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Abstract
We propose a Bayesian nonparametric approach to the problemof modeling re-
lated time series. Using a beta process prior, our approach is based on the dis-
covery of a set of latent dynamical behaviors that are sharedamong multiple time
series. The size of the set and the sharing pattern are both inferred from data. We
develop an efficient Markov chain Monte Carlo inference method that is based on
the Indian buffet process representation of the predictivedistribution of the beta
process. In particular, our approach uses the sum-product algorithm to efficiently
compute Metropolis-Hastings acceptance probabilities, and explores new dynami-
cal behaviors via birth/death proposals. We validate our sampling algorithm using
several synthetic datasets, and also demonstrate promising results on unsupervised
segmentation of visual motion capture data.

1 Introduction

In many applications, one would like to discover and model dynamical behaviors which are shared
among several related time series. For example, consider video or motion capture data depicting
multiple people performing a number of related tasks. By jointly modeling such sequences, we
may more robustly estimate representative dynamic models,and also uncover interesting relation-
ships among activities. We specifically focus on time serieswhere behaviors can be individually
modeled via temporally independent or linear dynamical systems, and where transitions between
behaviors are approximately Markovian. Examples of suchMarkov jump processesinclude the hid-
den Markov model (HMM), switching vector autoregressive (VAR) process, and switching linear
dynamical system (SLDS). These models have proven useful insuch diverse fields as speech recog-
nition, econometrics, remote target tracking, and human motion capture. Our approach envisions
a largelibrary of behaviors, and each time series orobjectexhibits a subset of these behaviors.
We then seek a framework for discovering the set of dynamic behaviors that each object exhibits.
We particularly aim to allow flexibility in the number of total and sequence-specific behaviors, and
encourage objects to share similar subsets of the large set of possible behaviors.

One can represent the set of behaviors an object exhibits viaan associated list offeatures. A stan-
dard featural representation forN objects, with a library ofK features, employs anN × K binary
matrixF = {fik}. Settingfik = 1 implies that objecti exhibits featurek. Our desiderata motivate
a Bayesian nonparametric approach based on thebeta process[10, 22], allowing for infinitely many
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potential features. Integrating over the latent beta process induces a predictive distribution on fea-
tures known as theIndian buffet process(IBP) [9]. Given a feature set sampled from the IBP, our
model reduces to a collection of Bayesian HMMs (or SLDS) withpartially shared parameters.

Other recent approaches to Bayesian nonparametric representations of time series include the HDP-
HMM [2, 4, 5, 21] and the infinite factorial HMM [24]. These models are quite different from
our framework: the HDP-HMM does not select a subset of behaviors for a given time series, but
assumes that all time series share the same set of behaviors and switch among them in exactly the
same manner. The infinite factorial HMM models a single time-series with emissions dependent
on a potentially infinite dimensional feature that evolves with independent Markov dynamics. Our
work focuses on modeling multiple time series and on capturing dynamical modes that are shared
among the series.

Our results are obtained via an efficient and exact Markov chain Monte Carlo (MCMC) inference al-
gorithm. In particular, we exploit the finite dynamical system induced by a fixed set of features to ef-
ficiently compute acceptance probabilities, and reversible jump birth and death proposals to explore
new features. We validate our sampling algorithm using several synthetic datasets, and also demon-
strate promising unsupervised segmentation of data from the CMU motion capture database [23].

2 Binary Features and Beta Processes

The beta process is acompletely random measure[12]: draws are discrete with probability one, and
realizations on disjoint sets are independent random variables. Consider a probability spaceΘ, and
let B0 denote a finitebase measureon Θ with total massB0(Θ) = α. AssumingB0 is absolutely
continuous, we define the followingLévy measureon the product space[0, 1]× Θ:

ν(dω, dθ) = cω−1(1 − ω)c−1dωB0(dθ). (1)
Here,c > 0 is a concentration parameter; we denote such a beta process by BP(c, B0). A draw
B ∼ BP(c, B0) is then described by

B =

∞
∑

k=1

ωkδθk
, (2)

where(ω1, θ1), (ω2, θ2), . . . are the set of atoms in a realization of a nonhomogeneous Poisson
process with rate measureν. If there are atoms inB0, then these are treated separately; see [22].
The beta process is conjugate to a class ofBernoulli processes[22], denoted by BeP(B), which
provide our sought-for featural representation. A realization Xi ∼ BeP(B), with B an atomic
measure, is a collection of unit mass atoms onΘ located at some subset of the atoms inB. In
particular,fik ∼ Bernoulli(ωk) is sampled independently for each atomθk in Eq. (2), and then
Xi =

∑

k fikδθk
.

In many applications, we interpret the atom locationsθk as a shared set of global features. A
Bernoulli process realizationXi then determines the subset of features allocated to objecti:

B | B0, c ∼ BP(c, B0)

Xi | B ∼ BeP(B), i = 1, . . . , N. (3)
Because beta process priors are conjugate to the Bernoulli process [22], the posterior distribution
givenN samplesXi ∼ BeP(B) is a beta process with updated parameters:

B | X1, . . . , XN , B0, c ∼ BP

(

c + N,
c

c + N
B0 +

K+
∑

k=1

mk

c + N
δθk

)

. (4)

Here,mk denotes the number of objectsXi which select thekth featureθk. For simplicity, we have
reordered the feature indices to list theK+ features used by at least one object first.

Computationally, Bernoulli process realizationsXi are often summarized by an infinite vector of
binary indicator variablesfi = [fi1, fi2, . . .], wherefik = 1 if and only if objecti exhibits fea-
ture k. As shown by Thibaux and Jordan [22], marginalizing over thebeta process measureB,
and takingc = 1, provides a predictive distribution on indicators known asthe Indian buffet pro-
cess (IBP) Griffiths and Ghahramani [9]. The IBP is a culinarymetaphor inspired by the Chinese
restaurant process, which is itself the predictive distribution on partitions induced by the Dirichlet
process [21]. The Indian buffet consists of an infinitely long buffet line of dishes, or features. The
first arriving customer, or object, chooses Poisson(α) dishes. Each subsequent customeri selects
a previously tasted dishk with probabilitymk/i proportional to the number of previous customers
mk to sample it, and also samples Poisson(α/i) new dishes.
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3 Describing Multiple Time Series with Beta Processes

Assume we have a set ofN objects, each of whose dynamics is described by a switching vector
autoregressive (VAR) process, with switches occurring according to a discrete-time Markov process.
Such autoregressive HMMs (AR-HMMs) provide a simpler, but often equally effective, alternative
to SLDS [17]. Lety(i)

t represent the observation vector of theith object at timet, andz
(i)
t the latent

dynamical mode. Assuming an orderr switching VAR process, denoted by VAR(r), we have

z
(i)
t ∼ π

(i)

z
(i)
t−1

(5)

y
(i)
t =

r
∑

j=1

A
j,z

(i)
t

y
(i)
t−j + e

(i)
t (z

(i)
t ) , A

z
(i)
t

ỹ
(i)
t + e

(i)
t (z

(i)
t ), (6)

wheree
(i)
t (k) ∼ N (0, Σk), Ak = [A1,k . . . Ar,k], and ỹ

(i)
t = [y

(i)T

t−1 . . . y
(i)T

t−r ]
T . The

standard HMM with Gaussian emissions arises as a special case of this model whenAk = 0 for
all k. We refer to these VAR processes, with parametersθk = {Ak, Σk}, asbehaviors, and use a
beta process prior to couple the dynamic behaviors exhibited by different objects or sequences.

As in Sec. 2, letfi be a vector of binary indicator variables, wherefik denotes whether objecti
exhibits behaviork for somet ∈ {1, . . . , Ti}. Givenfi, we define afeature-constrained transition

distributionπ(i) = {π
(i)
k }, which governs theith object’s Markov transitions among its set of dy-

namic behaviors. In particular, motivated by the fact that aDirichlet-distributed probability mass
function can be interpreted as a normalized collection of gamma-distributed random variables, for
each objecti we define a doubly infinite collection of random variables:

η
(i)
jk | γ, κ ∼ Gamma(γ + κδ(j, k), 1), (7)

whereδ(j, k) indicates the Kronecker delta function. We denote this collection oftransition vari-
ablesby η(i), and use them to define object-specific, feature-constrained transition distributions:

π
(i)
j =

[

η
(i)
j1 η

(i)
j2 . . .

]

⊗ fi

∑

k|fik=1 η
(i)
jk

. (8)

Here,⊗ denotes the element-wise vector product. This construction definesπ(i)
j over the full set of

positive integers, but assigns positive mass only at indicesk wherefik = 1.

The preceding generative process can be equivalently represented via a samplẽπ(i)
j from a finite

Dirichlet distribution of dimensionKi =
∑

k fik, containing the non-zero entries ofπ
(i)
j :

π̃
(i)
j | fi, γ, κ ∼ Dir([γ, . . . , γ, γ + κ, γ, . . . γ]). (9)

Theκ hyperparameter places extra expected mass on the componentof π̃
(i)
j corresponding to a self-

transitionπ
(i)
jj , analogously to the sticky hyperparameter of Fox et al. [4].We refer to this model,

which is summarized in Fig. 1, as thebeta process autoregressive HMM(BP-AR-HMM).

4 MCMC Methods for Posterior Inference

We have developed an MCMC method which alternates between resampling binary feature assign-
ments given observations and dynamical parameters, and dynamical parameters given observations
and features. The sampler interleaves Metropolis-Hastings (MH) and Gibbs sampling updates,
which are sometimes simplified by appropriate auxiliary variables. We leverage the fact that fixed
feature assignments instantiate a set offinite AR-HMMs, for which dynamic programming can be
used to efficiently compute marginal likelihoods. Our novelapproach to resampling the potentially
infinite set of object-specific features employs incremental “birth” and “death” proposals, improving
on previous exact samplers for IBP models with non-conjugate likelihoods.

4.1 Sampling binary feature assignments

Let F−ik denote the set of all binary feature indicators excludingfik, andK−i
+ be the number of

behaviors currently instantiated by objects other thani. For notational simplicity, we assume that
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Figure 1:Graphical model of the BP-AR-HMM. The beta process distributed measureB | B0 ∼ BP(1, B0)
is represented by its massesωk and locationsθk, as in Eq. (2). The features are then conditionally inde-
pendent drawsfik | ωk ∼ Bernoulli(ωk), and are used to define feature-constrained transition distributions
π

(i)
j | fi, γ, κ ∼ Dir([γ, . . . , γ, γ + κ, γ, . . . ] ⊗ fi). The switching VAR dynamics are as in Eq. (6).

these behaviors are indexed by{1, . . . , K−i
+ }. Given theith object’s observation sequencey(i)

1:Ti
,

transition variablesη(i) = η
(i)

1:K−i
+ ,1:K−i

+

, and shared dynamic parametersθ1:K−i
+

, feature indicators

fik for currently used featuresk ∈ {1, . . . , K−i
+ } have the following posterior distribution:

p(fik | F−ik,y
(i)
1:Ti

, η(i), θ1:K−i
+

, α) ∝ p(fik | F−ik, α)p(y
(i)
1:Ti

| fi, η
(i), θ1:K−i

+
). (10)

Here, the IBP prior implies thatp(fik = 1 | F−ik, α) = m−i
k /N , wherem−i

k denotes the number of
objectsother than objecti that exhibit behaviork. In evaluating this expression, we have exploited
the exchangeability of the IBP [9], which follows directly from the beta process construction [22].

For binary random variables, MH proposals can mix faster [6]and have greater statistical effi-
ciency [14] than standard Gibbs samplers. To updatefik given F−ik, we thus use the posterior
of Eq. (10) to evaluate a MH proposal which flipsfik to the complement̄f of its current valuef :

fik ∼ ρ(f̄ | f)δ(fik, f̄) + (1 − ρ(f̄ | f))δ(fik, f)

ρ(f̄ | f) = min

{

p(fik = f̄ | F−ik,y
(i)
1:Ti

, η(i), θ1:K−i
+

, α)

p(fik = f | F−ik,y
(i)
1:Ti

, η(i), θ1:K−i
+

, α)
, 1

}

. (11)

To compute likelihoods, we combinefi andη(i) to construct feature-constrained transition distribu-
tionsπ

(i)
j as in Eq. (8), and apply the sum-product message passing algorithm [19].

An alternative approach is needed to resample the Poisson(α/N) “unique” features associated only
with objecti. LetK+ = K−i

+ +ni, whereni is the number of features unique to objecti, and define
f−i = fi,1:K−i

+
andf+i = fi,K

−i
+ +1:K+

. The posterior distribution overni is then given by

p(ni | fi,y
(i)
1:Ti

, η(i), θ1:K−i
+

, α)

∝
( α

N
)nie−

α
N

ni!

∫∫

p(y
(i)
1:Ti

| f−i, f+i = 1, η(i), η+, θ1:K−i
+

, θ+) dB0(θ+)dH(η+), (12)

whereH is the gamma prior on transition variables,θ+ = θK
−i
+ +1:K+

are the parameters of unique

features, andη+ are transition parametersη(i)
jk to or from unique featuresj, k ∈ {K−i

+ + 1 : K+}.
Exact evaluation of this integral is intractable due to dependencies induced by the AR-HMMs.

One early approach to approximate Gibbs sampling in non-conjugate IBP models relies on a finite
truncation [7]. Meeds et al. [15] instead consider independent Metropolis proposals which replace
the existing unique features byn′

i ∼ Poisson(α/N) new features, with corresponding parameters
θ′

+ drawn from the prior. For high-dimensional models like thatconsidered in this paper, however,
moves proposing large numbers of unique features have low acceptance rates. Thus, mixing rates
are greatly affected by the beta process hyperparameterα. We instead develop a “birth and death”
reversible jump MCMC (RJMCMC) sampler [8], which proposes to either add a single new feature,
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or eliminate one of the existing features inf+i. Some previous work has applied RJMCMC to finite
binary feature models [3, 27], but not to the IBP. Our proposal distribution factors as follows:

q(f ′
+i, θ

′
+, η′

+ | f+i, θ+, η+) = qf (f ′
+i | f+i)qθ(θ

′
+ | f ′

+i, f+i, θ+)qη(η′
+ | f ′

+i, f+i, η+). (13)

Let ni =
∑

kf+ik. The feature proposalqf (· | ·) encodes the probabilities of birth and death
moves: a new feature is created with probability0.5, and each of theni existing features is deleted
with probability0.5/ni. For parameters, we define our proposal using the generativemodel:

qθ(θ
′
+ | f ′

+i, f+i, θ+) =

{

b0(θ
′
+,ni+1)

∏ni

k=1 δθ+k
(θ′+k), birth of featureni + 1;

∏

k 6=ℓ δθ+k
(θ′+k), death of featureℓ, (14)

whereb0 is the density associated withα−1B0. The distributionqη(· | ·) is defined similarly, but
using the gamma prior on transition variables of Eq. (7). TheMH acceptance probability is then

ρ(f ′
+i, θ

′
+, η′

+ | f+i, θ+, η+) = min{r(f ′
+i, θ

′
+, η′

+ | f+i, θ+, η+), 1}. (15)

Canceling parameter proposals with corresponding prior terms, the acceptance ratior(· | ·) equals

p(y
(i)
1:Ti

| [f−i f ′
+i], θ1:K−i

+
, θ′

+, η(i), η′
+) Poisson(n′

i | α/N) qf (f+i | f ′
+i)

p(y
(i)
1:Ti

| [f−i f+i], θ1:K−i
+

, θ+, η(i), η+) Poisson(ni | α/N) qf (f ′
+i | f+i)

, (16)

with n′
i =

∑

kf ′
+ik. Because our birth and death proposals do not modify the values of existing

parameters, the Jacobian term normally arising in RJMCMC algorithms simply equals one.

4.2 Sampling dynamic parameters and transition variables

Posterior updates to transition variablesη(i) and shared dynamic parametersθk are greatly simpli-
fied if we instantiate the mode sequencesz

(i)
1:Ti

for each objecti. We treat these mode sequences as
auxiliary variables: they are sampled given the current MCMC state, conditionedon when resam-
pling model parameters, and then discarded for subsequent updates of feature assignmentsfi.

Given feature-constrained transition distributionsπ(i) and dynamic parameters{θk}, along with

the observation sequencey
(i)
1:Ti

, we jointly sample the mode sequencez
(i)
1:Ti

by computing backward

messagesmt+1,t(z
(i)
t ) ∝ p(y

(i)
t+1:Ti

| z
(i)
t , ỹ

(i)
t , π(i), {θk}), and then recursively sampling eachz

(i)
t :

z
(i)
t | z

(i)
t−1,y

(i)
1:Ti

, π(i), {θk} ∼ π
(i)

z
(i)
t−1

(z
(i)
t )N

(

y
(i)
t ; A

z
(i)
t

ỹ
(i)
t , Σ

z
(i)
t

)

mt+1,t(z
(i)
t ). (17)

Because Dirichlet priors are conjugate to multinomial observationsz(i)
1:T , the posterior ofπ(i)

j is

π
(i)
j | fi, z

(i)
1:T , γ, κ ∼ Dir([γ + n

(i)
j1 , . . . , γ + n

(i)
jj−1, γ + κ + n

(i)
jj , γ + n

(i)
jj+1, . . . ] ⊗ fi). (18)

Here,n(i)
jk are the number of transitions from modej to k in z

(i)
1:T . Since the mode sequencez

(i)
1:T is

generated from feature-constrained transition distributions,n(i)
jk is zero for anyk such thatfik = 0.

Thus, to arrive at the posterior of Eq. (18), we only updateη
(i)
jk for instantiated features:

η
(i)
jk | z

(i)
1:T , γ, κ ∼ Gamma(γ + κδ(j, k) + n

(i)
jk , 1), k ∈ {ℓ | fiℓ = 1}. (19)

We now turn to posterior updates for dynamic parameters. We place a conjugate matrix-normal
inverse-Wishart (MNIW) prior [26] on{Ak, Σk}, comprised of an inverse-Wishart prior IW(S0, n0)
on Σk and a matrix-normal priorMN (Ak; M, Σk, K) on Ak givenΣk. We consider the follow-
ing sufficient statistics based on the setsYk = {y

(i)
t | z

(i)
t = k} and Ỹk = {ỹ

(i)
t | z

(i)
t = k} of

observations and lagged observations, respectively, associated with behaviork:

S
(k)
ỹỹ =

∑

(t,i)|z
(i)
t =k

ỹ
(i)
t ỹ

(i)T

t + K S
(k)
yỹ =

∑

(t,i)|z
(i)
t =k

y
(i)
t ỹ

(i)T

t + MK

S(k)
yy =

∑

(t,i)|z
(i)
t =k

y
(i)
t y

(i)T

t + MKMT S
(k)
y|ỹ = S(k)

yy − S
(k)
yỹ S

−(k)
ỹỹ S

(k)T

ỹỹ .

Following Fox et al. [5], the posterior can then be shown to equal

Ak | Σk, Yk ∼ MN
(

Ak; S
(k)
yỹ S

−(k)
ỹỹ , Σk, S

(k)
ỹỹ

)

, Σk | Yk ∼ IW
(

S
(k)
y|ỹ + S0, |Yk| + n0

)

.
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Figure 2:(a) Observation sequences for each of 5 switching AR(1) timeseries colored by true mode sequence,
and offset for clarity. (b) True feature matrix (top) of the five objects and estimated feature matrix (bottom)
averaged over 10,000 MCMC samples taken from 100 trials every 10th sample. White indicates active features.
The estimated feature matrices are produced from mode sequences mapped to the ground truth labels according
to the minimum Hamming distance metric, and selecting modeswith more than 2% of the object’s observations.

4.3 Sampling the beta process and Dirichlet transition hyperparameters

We additionally place priors on the Dirichlet hyperparametersγ andκ, as well as the beta process
parameterα. Let F = {f i}. As derived in [9],p(F | α) can be expressed as

p(F | α) ∝ αK+ exp

(

− α

N
∑

n=1

1

n

)

, (20)

where, as before,K+ is the number of unique features activated inF . As in [7], we place a conjugate
Gamma(aα, bα) prior onα, which leads to the following posterior distribution:

p(α | F , aα, bα) ∝ p(F | α)p(α | aα, bα) ∝ Gamma

(

aα + K+, bα +

N
∑

n=1

1

n

)

. (21)

Transition hyperparameters are assigned similar priorsγ ∼ Gamma(aγ , bγ), κ ∼ Gamma(aκ, bκ).
Because the generative process of Eq. (7) is non-conjugate,we rely on MH steps which iteratively
resampleγ givenκ, andκ givenγ. Each sub-step uses a gamma proposal distributionq(· | ·) with
fixed varianceσ2

γ or σ2
κ, and mean equal to the current hyperparameter value. To updateγ givenκ,

the acceptance probability ismin{r(γ′ | γ), 1}, wherer(γ′ | γ) is defined to equal

p(γ′ | κ, π, F )q(γ | γ′)

p(γ | κ, π, F )q(γ′ | γ)
=

p(π | γ′, κ, F )p(γ′)q(γ | γ′)

p(π | γ, κ, F )p(γ)q(γ′ | γ)
=

f(γ′)Γ(ϑ)e−γ′bγ γϑ′−ϑ−aγ σ2ϑ
γ

f(γ)Γ(ϑ′)e−γbγ γ′ϑ−ϑ′−aγ σ2ϑ′

γ

.

Here,ϑ = γ2/σ2
γ , ϑ′ = γ′2/σ2

γ , andf(γ) =
∏

i
Γ(γKi+κ)Ki

Γ(γ)K2
i
−KiΓ(γ+κ)Ki

∏Ki

(j,k)=1 π
(i)γ+κδ(k,j)−1

kj . The

MH sub-step for resamplingκ givenγ is similar, but with an appropriately redefinedf(κ).

5 Synthetic Experiments

To test the ability of BP-AR-HMM to discover shared dynamics, we generated five time series that
switched between AR(1) models

y
(i)
t = a

z
(i)
t

y
(i)
t−1 + e

(i)
t (z

(i)
t ) (22)

with ak ∈ {−0.8,−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6, 0.8} and process noise covarianceΣk drawn
from an IW(0.5, 3) prior. The object-specific features, shown in Fig. 2(b), were sampled from a
truncated IBP [9] usingα = 10 and then used to generate the observation sequences of Fig. 2(a).
The resulting feature matrix estimated over 10,000 MCMC samples is shown in Fig. 2. Comparing
to the true feature matrix, we see that our model is indeed able to discover most of the underlying
latent structure of the time series despite the challengingsetting defined by the close AR coefficients.

One might propose, as an alternative to the BP-AR-HMM, usingan architecture based on the hi-
erarchical Dirichlet process of [21]; specifically we coulduse the HDP-AR-HMMs of [5] tied
together with a shared set of transition and dynamic parameters. To demonstrate the difference
between these models, we generated data for three switchingAR(1) processes. The first two ob-
jects, with four times the data points of the third, switchedbetween dynamical modes defined
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Figure 3: (a)-(b) The 10th, 50th, and 90th Hamming distance quantilesfor object 3 over 1000 trials for the
HDP-AR-HMMs and BP-AR-HMM, respectively. (c)-(d) Examples of typical segmentations into behavior
modes for the three objects at Gibbs iteration 1000 for the two models (top = estimate, bottom = truth).
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Figure 4:Each skeleton plot displays the trajectory of a learned contiguous segment of more than 2 seconds.
To reduce the number of plots, we preprocessed the data to bridge segments separated by fewer than 300 msec.
The boxes group segments categorized under the same featurelabel, with the color indicating the true feature
label. Skeleton rendering done by modifications to Neil Lawrence’s Matlab MoCap toolbox [13].

by ak ∈ {−0.8,−0.4, 0.8} and the third object usedak ∈ {−0.3, 0.8}. The results shown in
Fig. 3 indicate that the multiple HDP-AR-HMM model typically describes the third object using
ak ∈ {−0.4, 0.8} since this assignment better matches the parameters definedby the other (lengthy)
time series. These results reiterate that the feature modelemphasizes choosing behaviors rather than
assuming all objects are performing minor variations of thesame dynamics.

For the experiments above, we placed a Gamma(1, 1) prior onα andγ, and a Gamma(100, 1) prior
onκ. The gamma proposals usedσ2

γ = 1 andσ2
κ = 100 while the MNIW prior was givenM = 0,

K = 0.1 ∗ Id, n0 = d + 2, andS0 set to 0.75 times the empirical variance of the joint set of
first difference observations. At initialization, each time series was segmented into five contiguous
blocks, with feature labels unique to that sequence.

6 Motion Capture Experiments

The linear dynamical system is a common model for describingsimple human motion [11], and the
more complicated SLDS has been successfully applied to the problem of human motion synthesis,
classification, and visual tracking [17, 18]. Other approaches develop non-linear dynamical models
using Gaussian processes [25] or based on a collection of binary latent features [20]. However, there
has been little effort in jointly segmenting and identifying common dynamic behaviors amongst a
set ofmultiplemotion capture (MoCap) recordings of people performing various tasks. The BP-AR-
HMM provides an ideal way of handling this problem. One benefit of the proposed model, versus
the standard SLDS, is that it does not rely on manually specifying the set of possible behaviors.
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Figure 5:(a) MoCap feature matrices associated with BP-AR-HMM (top-left) and HDP-AR-HMM (top-right)
estimated sequences over iterations 15,000 to 20,000, and MAP assignment of the GMM (bottom-left) and
HMM (bottom-right) using first-difference observations and 12 clusters/states. (b) Hamming distance versus
number of GMM clusters / HMM states on raw observations (blue/green) and first-difference observations
(red/cyan), with the BP- and HDP- AR-HMM segmentations (black) and true feature count (magenta) shown for
comparison. Results are for the most-likely of 10 EM initializations using Murphy’s HMM Matlab toolbox [16].

As an illustrative example, we examined a set of six CMU MoCapexercise routines [23], three
from Subject 13 and three from Subject 14. Each of these routines used some combination of the
following motion categories: running in place, jumping jacks, arm circles, side twists, knee raises,
squats, punching, up and down, two variants of toe touches, arch over, and a reach out stretch.

From the set of 62 position and joint angles, we selected 12 measurements deemed most informative
for the gross motor behaviors we wish to capture: one body torso position, two waist angles, one
neck angle, one set of right and left (R/L) shoulder angles, the R/L elbow angles, one set of R/L hip
angles, and one set of R/L ankle angles. The MoCap data are recorded at 120 fps, and we block-
average the data using non-overlapping windows of 12 frames. Using these measurements, the prior
distributions were set exactly as in the synthetic data experiments except the scale matrix,S0, of the
MNIW prior which was set to 5 times the empirical covariance of the first difference observations.
This allows more variability in the observed behaviors. We ran 25 chains of the sampler for 20,000
iterations and then examined the chain whose segmentation minimized the expected Hamming dis-
tance to the set of segmentations from all chains over iterations 15,000 to 20,000. Future work
includes developing split-merge proposals to further improve mixing rates in high dimensions.

The resulting MCMC sample is displayed in Fig. 4 and in the supplemental video available online.
Although some behaviors are merged or split, the overall performance shows a clear ability to find
common motions. The split behaviors shown in green and yellow can be attributed to the two
subjects performing the same motion in a distinct manner (e.g., knee raises in combination with
upper body motion or not, running with hands in or out of sync with knees, etc.). We compare
our performance both to the HDP-AR-HMM and to the Gaussian mixture model (GMM) method
of Barbič et al. [1] using EM initialized with k-means. Barbič et al. [1] also present an approach
based on probabilistic PCA, but this method focuses primarily on change-point detection rather than
behavior clustering. As further comparisons, we look at a GMM on first difference observations,
and an HMM on both data sets. The results of Fig. 5(b) demonstrate that the BP-AR-HMM provides
more accurate frame labels than any of these alternative approaches over a wide range of mixture
model settings. In Fig. 5(a), we additionally see that the BP-AR-HMM provides a superior ability
to discover the shared feature structure.

7 Discussion
Utilizing the beta process, we developed a coherent Bayesian nonparametric framework for dis-
covering dynamical features common to multiple time series. This formulation allows for object-
specific variability in how the dynamical behaviors are used. We additionally developed a novel
exact sampling algorithm for non-conjugate beta process models. The utility of our BP-AR-HMM
was demonstrated both on synthetic data, and on a set of MoCapsequences where we showed per-
formance exceeding that of alternative methods. Although we focused on switching VAR processes,
our approach could be equally well applied to a wide range of other switching dynamical systems.
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[17] V. Pavlović, J.M. Rehg, T.J. Cham, and K.P. Murphy. A dynamic Bayesian network approach to figure
tracking using learned dynamic models. InProc. International Conference on Computer Vision, Septem-
ber 1999.
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