,136 518,688

2 GPU hours
(MOCAP)
1.6 GPU hours
(WSJ0)

SRNN

Dense 256
Gelu
Layer Norm
Dense 128
Shared LSTM 128
Reverse-LSTM 128
Dense

252,288

Shared LSTM 128
Dense 256
Gelu
Layer Norm
Dense

190,888 87,680

3.7 GPU hours
(MOCAP)
2.9 GPU hours
(WSJ0)

DKS
(+ Discrete)

Dense 256
Gelu
Layer Norm
Reverse-LSTM 128
Dense 192

244,160

Dense 128
Gelu
Layer Norm
Dense 256
Gelu
Layer Norm
Dense

57,640 38,144
(43,724)

3.3 GPU hours
(MOCAP)
2.4 GPU hours
(WSJ0)

Table 4: Summary of network architectures used for human motion capture and speech experiments. “Latent
parameters” are those which specify p(z|.). For the SRNN model, one LSTM layer is shared between inference
and generation; we denote this layer “shared LSTM” and count its parameters among those for the decoder.
SVAE-SLDS-Bias uses the same architecture as the SVAE-SLDS but takes 36.5 GPU hours MOCAP and 28.5
GPU hours on WSJ0 to train.

19

process so as to update the hidden state ht while holding zt in the observed and already-interpolated
region constant.

For the SVAE and SIN methods, we do inference in qϕ(z|x) as in training time, except setting the
inference network potentials at missing timesteps to 0 (thus setting ℓ̂ϕ(z|x) as uniform over the reals).
For models with discrete random variables the block updating routine is prone to local optima, so we
initialize according to the following heuristic: we encode x0.0−0.2 and x0.8−1.0 and perform block
updating to obtain q(k0.0−0.2) and q(k0.8−1.0). We then sample the endpoints k0.2, k0.8 from these
variational factors. We perform HMM inference to sample from p(k0.2−0.8|k0.2, k0.8), using that
sample to initialize the block updating.

The protocols above can be easily extended to the 0.0 − 0.8, 0.2 − 1.0, and the full generation
cases, noting that the models which can only condition generation forwards in time (DKS, SRNN,
Transformer) must sample the initial z from the generative model in the 0.0 − 0.8 case instead of
conditioning on an observation. The discrete random variable models initialize block updating for
fully-generated sequences via draws from the prior p(k).

Note that in Fig. 1 we show the discrete states are a discrete representation by initializing block
updating with the ground truth discrete states as well as the first and last time steps (see grey
background figures). We found the “anchoring” observations were necessary because the discrete
states only encoder dynamics, as opposed to location in the z-space.

A.7 Additional Results

In Fig. 6 we show an extended version of Fig. 5, showcasing the performance of all models on
interpolating human motion capture data.

In Fig. 7 we compare our model’s interpolation ability to several baselines on synthetic data. The data
is constructed by evaluated a Laplacian distribution on a 100-dimensional grid, where observations
evolve over time by either increasing or decreasing the mean of the distribution, or increasing or
decreasing the variance of the distribution. Note that this data was used to test the runtimes of various
methods, see Table 1.

Fig. 7 demonstrates the effect of the imputation method on the baseline models: for the RNN-based
models, if we simply infill the missing observations with 0, the encoder-decoder structure simply
reconstructs the 0s. Drawing the missing region from the model’s prior distribution yields a generation
closer to the data distribution but still infeasible under the true data dynamics. The prior SVAE
implementation collapses to a single state, yielding interpolations that do not match any dynamics
seen in the training data.

20

B Notation

In this section we provide a glossary of notation used in the main paper and the appendix.

B.1 Notation in main paper

Notation Meaning

BP(.) belief propagation function, which takes (natural) parameters of
the graphical model and returns expected sufficient statistics.

γ weights of the generative network (decoder)
η natural parameters of q(θ; η)
η̃ unconstrained parameterization of η
Fη Fisher information matrix of exponential family distribution with

natural parameters η
g(ω; η, ϕ, x) equation which block updating attempts to solve for the root of

k discrete local latent variable (subset of z)
ℓ̂ϕ(z|x) approximate likelihood function outputted by recognition network

(encoder)
L the loss function, the Evidence Lower Bound Objective (ELBO).
L̂ Surrogate ELBO, obtained by replacing true likelihood function

with a conjugate surrogate.
MF(.) mean field inference update, where messages are passed along

residual edges (those edges removed by the structured mean field
approximation).

µ expected sufficient statistics of q(z), i.e. Eq(z)[t(z)]
µm expected sufficient statistics of a particular mean field component

q(zm). µ−m is defined analogously to ω−m.
µη expected sufficient statistics of q(θ), i.e. Eq(θ)[t(θ)]
ω natural parameter of q(z) in any of its forms: q(z; η) (local

VI), qϕ(z|x; η) (SVAE VI) or
∏

m qϕ(zm|x; η), (Structured Mean
Field SVAE VI)

ωm natural parameter of each mean field cluster
∏

m qϕ(zm|x; η) in
Structured Mean Field SVAE s.t. ω = ∪mωm. ω−m is defined
analogously to µ−m.

ω−m natural parameter of all mean field clusters but m, ω−m =
∪n ̸=mωn.

ω∗(x, η, ϕ) function which runs block updating to return the optimal natural
parameters of q(z) with respect to surrogate loss funciton L̂

p0(z; η) p0(z; η) ∝ exp{Eq(θ;η)[log p(z|θ)]}
ϕ weights of recognition network (encoder)

q(θ; η), q(z;ω) variational factors approximating the posteriors of global (θ) and
local (z) latent variables.

qϕ(z|x), qϕ(z|x; η) variational factor for z produced by amortized VI and SVAE VI
respectively.

qϕ(zm|x; η) variational factor for subset zm ⊆ z
t(.) sufficient statistics of an exponential family distribution.
θ global latent variables defining graphical model factors
V vertex set of the graphical model
x observation
z local (per-observation) latent variable

21

B.2 Notation in this appendix

Notation Meaning

Sec. C Exponential families and mean field objectives
KL Kullback-Leibler divergence, defined in Eq. (25)
F set of factors in the graphical model representation of q(z), intro-

duced in Eq. (32).
λϕ(x) natural parameter of ℓ̂ϕ(z|x), defined in Eq. (44).

rt, Rt for Gaussian temporal models such as the LDS and SLDS,
λϕ(x) = {rt,−1/2Rt} as defined in Eq. (50).

θtrans Matrix of LDS transition parameters for each of the K switching
states in the SLDS, defined in Eq. (58).

Sec. D Belief propagation in time series
h0, J0 natural parameters of p(z1|θ), defined in Eq. (64).

ωt natural parameters of the LDS (or the continuous half of the
SLDS) transition at time step t, defined in Eq. (65). Also used in
the HMM as the mean field message from the LDS at step t.

h1,t, J11,t, J12,t, J22,t, h2,t components of ωt, defined in Eq. (65).
mzi,ωi

(zi) belief propagation messages from variable zi to factor with pa-
rameter ωi, introduced in Eq. (69)

mωi,zi(zi) belief propagation messages from factor with parameter ωi to
variable zi, introduced in Eq. (70)

ft|t, Ft|t parameters of mzt,ωt+1(zt), i.e. the filtered messages for the
Gaussian inference at step t which has accrued evidence from the
first t “observations"

ft+1|t, Ft+1|t parameters of mωt+1,zt+1
(zt+1), i.e. the predicted messages for

the Gaussian inference at step t+ 1 which has accrued evidence
from the first t “observations"

ft|T , Ft|T parameters of q(zt), i.e. the smoothed messages for the Gaussian
inference at step t which has accrued evidence from all “observa-
tions"

ker(.) returns an un-normalized distribution with no log partition func-
tion, defined in Eq. (111)

ft(zt−1, zt), ϕ.,t,Φ..,t sequence of functions (and their parameters) used by the filtering
step of the parallel Kalman filter, defined in Eq. (115)

gt(zt−1), γt,Γt sequence of functions (and their parameters) used by the filtering
step of the parallel Kalman filter, defined in Eq. (112)

et(zt, zt+1), ϵt, Et sequence of functions (and their parameters) used by the smooth-
ing step of the parallel Kalman smoother, defined in Eq. (148)

⊗ associative operator for parallel Kalman filtering, defined in
Eq. (119) and (120)

⊕ associative operator for parallel Kalman smoothing, defined in
Eq. (151)

22

C Exponential families and mean field objective

To rigorously define the SVAE inference routine, in Sec. C.1 we (re-)introduce exponential family
and factor graph notation for defining distributions. Then, in Sec. C.2 we derive the optimizer of
L̂[. . .] and the mean field message passing update MF(.). Sec. D then contains the necessary equations
for belief propagation in the LDS and SLDS models, including proofs and derivations of our novel
inference algorithm which parallelizes belief propagation across time steps.

C.1 Exponential families of distributions

Given an observation z ∈ Z , an exponential family is a family of distributions characterized by a
statistic function t(z) : Z → Rn with probabilities given by

p(z; η) = exp{⟨η, t(z)⟩ − logZ(η)} (19)
Where η ∈ Rn is a parameter vector known as the natural parameters, and the log partition function
logZ(η) is given by

logZ(η) = log

∫
z

exp{⟨η, t(z)⟩}dx (20)

and ensures that the distribution properly normalizes (to simplify notation, here we focus on continu-
ous z but this definition can be easily extended to discrete observations by replacing the integral with
a sum and and restricting the output of t(z) to some discrete set). A single assignment of values to η
characterizes a member of this exponential family, and so searching over a family means searching
over valid values of η ∈ H where H is the set of parameters for which the integral in Eq. (20) is
finite. We begin with a couple simple properties of exponential families:
Proposition C.1. The gradient of a distribution’s log partition function with respect to its parameters
is its expected statistics:

∇η logZ(η)) = Ep(z;η)[t(z)] (21)

Proof.

∇η logZ(η) =
1∫

z
exp{⟨η, t(z)⟩}dx

∫
z

t(z) exp{⟨η, t(z)⟩}dx (22)

=

∫
z

t(z) exp{⟨η, t(z)⟩ − logZ(η)} = Ep(z;η)[t(z)] (23)

Proposition C.2. Given two distributions p(z; η1), p(z; η2) in the same exponential family with
parameters η1 and η2, the KL divergence between the two distributions is given by

KL(p(z; η1) ∥ p(z; η2))) :=Ep(z;η1)

[
log

p(z; η1)

p(z; η2)

]
(24)

=⟨η1 − η2,Ep(z;η1)[t(z)]⟩ − logZ(η1) + logZ(η2) (25)

Proof. The log probabilities are linear in the statistics, so the expectation can be pulled in.

Definition C.3. Given an exponential family distribution p(θ; η)
p(θ; η) = exp{⟨η, t(θ)⟩ − logZ(η)} (26)

we say that p(z|θ) is conjugate to p(θ; η) if one distribution’s parameters is the other distribution’s
statistics, namely

p(z|θ) = exp{⟨t(θ), (t(z), 1)⟩ − c} = exp{⟨t̂(θ), t(z)⟩ − logZ(t̂(θ))} (27)
Where t̂(θ) is the first dim(t(z)) entries of t(θ) and c is a constant.

Note that t(θ) and t(z) are not the same function with different inputs, but rather are unique to each
distribution. As it is generally clear which function is needed, we share this notation, just as p(θ), p(z)
is understood to refer to different densities.

Further note that the sufficient statistics of p(θ) either become parameters of p(z|θ) or its normalizers.
This can be notated two ways: either by appending 1s to the end of t(z) to align with the normalizers,
or simply fold them into the log partition function. An example is provided below.

23

Example: NIW distribution. A normal distribution p(z;µ,Σ) has natural parameters and sufficient
statistics given by:

η =

[
Σ−1µ
− 1

2Σ
−1

]
t(x) =

[
x
xxT

]
(28)

We bend notation here by concatenating vectors to matrices. Assume all matrices are appropriately
flattened to make the inner product a scalar, for more info see Sec. G. The normal distribution’s log
partition function is given by:

logZ(η) =
1

2
µTΣ−1µ+

1

2
log |Σ|+ n

2
log(2π) (29)

Meanwhile, the Normal Inverse Wishart (NIW) distribution has sufficient statistics:

t(µ,Σ) =

− 1

2Σ
−1

Σ−1µ
− 1

2µ
TΣ−1µ

− 1
2 log |Σ|

 (30)

Note that the first two are parameters of p(z), and the last two appear in the log partition function. A
desirable property of conjugacy is that the posterior has a simple form, namely:

p(θ|z) ∝ exp{⟨t(θ), η + (t(z), 1)⟩} (31)
This follows easily from the fact that p(θ|z) ∝ p(θ)p(z|θ) which are both log-linear in t(θ).

Factor Graphs. The exponential family framework can be applied to complicated distributions
over many variables, in which case it can be helpful to rephrase the distribution as a collection of
factors on subsets of the variables. We represent the variable z as a graphical model with vertex set V
such that the vertices partition the components of z. Let the factor set F be a set of subsets of V such
that zf ⊆ z, f ∈ F . Then we write our distribution

p(z; η) = exp{⟨η, t(z)⟩ − logZ(η)} = exp
{ ∑

f∈F

⟨ηf , t(zf)⟩ − logZ(η)
}

(32)

These two ways of writing the distribution are trivially equal by defining η as the union of all ηf and
combining t(zf) appropriately. We demonstrate where this notation can be useful in two examples.

C.2 Mean field Optima

Proposition C.4. Given a fixed distribution q(a) and a loss function of the form

l[q(a)q(b)] = Eq(a)q(b)

[
log

f(a, b)

q(a)q(b)

]
(33)

for some non-negative, continuous function f(a, b) with finite integral (such as an un-normalized
density), the partially optimal q(b) across all possible distributions is given by

argmax
q(b)

l[q(a)q(b)] ∝ exp{Eq(a)[log f(a, b)]} (34)

Proof. This is a simple extension of a proof in Johnson et al. [29]. Let p̃(b) be the distribution which
satisfies p̃(b) ∝ exp{Eq(a)[log f(a, b)]}. We can drop terms in the loss which are constant with
respect to q(b) and write:

argmax
q(b)

Eq(a)q(b)

[
log

f(a, b)

q(b)

]
= argmax

q(b)

Eq(b)[Eq(a)[log f(a, b)]− log q(b)] (35)

= argmax
q(b)

Eq(b)[log expEq(a)[log f(a, b)]− log q(b)] (36)

= argmax
q(b)

Eq(b)

[
log

exp{Eq(a)[log f(a, b)]}
q(b)

]
(37)

= argmax
q(b)

Eq(b)

[
log

p̃(b)

q(b)
+ const

]
(38)

= argmax
q(b)

−KL(q(b) ∥ p̃(b)) = p̃(b) (39)

24

This is applicable to ELBO maximization problems, as well as the surrogate maximization problem
arising in the SVAE:

Example: Exact Inference in the SVAE Applying proposition C.4 to the SVAE’s surrogate
objective, we see:

argmax
q(z)

L̂[q(θ; η)q(z);ϕ] = Eq(θ;η)q(z)

[
log

p(θ)p(z|θ)ℓ̂ϕ(z|x)
q(θ; η)q(z)

]
(40)

∝ exp{Eq(θ;η)[log p(θ) · p(z|θ) · ℓ̂ϕ(z|x)]} (41)

∝ exp{Eq(θ;η)[log p(θ)] + Eq(θ;η)[log p(z|θ)] + log ℓ̂ϕ(z|x)} (42)

∝ exp{Eq(θ;η)[log p(z|θ)] + log ℓ̂ϕ(z|x)} (43)

Recall that we have chosen ℓ̂ϕ(z|x) to be a conjugate likelihood function to p(z|θ). Let λϕ(x) be the
outputs of the recognition network such that

ℓ̂ϕ(z|x) = exp{⟨λϕ(x), t(z)⟩} (44)
Then

argmax
q(z)

L̂[q(θ; η)q(z);ϕ] ∝ exp{Eq(θ;η)[log p(z|θ)] + log ℓ̂ϕ(z|x)} (45)

∝ exp{Eq(θ;η)[⟨t(θ), t(z)⟩] + ⟨λϕ(x), t(z)⟩} (46)

= exp{⟨Eq(θ;η)[t(θ)] + λϕ(x), t(z)⟩} (47)

Demonstrating that the optimal q(z) is in the same exponential family as p(z|θ), with parameters
ω = Eq(θ;η)[t(θ)] + λϕ(x). These parameters are the sum of expected parameters from the prior and
the parameters of the fake observations.

Example: Linear Dynamical System. Consider the linear dynamical system, where p(z1) =
N (µ0,Σ0) and p(zt|zt−1) = N (Atzt−1 + bt,Σt) (in practice, we use a time-homogenous model in
which A, b,Σ do not depend on the time step t). We can write this distribution

p(z|θ) = p(z1)

T∏
t=2

p(zt|zt−1) = exp
{
⟨t(θ1), t(z1)⟩+

T∑
t=2

⟨t(θt), t(zt−1, zt)⟩− logZ(t(θ))
}

(48)

Where t(z1), t(θ1) are given by the NIW example in Sec. C.1, and for t = 2, . . . , T ,

t(zt−1, zt) =

zt−1

zt−1z
T
t−1

zt−1z
T
t

ztz
T
t

zt

 , t(θt) =

−AT

t Q
−1
t bt

− 1
2A

T
t Q
−1
t At

AT
t Q
−1
t

− 1
2Q
−1
t

Q−1t bt

 (49)

Note that both t(θt) and t(θt+1) introduce parameters corresponding to the statistics zt. In the context
of the SVAE, we add observations to each time step,

ℓ̂ϕ(z|x) = exp

{∑
t

〈[
rt

− 1
2Rt

]
,

[
zt
ztz

T
t

]〉}
(50)

which is conjugate to the likelihood p(z|θ) so that the mean field optimum stays in the same
exponential family.

Structured mean field. The main paper introduces the concept of dividing the latent variables
into separate structured mean field components zm ⊂ z,m ∈ M. We outline the math in this case
by noting that conjugacy allows us to break down statistics on groups of vertices into statistics on
individual vertices.

⟨t(θ), t(zt−1, zt)⟩ = ⟨t(θ, zt−1), t(zt)⟩ = ⟨t(θ, zt), t(zt−1)⟩ (51)

25

i.e. this expression is linear in the statistics of each argument. This proves important in deriving
the optimal factor q(zm) given the other factors q(z−m). By applying prop C.4 to the mean field
surrogate objective with q(a) = q(θ)

∏
−m q(zm) and q(b) = q(zm), we see:

argmax
q(zm)

L̂[q(θ; η)
∏
m

q(zm);ϕ] ∝ exp{Eq(θ;η)q(z−m)[log p(z|θ)] + log ℓ̂ϕ(z|x)} (52)

The expected-prior part of this expression can be rewritten (where zf,m = zf ∩ zm and zf,−m =
zf ∩ zCm):

Eq(θ;η)q(z−m)[log p(z|θ)] ∝ Eq(θ;η)q(z−m)

[∑
f∈F

⟨t(θf), t(zf)⟩
]

(53)

= Eq(θ;η)q(z−m)

[∑
f∈F

⟨t(θf , zf,−m), t(zf,m)⟩
]

(54)

=
∑
f∈F

⟨Eq(θ;η)q(z−m)[t(θf , zf,−m)], t(zf,m)⟩ (55)

Note that because the joint sufficient statistics of zf,−m, θf are linear in each input, we can distribute
the expectations through the statistic function and write

Eq(θ;η)q(z−m)[t(θf , zf,−m)] = MF(Eq(θ;η)[t(θf)],Eq(z−m)[t(zf,−m)]) (56)
Where MF(.) is a mean field function which takes the statistics of θf , zf,−m and produces the joint
statistics t(θf , zf,−m). This function is linear in each of its inputs and generally cheap to compute.

Example: Switching Linear Dynamical System. The SLDS consists of the following gener-
ative model: p(k2) = Cat(π0), p(kt) = Cat(πkt−1

), p(z1) = N (µ0,Σ0), p(k2) = Cat(π0) and
p(zt|zt−1) = N (Akt

zt−1 + bkt
,Σkt

).

In an exponential family form, the model consists of the following factors: (i) an initial-state factor
on z1 matching the NIW example in Eqs. (10-12), (ii) an initial categorical factor on k2 (see
Sec. G for the form), (iii) a transition factor for p(kt|kt−1) which has parameters πij and sufficient
statistics 1{(kt = i)&(kt+1 = j)} for i, j = 1, . . . ,K, and (iv) transition factors corresponding to
p(zt|zt−1, kt), which we will examine further.

Recall from Eq. (49) the expression for the parameters of p(zt|zt−1) in the LDS. Then we can write:
p(zt|zt−1, kt) = exp{⟨t(θkt

), t(zt−1, zt)⟩ − logZ(t(θkt
))} (57)

We need to rewrite this to be an exponential family distribution of kt as well (instead of only appearing
as an index). Note that the sufficient statistics of a categorical variable is simply its one-hot encoding.
If we define t(θtrans) to be a matrix whose kth row is given by t(θk), and logZ(θtrans) to be a vector
with components logZ(θk), we write:

p(zt|zt−1, kt) = exp{⟨t(θtrans), t(kt) · t(zt−1, zt)T ⟩+ ⟨− logZ(t(θtrans)), t(kt)⟩} (58)
Thus the conditional distribution can be described by two factors, one which takes the outer product
of the one-hot encoding t(kt) with the continuous observations (thus embedding them in the correct
dimension for inner product with t(θ)), and one which simply takes the correct log normalizer based
on what state we’re in (again, by multiplying a one-hot encoding with a vector of log probabilities).

Given observations, exact inference in the SLDS is intractable. Thus we divide the graphical model
via structured mean field inference into q(z)q(k). This separates out the joint factors ⟨t(θtrans), t(kt) ·
t(zt−1, zt)

T ⟩. However, as noted in Eq. (51) we can reframe this as a factor on each mean field
cluster:

exp{⟨t(θtrans), t(kt) · t(zt−1, zt)T ⟩} =exp{⟨t(zt−1, zt), t(θtrans)
T · t(kt)⟩} (59)

=exp{⟨t(kt), t(θtrans) · t(zt−1, zt)⟩} (60)
Thus, applying Eq. (55), the optimal q(k) inherits the (expected) initial-state factors from p(k2) and
transition factors from p(kt|kt−1), as well as the normalizer factors ⟨− logZ(t(θtrans)), t(kt)⟩ from
Eq. (58), but replaces the joint factors of Eq. (58) which include zt−1, zt with

⟨Eq(θ;η)[t(θtrans)] · Eq(z)[t(zt−1, zt)], t(kt)⟩ (61)
Which (when combined with the normalizer factor) is simply a vector of expected log probabilities
that the transition at time t is caused by each state. Similarly, the continuous chain keeps its initial
state factor corresponding to p(z1) but all of its transition factors are replaced by

⟨Eq(θ;η)[t(θtrans)]
T · Eq(kt)[t(kt)], t(zt−1, zt)⟩ (62)

26

Because t(kt) is a one-hot encoding of kt, Eq(kt)[t(kt)] is simply a probability vector of what value
kt takes. Thus the new parameter for t(zt−1, zt) is simply a convex combination of the rows of
t(θtrans), yielding a time-inhomogeneous LDS with each transition computed as an expectation over
discrete states. Our mean field optimization of the SLDS becomes:

• Run a belief propagation algorithm to get Eq(z)[t(z)]

• For each t, compute Eq(θ)[t(θtrans)] · Eq(z)[t(zt−1, zt)] as the new parameters in q(k) corre-
sponding to t(kt)

• Run a belief propagation algorithm to get Eq(k)[t(k)]

• For each t, compute Eq(θ)[t(θtrans)]
T ·Eq(k)[t(kt)] as the new parameters in q(z) correspond-

ing to t(zt−1, zt)

. . . and repeat until convergence.

D Belief propagation in time series

D.1 Sequential LDS Inference

Consider again the generative model
z1 ∼ N (µ0,Σ0), zt ∼ N (Atzt−1 + bt, Qt) (63)

Recall from Eq. (47) that the q(z;ω) will have some parameters from the expected log prior and some
parameters from the recognition potential. We separate out the parameters into individual factors,
starting with a prior factor on the initial state:

ω0 =

[
h0

− 1
2J0

]
t(z1) =

[
z1
z1z

T
1

]
(64)

Where h0,− 1
2J0 are the expected statistics of an NIW prior. Further, we place a transition factor on

each adjacent pair of states, given by Eq. (49). To simplify notation, we write

t(zt, zt+1) =

zt
ztz

T
t

ztz
T
t+1

zt+1z
T
t+1

zt+1

 , ωt+1 =

−h1,t

− 1
2J11,t
J12,t

− 1
2J22,t
h2,t

 =

−E[AT

t Q
−1
t bt]

− 1
2E[A

T
t Q
−1
t At]

E[AT
t Q
−1
t]

− 1
2E[Q

−1
t]

E[Q−1t bt]

 (65)

For the SLDS, each of these parameters is outputted by the mean field message passing function and
is a convex combination of the corresponding parameters for each cluster, weighted by Eq(kt)[t(kt)].
For the LDS, these values are time-homogeneous.

Note that there is also a factor outputted by the recognition network output at each time step:

λt =

[
rt

− 1
2Rt

]
t(zt) =

[
zt
ztz

T
t

]
(66)

Because the parameters are expectations, there may be no values of Ât, Q̂t, b̂t which satisfy
−ÂT

t Q̂
−1
t b̂t

− 1
2 Â

T
t Q̂
−1
t Ât

ÂT
t Q̂
−1
t

− 1
2 Q̂
−1
t

Q̂−1t b̂t

 =

−h1,t

− 1
2J11,t
J12,t

− 1
2J22,t
h2,t

 (67)

And as a result, it might not be equivalent to any single LDS with fixed parameters. This prevents us
from using general Kalman smoother algorithms, so we must return to the definition of exponential
families and belief propagation.

The goal of inference is to compute the marginals q(zt), draw samples, and compute logZ. Using
the belief propagation algorithm, we know q(zt) is proportional to the product of incoming messages
from factors which involve zt. In belief propagation, messages pass from factors to variables and
back. Thus we write

q(zt) ∝ mωt,zt(zt) ·mωt+1,zt(zt) ·mλt,zt(zt) (68)

27

Where mω,z(z) is the message from the factor with parameter ω to variable z. We similarly define
mz,ω(z) to be the message from variable to factor. Note that all m.,.(zt) are provably Gaussian, and
can therefore each message function can be minimally described by the Gaussian natural parameters.

Messages from variables to factors are the product of incoming messages, e.g.

mzt,ωt+1
(zt) = mωt,zt(zt) ·mλt,zt(zt) (69)

While messages from factors to variables are computed by integrating over incoming messages times
the factor potential, e.g.

mωt,zt(zt) =

∫
zt−1

mzt−1,ωt
(zt−1) · exp{⟨ωt, t(zt−1, zt)⟩}dzt−1 (70)

We attempt to match our notation to the typical Kalman smoother algorithm, by defining filtered
messages Jt|t, ht|t as the natural parameters of mzt,ωt+1(zt), i.e. the distribution which has accu-
mulated the first ω1:t and λ1:t, which correspond to the first t “observations". We similarly define
predicted messages Jt+1|f , ht+1|f as the natural parameters of mωt+1,zt+1(zt+1), which corresponds
to a distribution over zt+1 given the first t “observations". Finally we describe the smoothed messages
Jt|T , ht|T to be the natural parameters of q(zt) (note that for simplicity the natural parameters for
each distribution are actually − 1

2J.|., h.|. and the negative one half is assumed to be factored out).

The message passing algorithm is outlined below:
Input: ωt, λt.
Initialize:

F1|1 = J0 +R1 (71)

f1|1 = h0 + r1 (72)

logZ = 0 (73)

Filter: for t = 1, . . . , T − 1
Predict:

Pt = Ft|t + J11,t (74)

Ft+1|t = J22,t − JT
12,t · P−1t · J12,t (75)

ft+1|t = h2,t + JT
12,t · P−1t · (ft|t − h1,t) (76)

logZ = logZ +
1

2

(
(ft|t − h1,t)

TP−1t (ft|t − h1,t)− log |Pt|
)

(77)

Measurement:

Ft+1|t+1 = Ft+1|t +Rt+1 (78)

ft+1|t+1 = ft+1|t + rt+1 (79)

Finalize:

logZ = logZ +
1

2

(
fTT |TF

−1
T |TFT |T − log |FT |T |

)
(80)

Smoother: for t = T − 1, . . . , 1

Ct = Ft+1|T − Ft+1|t + J22,t (81)

Ft|T = Ft|t + J11,t − J12,t · C−1t · JT
12,t (82)

ft|T = ft|t − h1,t + J12,tC
−1
t (ft+1|T − ft+1|t + h2,t) (83)

Sample: (the N below are taking natural parameters as input)

zT ∼ N
(
fT |T ,−

1

2
FT |T

)
(84)

for t = T − 1, . . . , 1 zt ∼ N
(
ft|t + J12,tzt+1 − h1,t,−

1

2
(Ft|t + J11,t)

)
(85)

Return: marginal params ft|T , Ft|T ; logZ; and samples x1:T .

28

From the log marginals, we can recover the expected statistics:

Σi = F−1t|T (86)

µi = Σift|T (87)

E[zi] = µi (88)

E[ziz
T
i] = Σi + µiµ

T
i (89)

E[ziz
T
i+1] = ΣiJ12,tC

−1
t + µiµ

T
i+1 (90)

Derivation of filter: The measurement step trivially follows from Eq. (69). The predict step, on the
other hand, attempts to compute Eq. (70), which can be written out:

∫
zt

exp

{〈[
ft|t

− 1
2Ft|t

]
,

[
zt
ztz

T
t

]〉
+

〈
− 1

2J11,t
J12,t

− 1
2J22,t
−h1,t
h2,t

 ,

ztz
T
t

ztz
T
t+1

zt+1z
T
t+1

zt
zt+1

〉}

dzt (91)

= exp

{〈[
− 1

2J22,t
h2,t

]
,

[
zt+1z

T
t+1

zt+1

]〉}∫
zt

exp

{〈[
ft|t + J12,tzt+1 − h1,t

− 1
2 (Ft|t + J11,t)

]
,

[
zt
ztz

T
t

]〉}
dzt

(92)

= exp

{〈[
− 1

2J22,t
h2,t

]
,

[
zt+1z

T
t+1

zt+1

]〉
+ logZ(ft|t − h1,t + J12,tzt+1, Ft|t + J11,t)

}
(93)

What is that log partition function term at the end?
1

2
(ft|t − h1,t + J12,tzt+1)

T (Ft|t + J11,t)
−1(ft|t − h1,t + J12,tzt+1)−

1

2
log |Ft|t + J11,t| (94)

Simplifying Pt = Ft|t + J11,t, we recover normalization term
1

2
(ft|t − h1,t)

TP−1t (ft|t − h1,t)−
1

2
log |Pt| (95)

Linear term
zTt+1J

T
12,tP

−1
t (ft|t − h1,t) (96)

And quadratic term
1

2
zTt+1J

T
12,tP

−1
t J12,tzt+1 (97)

Thus the entire message is:

exp

{〈[
h2,t + JT

12,tP
−1
t (ft|t − h1,t)

− 1
2 (J22,t − JT

12,tP
−1
t J12,t)

]
,

[
zt+1

zt+1z
T
t+1

]〉
+
1

2
(ft|t−h1,t)TP−1t (ft|t−h1,t)−

1

2
log |Pt|

}
(98)

To calculate logZ, instead of normalizing each message to be a valid distribution, we can think of
normalizing each message so it’s of the form exp{⟨η, t(z)⟩}, i.e. remove all normalizers. Then to
calculate the entire model’s logZ, we must accrue all normalizers that appear in predict steps (none
appear in measurement steps) and simply add the normalizer for the last message.
Derivation of Smoother: Note that

q(zt) ∝ mωt+1,zt(zt) ·mzt,ωt+1(zt) (99)
The second term is the filtered message computed in the filtering step. Thus we must simply compute
the backwards messages. The message becomes:
q(zt) ∝ mzt,ωt+1

(zt) ·mωt+1,zt(zt) (100)

∝ mzt,ωt+1(zt) ·
∫
mzt+1,ωt+1(zt+1) exp{⟨ωt+1, t(zt, zt+1)⟩}dzt+1 (101)

= mzt,ωt+1
(zt) ·

∫
(mωt+2,zt+1

(zt+1) ·mλt+1,zt+1
(zt+1)) · exp{⟨ωt+1, t(zt, zt+1)⟩}dzt+1

(102)

∝ mzt,ωt+1
(zt) ·

∫
q(zt+1)

mωt+1,zt+1
(zt+1)

· exp{⟨ωt+1, t(zt, zt+1)⟩}dzt+1 (103)

29

Now let’s evaluate the integral:

∫
exp

{〈
− 1

2J11,t
J12,t

− 1
2J22,t
−h1,t
h2,t

 ,

ztz
T
t

ztz
T
t+1

zt+1z
T
t+1

zt
zt+1

〉
+

〈[
ft+1|T − ft+1|t

− 1
2 (Ft+1|T − Ft+1|t)

]
,

[
zt+1

zt+1z
T
t+1

]〉}
dzt+1 (104)

= exp

{〈[
− 1

2J11,t
−h1,t

]
,

[
ztz

T
t

zt

]〉}∫
zt+1

exp

{〈[
ft+1|T − ft+1|t + h2,t + JT

12,tzt
− 1

2 (Ft+1|T − Ft+1|t + J22,t)

]
,

[
zt+1

zt+1z
T
t+1

]〉}
dzt+1

(105)

= exp

{〈[
− 1

2J11,t
−h1,t

]
,

[
ztz

T
t

zt

]〉
+logZ(ft+1|T −ft+1|t+h2,t+J

T
12,tzt, Ft+1|T −Ft+1|t+J22,t)

}
(106)

Again, let’s evaluate the log partition function at the end, simplifying Ct = Ft+1|T − Ft+1|t + J22,t:

1

2
(ft+1|T − ft+1|t + h2,t + JT

12,tzt)
TC−1t (ft+1|T − ft+1|t + h2,t + JT

12,tzt)−
1

2
log |Ct| (107)

We recover linear term

zTt J12,tC
−1
t (ft+1|T − ft+1|t + h2,t) (108)

And quadratic term

1

2
zTt J12,tC

−1
t JT

12,tzt (109)

Combining these with the J11,t and h1,t in Eq. (106) and the filtered distributions outside the integral
in Eq. (103), we arrive at the update equations above.
Derivation of Sampler: Moving backwards, we want to sample from

q(zt|zt+1) ∝ mzt,ωt+1(zt) · exp{⟨ωt+1, t(zt, zt+1)⟩} (110)

The rest of the derivation is easy.

D.2 Parallel LDS Inference

This adaptation of the Kalman smoother algorithm is highly sequential and therefore inefficient on
GPU architectures. We adapt the technique of Särkkä & García-Fernández [58] to parallelize our
algorithm across time steps.

Let us define the kernel of a (possibly un-normalized) exponential family distribution as the inner
product portion of the distribution:

ker(exp{⟨η, t(z)⟩ − c}) = exp{⟨η, t(z)⟩} (111)

Note that ker(f(z)) ∝ f(z). We define two sequences of functions:

gt(zt−1) = ker
(∫

zt

exp{⟨t(θt), t(zt−1, zt)⟩} · exp{⟨λt, t(zt)⟩}dzt
)

(112)

= exp

{〈[
− 1

2 (J11,t − J12,t(Rt + J22,t)
−1JT

12,t)
−h1,t + J12,t(Rt + J22,t)

−1(rt + h2)

]
,

[
zt−1z

T
t−1

zt−1

]〉}
(113)

= exp

{〈[
− 1

2Γt

γt

]
,

[
zt−1z

T
t−1

zt−1

]〉}
(114)

Thus gt(zt−1) is defined by natural parameters Γt, γt. For t = 1, we set Γ1 = 0, γ1 = 0 as there is
no time-step 0. Thus we claim g1(z0) = 1 is a uniform function.

30

Further define ft(zt−1, zt)
ft(zt−1, zt) = exp{⟨t(θt), t(zt−1, zt)⟩} · exp{⟨λt, t(zt)⟩}/gt(zt−1) (115)

= exp

{〈
− 1

2 (J11,t − Γt)
−(h1,t − γt)

J12,t
h2,t + rt

− 1
2 (J22,t +Rt)

 ,

zt−1z

T
t−1

zt−1
zt−1z

T
t

zt
ztz

T
t

〉}

(116)

= exp

{〈
− 1

2Φ11,t

−ϕ1,t
Φ12,t

ϕ2,t
− 1

2Φ22,t

 ,

zt−1z

T
t−1

zt−1
zt−1z

T
t

zt
ztz

T
t

〉}

(117)

We similarly define f1(z0, z1) = f1(z1), or equivalently Φ11,1 = Φ12,1 = 0 and ϕ1,1 = 0 as there
is no z0. ϕ2,t = h0 + r1 and Φ22,t = J0 + R1 to include the factors h0, J0 from the initial state
distribution p(z1).

We define the associative operation:
(fi, gi)⊗ (fj , gj) = (fij , gij) (118)

Where

fij(a, c) = ker
(∫

gj(b)fj(b, c)fi(a, b)db∫
gj(b)fi(a, b)db

)
(119)

And
gij(a) = ker

(
gi(a)

∫
gj(b)fi(a, b)db

)
(120)

Proposition D.1. The operation ⊗ is associative.

Proof. Särkkä & García-Fernández [58] define an operator
(fi, gi)× (fj , gj) = (f̂ij , ĝij) (121)

Where

fij(a, c) =

∫
gj(b)fj(b, c)fi(a, b)db∫

gj(b)fi(a, b)db
(122)

And
gij(a) = gi(a)

∫
gj(b)fi(b|a)db (123)

and prove that this operator is associative. Further, any rescaling of inputs leads to a simple rescaling
of outputs due to the multi-linear nature of these functions. Thus for constants c1, c2, c3, c4 there
exist constants c5, c6 such that

(c1fi, c2gi)× (c3fj , c4gj) = (c5f̂ij , c6ĝij) (124)
This gives us that

((fi, gi)⊗ (fj , gj))⊗ (fk, gk) = (ker(f̂ij), ker(ĝij))⊗ (fk, gk) (125)

= (c1f̂ij , c2ĝij)⊗ (fk, gk) (126)

= ker
(
(c1f̂ij , c2ĝij)× (fk, gk)

)
(127)

= ker
(
(f̂ij , ĝij)× (fk, gk)

)
(128)

A similar decomposition shows that

(fi, gi)⊗ ((fj , gj)⊗ (fk, gk)) = ker
(
(fi, gi)× (f̂jk, ĝjk)

)
(129)

= ker
(
(f̂ij , ĝij)× (fk, gk)

)
(130)

= ((fi, gi)⊗ ((fj , gj))⊗ (fk, gk) (131)
Where the second equality comes from the associativity of the × operator.

Finally, we need to show that this operation gives us the right results:

31

Proposition D.2. Let ai = (fi, gi). Then

a1 ⊗ a2 ⊗ · · · ⊗ at = (f1:t, g1:t) (132)

where

f1:t(zt) = exp

{〈[
ft|t

− 1
2Ft|t

]
,

[
zt
ztz

T
t

]〉}
(133)

is parameterized by the filtered messages ft|t, Ft|t.

Proof. We prove by induction that this holds when the operations are performed sequentially, namely

(((((a1 ⊗ a2)⊗ a3)⊗ . . .)⊗ at (134)

These “left-justified" operations are simpler, and thus allow us to easily demonstrate correctness. We
then can make use of the associative property of ⊗ to show that no matter the order of operations we
get the correct result.

Recall that g1(z0) = 1 is the uniform function (as there is no z0) and thus has Γ1 = 0, γ1 = 0. By
induction, this must be true of all the cumulative kernels gij(z0), as if gi(a) in Eq. (120) is independent
of a, then gij(a) must be, too. Similarly, we recall that f1(z0, z1) = f1(z1) is independent of its
first argument and thus has Φ11,1 = Φ12,1 = 0 and ϕ1,1 = 0. Again, by induction all of the
cumulative kernels f1:t(z0, zt) must have their first three parameters equal to 0; in Eq. (119) if
fi(a, b) is independent of a then fij(a, c) will be, too. Thus f1:t(z0, zt) = f1:t(zt).

Next we show that f1:t(zt) = mzt,ω(zt), the filtered messages from the sequential filter. For t = 1,
f1:1(z1) = mz1,ω(z1) by construction. We then see:

f1:t+1(zt+1) = ker

(∫
zt
gt+1(zt)ft+1(zt+1)mzt,ω(zt)dzt∫

gt+1(zt)f1:t(zt)dzt

)
(135)

= ker

(∫
zt

gt+1(zt)ft+1(zt+1)mzt,ω(zt)dzt

)
(136)

= ker

(∫
zt

exp{⟨ωt+1, t(zt, zt+1)⟩} · exp{⟨λt+1, t(zt+1)⟩} ·mzt,ω(zt)dzt

)
(137)

= ker

(
exp{⟨λt+1, t(zt+1)⟩} ·

∫
zt

exp{⟨t(θt+1), t(zt, zt+1)⟩} ·mzt,ω(zt)dzt

)
(138)

= ker

(
exp{⟨λt+1, t(zt+1)⟩} ·mzt+1,ω(zt+1)

)
= mzt+1,ωt+1(zt+1) (139)

Completing our proof!

This algorithm produces correct filtered messages but due to its associativity can be computed in
parallel. To complete the filtering algorithm, we outline how to evaluate (fi, fj) ⊗ (gi, gj). The
integrals in Eqs. (119), (120) can be evaluated as simple functions of the parameters of fi, fj , gi, gj :

Proposition D.3. Let

fi(a, b) = exp

{〈
− 1

2Φ11,i

−ϕ1,i
Φ12,i

ϕ2,i
− 1

2Φ22,i

 ,

aaT

a
abT

b
bbT

〉}

, fj(b, c) = exp

{〈
− 1

2Φ11,j

−ϕ1,j
Φ12,j

ϕ2,j
− 1

2Φ22,j

 ,

bbT

b
bcT

c
ccT

〉}

(140)
and

gi(a) = exp

{〈[
− 1

2Γi

γi

]
,

[
aaT

a

]〉}
, gj(b) = exp

{〈[
− 1

2Γj

γj

]
,

[
bbT

b

]〉}
(141)

32

Then given the following definitions
Cij = Γj +Φ22,i (142)

Γij = (Φ11,i − Φ12,iC
−1
ij ΦT

12,i) (143)

γij = −ϕ1,i +Φ12,iC
−1
ij (γj + ϕ2,i) (144)

Pij = Γj +Φ22,i +Φ11,i (145)
We can compute (fij , gij) = (fi, gi)⊗ (fj , gj) as:

fij(a, c) = exp

{〈
− 1

2 (Φ11,i − Φ12,iP
−1
ij ΦT

12,i − Γij)

−(ϕ1,i − Φ12,iP
−1
ij (ϕ2,i − ϕ1,j + γj) + γij)

Φ12,iP
−1
ij Φ12,j

ϕ2,j +ΦT
12,jP

−1
ij (ϕ2,i − ϕ1,j + γj)

− 1
2 (Φ22,j − ΦT

12,jP
−1
ij Φ12,j)

 ,

aaT

a
acT

c
ccT

〉}

(146)

and

gij(c) = exp

{〈[
− 1

2 (Γi + Γij)
γi + γij

]
,

[
ccT

c

]〉}
(147)

The proof of this involves integrating the kernels of Gaussians, which is done many times in this
supplement; it is left as an exercise for the reader.

The last task is to define the parallel smoother. The construction is very similar to the filter. Let

et(zt, zt+1) =
mzt,ωt+1

(zt)

mωt+1,zt+1
(zt+1)

· exp{⟨ωt+1, t(zt, zt+1)⟩} (148)

= exp

{〈
− 1

2 (J11,t + Ft|t)
−(h1,t − ft|t)

J12,t
h2,t + rt+1 − ht+1|t+1

− 1
2 (J22,t +Rt+1 − Jt+1|t+1)

 ,

ztz
T
t

zt
ztz

T
t+1

zt+1

zt+1z
T
t+1

〉}

(149)

= exp

{〈
− 1

2E11,t

−ϵ1,t
E12,t

ϵ2,t
− 1

2E22,t

 ,

ztz
T
t

zt
ztz

T
t+1

zt+1

zt+1z
T
t+1

〉}

(150)

Where we let eT (zT , zT+1) = eT (zT) with E11,T = JT |T , ϵ1,T = −hT |T and remaining parameters
equal to 0 (as there is no zT+1. Then the associative operator ⊕ is given by

eij(a, c) = ei(a, b)⊕ ej(b, c) = ker

(∫
b

ei(a, b)ej(b, c)db

)
(151)

Which can be computed (derivations omitted) as
Dij = E22,i + E11,j (152)

eij(a, c) = exp

{〈
− 1

2 (E11,i − E12,iD
−1
ij E

T
12,i)

−(ϵ1,i − E12,iD
−1
ij (ϵ2,i − ϵ1,j))

E12,iD
−1
ij E12,j

ϵ2,j + ET
12,jD

−1
ij (ϵ2,i − ϵ1,j)

− 1
2 (E22,j − ET

12,jD
−1
ij E12,j)

 ,

aaT

a
acT

c
ccT

〉}

(153)

Särkkä & García-Fernández [58] prove this operation is associative when operating on full dis-
tributions (i.e. without taking the kernel). The proof that we retain associativity when removing
multiplicative constants mirrors the proof of Prop. D.1 and is omitted for brevity. Finally, we show
that when these operations are done sequentially,

et ⊕ (et+1 ⊕ (et+1 ⊕ . . . (eT−1 ⊕ eT))))) = q(zt) (154)
The base eT (zt) = q(zT) is true by construction. Then, plugging the inductive hypothesis and
Eq. (148) into the definition of ⊕ yields Eq. (103), proving that et(zt) = q(zt) implies et−1(zt−1) =
q(zt−1).

33

D.3 HMM Inference

The discrete Markov model is time homogenous and requires only expected probabilities for the
initial state k2 and expected probabilities for the transition matrix πij . The “observations" of the
HMM are (in the case of the SLDS) messages passed from the LDS chain, which we denote ωt(k).
The setup is fundamentally the same as the LDS:
Input: Eq(θ)[t(θ)], ωt(k).
Forward Pass:

α1(k) = E[log πk] + ω1(k) (155)

for t = 2, . . . , T αt(k) = ωt(k) + logsumexpKi=1

[
E[log πik] + αt−1(i)

]
(156)

logZ = logsumexpKk=1αT (k) (157)

Backward Pass:
βT (k) = 0 (158)

for t = T − 1, . . . , 1 βt(k) = logsumexpKj=1

[
ωt+1(j) + E[log πkj] + βt+1(j)

]
(159)

Return: log marginals αt(k) + log βt(k); logZ

E Evaluating the SVAE loss

Johnson et al. [29] decompose the loss into three terms

−L[q(θ)q(z), γ] =
Prior KL︷ ︸︸ ︷

KL(q(θ) ∥ p(θ)))+
Local KL︷ ︸︸ ︷

Eq(θ)KL(q(z) ∥ p(z|θ))−
Reconstruction︷ ︸︸ ︷

Eq(z)[pγ(x|z)] (160)

Because p(θ), p(z|θ), q(θ; η), qϕ(z|x; η) are all exponential family distributions, the expectations
here can be evaluated in closed form, with the exception of the reconstruction loss Eq(z)[pγ(x|z)].
The reconstruction loss can be estimated without bias using Monte Carlo samples and the reparameter-
ization trick [32]. For this to work, we must be able to reparameterize the sample of q(z) such that we
can back propagate through the sampling routine, which is not possible for discrete random variables.
As a result, the latent variables which need to be sampled to reconstruct x (i.e. all variables which are
in the same mean field component as a variable being fed into the encoder) must be continuous.

The first term of the loss, the prior KL, is a regularizer on the graphical model parameters and can
be easily evaluated via Eq. (25). The rest of this section is devoted to computing the KL divergence
between the prior and variational factor of the local latent varibles z. We will start with the fully
structured case where no mean field separation occurs.

Recalling that the optimal q(z) has parameters ω given by Eq. (47), we can again invoke Eq. (25) to
get

Eq(θ)KL(q(z) ∥ p(z|θ)) = Eq(θ)[⟨ω − t(θ), Eq(z)t(z)⟩ − logZ(ω) + logZ(t(θ))] (161)

= ⟨ω − Eq(θ)[t(θ)], Eq(z)t(z)⟩ − logZ(ω) + logEq(θ)[Z(t(θ))] (162)

= ⟨λϕ(x), Eq(z)t(z)⟩ − logZ(ω) + logEq(θ)[Z(t(θ))] (163)

Namely, because log q(z) is defined as the expected log prior p(z|θ) plus the recognition potentials,
these two distributions only differ in log space by those recognition potentials. The log partition
function of the graphical model can be obtained by belief propagation, and the expected log partition
function from the prior can be generally known in closed form as the sum of individual partition
functions at each vertex or factor in the corresponding graphical model.

Example: LDS The LDS SVAE only outputs recognition potentials on a subset of the statics of
q(z). In particular, the encoder takes the observations x and outputs normal likelihood functions on
each z independently. Thus the cross-temporal covariance statistics ztzTt+1 have no corresponding
recognition potentials. Further, we restrict the potentials on ztzTt to be diagonal, meaning our
observational uncertainty factorizes across dimensions. Thus the only statistics in t(z) for which
λϕ(x) are non-zero are zt and z2ti for each component i of t(z). As a result, the inner product
⟨λϕ(x),Eq(z)t(z)⟩ sums over 2TD terms for a sequence with T timesteps and D-dimensional latent
variable at each step.

34

Local KL with structured mean field When there is mean field separation, the prior and variational
factor differ in more than just the recognition potentials, as q(z) replaces some factors of p(z|θ) with
separable factors. We can rewrite

KL(q(z) ∥ p(z|θ)) =
M∑

m=1

KL(q(zm) ∥ p(zm|z<m, θ)) (164)

The natural parameters of q(zm) differ from the natural parameters of p(zm|z<m, θ) not only in the
recognition potentials, but also for any factors which include a variable in “later" clusters z>m.

Example: SLDS The SLDS SVAE has 2 mean field clusters, q(k)q(z) for the discrete vari-
ables k and continuous variables z. If we write our prior distribution p(θ)p(k|θ)p(z|k, θ) then
KL(q(z) ∥ p(z|k, θ)) is computed exactly the same as in the LDS example above, as these two distri-
butions differ only in the recognition potentials. The new challenge is computing KL(q(k) ∥ p(k|θ))
which contains no recognition potentials but differs based on mean field messages from q(z) which
are present in q(k) but not in p(k|θ).
In particular, the prior p(k|θ) is a time series with no observations, while q(k) includes parameters
at every time step which encode the log probability of being in that state at that time, given by
Eq. (60): Eq(θ)[t(θtrans)] · Eq(z)[t(zt−1, zt)]. The corresponding sufficient statistics are the marginal
probabilities of being in state k at time t. Note that we never need to compute the sufficient statistics
corresponding to HMM transitions because we don’t need them for the local KL nor do we need
them to sample from the HMM (which we never do).

Surrogate Loss The surrogate loss differs from the true loss only in the reconstruction term, so it
can similarly be written

−L̂[q(θ)q(z), ϕ] =
Prior KL︷ ︸︸ ︷

KL(q(θ) ∥ p(θ)))+
Local KL︷ ︸︸ ︷

Eq(θ)KL(q(z) ∥ p(z|θ))−⟨λϕ(x),Eq(z)t(z)⟩ (165)

This is trivial to evaluate, as the local KL contains the negation of the last term (see Eq. (163) for the
structured case. The mean field case contains these terms as well in addition to ones corresponding
to “pulled apart" factors) and thus the surrogate loss can be computed by omitting the recognition-
potential-times-expected-statistics part of the local KL.

F Natural gradients

Here we dissect two claims in the main paper more closely. First, we will show how natural gradients
with respect to η can be easily computed. Defining, as in the main paper, µη = Eq(θ;η)[t(θ)], we can
use the chain rule to write:

∂L
∂η

=
∂L
∂µη

∂µη

∂η
+
∂L
∂η detach(µη)

(166)

Where ∂L
∂η detach(µη)

refers to the gradient of the loss with respect to η, disconnecting the computa-
tional graph at µη (i.e. the dependence of the loss on η which is not accounted for by its dependence
on µη).

Proposition F.1.
∂L
∂η detach(µη)

= 0 (167)

Proof. q(z) depends on η only through the expected statistics µη which define the parameters of the
graphical model factors. Further, the local KL, outlined in Eq. (163), only depends on q(θ) through
its expected statistics (noting that the log normalizers of p(z|θ) are also staistics of q(θ)). Thus the
only place in the loss that η appears on its own is the prior KL. Let η0 be the natural parameters of
the prior p(θ). Then the prior KL, as per Eq. (25), is given by:

KL(q(θ) ∥ p(θ)) = ⟨η − η0, µη⟩ − logZ(η) + logZ(η0) (168)

35

Then we see:
∂

∂η
KL(q(θ) ∥ p(θ)) = ∂KL(q(θ) ∥ p(θ))

∂µη

∂µη

∂η
+ µη −

∂

∂η
logZ(η) (169)

=
∂KL(q(θ) ∥ p(θ))

∂µη

∂µη

∂η
= (η − η0)

∂µη

∂η
(170)

Where we use Prop. C.1 to cancel terms. Thus we conclude that the entire gradient of the loss with
respect to η passes through µη

The main consequence of this theorem is that in all cases the gradient can be written
∂L
∂η

=
∂L
∂µη

∂µη

∂η
(171)

And thus the natural gradient, which multiples the gradient by the inverse of ∂µη

∂η , can be easily
computed withoout matrix arithmetic by skipping the portion of gradient computation corresponding
to the η → µη mapping. Here is some sample Jax code which takes a function f and returns a
function which computes f in the forward pass but in the backward pass treats the gradient as identity:

def straight_through(f):
def straight_through_f(x):

zero = x - jax.lax.stop_gradient(x)
return zero + jax.lax.stop_gradient(f(x))

return straight_through_f

Fisher information of transformed variables . Given a distribution q(θ; η) with natural parameters
η, the Fisher information matrix of η is given by:

Fη = Eq(θ)

[(
∂ log q(θ)

∂η

)T

·
(
∂ log q(θ)

∂η

)]
(172)

Note that for an exponential family distribution
∂ log q(θ)

∂η
= t(θ)− Eq(θ)[t(θ)] (173)

which clearly has expectation 0 under q(θ). Thus
Fη = Eq(θ)

[
(t(θ)− Eq(θ)[t(θ)])

T · (t(θ)− Eq(θ)[t(θ)])
]

(174)

= Varq(θ)[t(θ)] (175)
Exponential family theory gives us further equalities:

Varq(θ)[t(θ)] =
∂2

∂η2
logZ(η) =

∂

∂η
Eq(θ)[t(θ)] (176)

Thus deriving our desired property that Fη =
∂µη

∂η .

Now we consider a more general case, where η = f(η̃) for some unconstrained, non-natural
parameters η̃ and continuous invertible function f . Then we see:

Fη̃ = Eq(θ)

[(
∂ log q(θ)

∂η̃

)T

·
(
∂ log q(θ)

∂η̃

)]
(177)

= Eq(θ)

[(
∂ log q(θ)

∂η
· ∂η
∂η̃

)T

·
(
∂ log q(θ)

∂η
· ∂η
∂η̃

)]
(178)

=
∂η

∂η̃

T

· Eq(θ)

[(
∂ log q(θ)

∂η

)T

·
(
∂ log q(θ)

∂η

)]
· ∂η
∂η̃

(179)

=
∂η

∂η̃

T

· Fη ·
∂η

∂η̃
(180)

We can use this to compute the natural gradient with respect to the unconstrained parameters:

∂L
∂η̃

F−1η̃ =

(
∂L
∂µ

· ∂µ
∂η

· ∂η
∂η̃

)
·
(
∂η

∂η̃

−1
· F−1η · ∂η

∂η̃

−T)
=
∂L
∂µ

· ∂η
∂η̃

−T
=

(
∂η̃

∂η
· ∇µL

)T

(181)

36

Implementing natural gradients via automatic differentiation We argued in the main paper that
to implement natural gradients we replace the reverse-mode backpropagation through the η̃ → η map
with a forward-mode differentiation through the inverse operation. Assuming we have a forward map
f and inverse function f_inv, sample code is shown below:

f_natgrad = jax.custom_vjp(f)

def f_natgrad_fwd(input):
return f(input), f(input)

def f_natgrad_bwd(resids, grads):
return (jax.jvp(f_inv, (resids,), (grads,))[1],)

f_natgrad.defvjp(f_natgrad_fwd, f_natgrad_bwd)

G Matrix-normal exponential family distributions

Recall that exponential family distributions are given by

p(x; η) = exp{⟨η, t(x)⟩ − logZ(η)} (182)

The natural parameters often have coupled constraints, and so can be expressed as a simple function
of canonical parameters which carry easily-interpretable information about the distribution (e.g. the
natural parameters of a normal distribution can be expressed in terms of the mean and precision
matrix of that distribution). Thus to define each distribution, we provide (a) the natural parameters
η as a function of canonical parameters, (b) the sufficient statistics t(x), (c) the expected sufficient
statistics Ep(x;η)[t(x)], and (d) the log partition function logZ(η).

Note that sometimes we have symmetric positive definite (SPD) matrix-valued parameters. In every
case, the corresponding statistics for those parameters are also symmetric. For example, given a
n× n SPD matrix, a distribution might have parameters and statistics:

η =

[
Sii|i = 1, . . . , n

2 · Sij |i < j

]
t(x) =

[
x2i |i = 1, . . . , n

xixj |i < j

]
(183)

We note that ⟨η, t(x)⟩ =
∑n

i=1

∑n
j=1 Sijxixj or equivalently the sum of elements of S ⊗ xxT

(for column vector x containing each xi). In the following sections, we will abuse notation for
compactness by simply writing:

η = [S] t(x) =
[
xxT

]
(184)

Constraints. To optimize these parameters via gradient descent, we must define constrained
parameters as a function of unconstrained parameters as discussed in Sec.[natgrads]. Further, to
implement natural gradients we must implement the inverse operation. The table below lists all such
transformations.

Notation Size Constraint η̃ → η

Rn n-length vector n/a n/a
Rn×m n×m matrix n/a n/a
Rn

+ n-length vector All values positive η = Softplus(η̃)
Rn

>m n-length vector All values greater than m η = Softplus(η̃)+m
∆n−1 n-length vector Non-negative, sums to 1 η = Softmax(η̃)
Sn
++ n× n matrix symmetric positive definite See below

Where Softmax is made invertible by appending a 0 to the end of η̃. For the SPD matrix parameters,
we define S = diag(σ) · R · diag(σ) where σ ∈ Rn

+ is a vector of standard deviations and R is
a correlation matrix, transformed to and from unconstrained space by the tensorflow Correlation
Cholesky bijector.

37

https://www.tensorflow.org/probability/api_docs/python/tfp/bijectors/CorrelationCholesky
https://www.tensorflow.org/probability/api_docs/python/tfp/bijectors/CorrelationCholesky

G.1 Multivariate Normal distribution

If x ∼ N (µ,Σ) for (i) x, µ ∈ Rn, and (ii) Σ ∈ Sn
++, then p(x;µ,Σ) is given by:

η =

[
Σ−1µ
− 1

2Σ
−1

]
t(x) =

[
x
xxT

]
Ep(x;µ,Σ)[t(x)] =

[
µ

µµT +Σ

]
(185)

The log partition function is given by:

logZ(η) =
1

2
µTΣ−1µ+

1

2
log |Σ|+ n

2
log(2π) (186)

Here, π ≈ 3.14 is a constant.

G.2 Normal inverse Wishart (NIW) distribution

If µ,Σ ∼ NIW(S,m, λ, ν) for (i) µ,m ∈ Rn, (ii) Σ, S ∈ Sn
++, (iii) λ ∈ R+, and (iv) ν ∈ R>n−1,

then p(µ,Σ;S,m, λ, ν) is given by:

η =

S + λmmT

λm
λ

ν + n+ 2

 t(µ,Σ) =

− 1

2Σ
−1

Σ−1µ
− 1

2µ
TΣ−1µ

− 1
2 log |Σ|

 E[t(µ,Σ)] =

− 1

2νS
−1

νS−1m
− 1

2 (n/λ+ νmTS−1m)
1
2 (n log 2− log |S|+Σn−1

i=0 ψ(
ν−i
2))

(187)

Where ψ is the digamma function. The log partition function is given by:

logZ(η) =
ν

2
· (n log 2− log |S|) + log Γn

(ν
2

)
+
n

2
(log(2π)− log λ) (188)

With the multivariate gamma function Γn.

G.3 Matrix normal inverse Wishart (MNIW) distribution

If X,Σ ∼ MNIW(S,M, V, ν) for (i) X,M ∈ Rn×m, (ii) Σ, S ∈ Sn
++, (iii) V ∈ Sm

++, and (iv)
ν ∈ R>n−1, then p(X,Σ;S,M, V, ν) is given by:

η =

 S +MVMT

MV
V

ν + n+m+ 1

 t(X,Σ) =

− 1

2Σ
−1

Σ−1X
− 1

2X
TΣ−1X

− 1
2 log |Σ|

 E[t(X,Σ)] =

− 1

2νS
−1

νS−1M
− 1

2 (nV
−1 + νMTS−1M)

n log 2− log |S|+Σn−1
i=0 ψ(

ν−i
2)

(189)

Where ψ is the digamma function. The log partition function is given by:

logZ(η) =
ν

2
· (n log 2− log |S|) + log Γn

(ν
2

)
− n

2
|V |+ n ·m

2
log(2π) (190)

With the multivariate gamma function Γn. For the SLDS, we use this MNIW distribution by defining
X ∈ Rn×n+1 = [A|b] where zt+1 ∼ N (Azt + b,Σ) so the MNIW distribution provides a prior on
the transition matrix, offset, and conditional noise.

38

	Introduction
	Background: Graphical Models and Variational Inference
	Structured Variational Inference
	Background: Block Coordinate Ascent for Mean Field Variational Inference
	Reparameterization and Discrete Latent Variables

	Stable and Memory-Efficient Learning via Implicit Gradients
	Rapid Learning via Unbiased Natural Gradients
	Adapting Graphical Model Innovations
	Related Work
	Experiments
	Discussion
	Experimental Protocol
	Implementation
	MOCAP Dataset
	WSJ0 Dataset
	Discrete Deep Kalman Smoother Baselines
	Architectures and Training Specifications
	Interpolation Procedure
	Additional Results

	Notation
	Notation in main paper
	Notation in this appendix

	Exponential families and mean field objective
	Exponential families of distributions
	Mean field Optima

	Belief propagation in time series
	Sequential LDS Inference
	Parallel LDS Inference
	HMM Inference

	Evaluating the SVAE loss
	Natural gradients
	Matrix-normal exponential family distributions
	Multivariate Normal distribution
	Normal inverse Wishart (NIW) distribution
	Matrix normal inverse Wishart (MNIW) distribution

