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Abstract

Layered models are a powerful way of describing natural esecontaining
smooth surfaces that may overlap and occlude each otheim&ge motion es-
timation, such models have a long history but have not aelli¢re wide use or
accuracy of non-layered methods. We present a new pro$i@bitiodel of optical
flow in layers that addresses many of the shortcomings ofqueapproaches. In
particular, we define a probabilistic graphical model thgilieitly captures: 1)
occlusions and disocclusions; 2) depth ordering of therkay&) temporal con-
sistency of the layer segmentation. Additionally the ogdtftow in each layer is
modeled by a combination of a parametric model and a smoatiatim based
on an MRF with a robust spatial prior; the resulting modeba#i roughness in
layers Finally, a key contribution is the formulation of the lagersing an image-
dependent hidden field prior based on recent models foc Stedine segmentation.
The method achieves state-of-the-art results on the Midajebenchmark and
produces meaningful scene segmentations as well as ditagikision regions.

1 Introduction

Layered models of scenes offer significant benefits for aptiow estimation [8, 11, 25]. Splitting
the scene into layers enables the motion in each layer tofireedanore simply, and the estimation
of motion boundaries to be separated from the problem of #inftmw estimation. Layered models
also make reasoning about occlusion relationships edsipractice, however, none of the current
top performing optical flow methods use a layered approagh The most accurate approaches
are single-layered, and instead use some form of robusttemess assumption to cope with flow
discontinuities [5]. This paper formulates a new probahdj layered motion model that addresses
the key problems of previous layered approaches. At the @ifneriting, it achieves the lowest
average error of all tested approaches on the Middlebuiigadgtow benchmark [2]. In particular,
the accuracy at occlusion boundaries is significantly bétien previous methods. By segmenting
the observed scene, our model also identifies occluded anddiuded regions.

Layered models provide a segmentation of the scene andetipisentation, because it corresponds
to scene structure, should persist over time. Howeverpisistence is not a benefit if one is only
computing flow between two frames; this is one reason thatiftayler models have not surpassed
their single-layer competitors on two-frame benchmarksth@t loss of generality, here we use
three-frame sequences to illustrate our method. In pediese three frames can be constructed
from an image pair by computing both the forward and backviiasd. The key is that this gives
two segmentations of the scene, one at each time instahtpbathich must be consistent with the
flow. We formulate thigemporal layer consistengyrobabilistically. Note that the assumption of
temporal layer consistency is much more realistic thaniptesvassumptions of temporal motion
consistency [4]; while the scene motion can change rapsdbne structure persists.



One of the main motivations for layered models is that, cihmaéd on the segmentation into layers,
each layer can employ affine, planar, or other strong modeiptical flow. By applying a single
smooth motion across the entire layer, these models connfimenation over long distances and
interpolate behind occlusions. Such rigid parametric mggions, however, are too restrictive for
real scenes. Instead one can model the flow within each layesmaothly varying [26]. While
the resulting model is more flexible than traditional paraiinenodels, we find that it is still not as
accurate as robust single-layer models. Consequentlyom@iate a hybrid model that combines a
base affine motion with a robust Markov random field (MRF) mMadeleformationgrom affine [6].
This roughness in layermodel, which is similar in spirit to work on plane+parallaé0f 14, 19],
encourages smooth flow within layers but allows significanal deviations.

Because layers are temporally persistent, it is also plesgilreason about their relative depth or-
dering. In general, reliable recovery of depth order rezpithree or more frames. Our probabilistic
formulation explicitly orders layers by depth, and we shbatthe correct order typically produces
more probable (lower energy) solutions. This also allowdiek reasoning about occlusions, which
our model predicts at locations where the layer segmentafir consecutive frames disagree.

Many previous layered approaches are not truly “layerediilesthey segment the image into mul-
tiple regions with distinct motions, they do not model wisairi front of what. For example, widely
used MRF models [27] encourage neighboring pixels to octlgame region, but do not capture
relationships between regions. In contrast, building @ené state-of-the-art results in static scene
segmentation [21], our model determines layer supportiviardered sequence of occluding binary
masks. These binary masks are generated by thresholdings serandom, continuous functions.
This approach uses image-dependent Gaussian random fi@lgl @nd favors partitions which ac-
curately match the statistics of real scenes [21]. Moredhercontinuous layer support functions
play a key role in accurately modeling temporal layer cdesisy. The resulting model produces
accurate layer segmentations that improve flow accuraayciision boundaries, and recover mean-
ingful scene structure.

As summarized in Figure 1, our method is based on a pringigdesbabilistic generative model
for image sequences. By combining recent advances in dengefitimation and natural image
segmentation, we develop an algorithm that simultanecestiynates accurate flow fields, detects
occlusions and disocclusions, and recovers the layerectste of realistic scenes.

2 Previous Work

Layered approaches to motion estimation have long beerasesiagant and promising, since spatial
smoothness is separated from the modeling of discont@sugtnd occlusions. Darrell and Pentland
[7, 8] provide the first full approach that incorporates a &ign model, “support maps” for seg-
mentation, and robust statistics. Wang and Adelson [2%rblenotivate layered models of image
sequences, while Jepson and Black [11] formalize the probiging probabilistic mixture models.
A full review of more recent methods is beyond our scope [1.23,13, 16, 17, 20, 24, 27, 29].

Early methods, which use simple parametric models of imagg&am within layers, are not highly
accurate. Observing that rigid parametric models are tstoicgve for real scenes, Weiss [26] uses a
more flexible Gaussian process to describe the motion wéthah layer. Even using modern imple-
mentation methods [22] this approach does not achieve states-art results. Allocating a separate
layer for every small surface discontinuity is impractiaat fails to capture important global scene
structure. Our approach, which allows “roughness” withiydrs rather than “smoothness,” provides
a compromise that captures coarse scene structure as Viiak agithin-layer details.

One key advantage of layered models is their ability to s&iaklly model occlusion boundaries.
To do this properly, however, one must know the relative ldeptler of the surfaces. Performing
inference over the combinatorial range of possible ocotusglationships is challenging and, con-
sequently, only a few layered flow models explicitly encodkative depth [12, 30]. Recent work
revisits the layered model to handle occlusions [9], butsdua explicitly model the layer ordering
or achieve state-of-the-art performance on the Middlelierychmark. While most current optical
flow methods are “two-frame,” layered methods naturallyeaxtto longer sequences [12, 29, 30].

Layered models all have some way of making either a hard arassfgnment of pixels to layers.
Weiss and Adelson [27] introduce spatial coherence to tlag®se assignments using a spatial MRF
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Figure 1:Left: Graphical representation for the proposed layered mdight: lllustration of variables from
the graphical model for the “Schefflera” sequence. Labealédimages correspond to nodes in the graph. The
left column shows the flow fields for three layers, color codsdn [2]. Theg ands images illustrate the
reasoning about layer ownership (see text). The compositgfiigld (u, v) and layer labelsk) are also shown.

model. However, the Ising/Potts MRF they employ assignsdovbability to typical segmentations
of natural scenes [15]. Adapting recent work on static imsggmentation by Sudderth and Jor-
dan [21], we instead generate spatially coherent, ordengztd by thresholding a series of random
continuous functions. As in the single-image case, thig@ggh realistically models the size and
shape properties of real scenes. For motion estimatior t#er additional advantages: it allows
accurate reasoning about occlusion relationships and lingd# temporal layer consistency.

3 A Layered Motion Model

Building on this long sequence of prior work, our generativedel of layered image motion is

summarized in Figure 1. Below we describe how the generatgel captures piecewise smooth
deviation of the layer motion from parametric models (Set),3lepth ordering and temporal con-
sistency of layers (Sec. 3.2), and regions of occlusion @wtdlusion (Sec. 3.3).

3.1 Roughnessin Layers

Our approach is inspired by Weiss’s model of smoothnessyier$a[26]. Given a sequence of
imagesl,;,1 <t < T, we model the evolution from the current frafhe to the subsequent frame
1,141, via K locally smooth, but potentially globally complex, flow fisldLetu,, andv,; denote

the horizontal and vertical flow fields, respectively, foydak at timet. The corresponding flow

vector for pixel(i, j) is then denoted byu7,, vi7.).

Each layer’s flow field is drawn from a distribution chosen nc@urage piecewise smooth motion.
For example, a pairwise Markov random field (MRF) would mdtielhorizontal flow field as

p(ug) < exp{—Emr(uw)} = exp{ — % Z Z ps(ulh — u;/]g/)} (1)

(4,9) (#/,5) €L (4,5)

Here,T'(i, j) is the set of neighbors of pixél, j), often its four nearest neighbors. The potential
ps(+) is some robust function [5] that encourages smoothnessilowts occasional significant de-
viations from it. The vertical flow field,;, can then be modeled via an independent MRF prior as
in Eq. (1), as justified by the statistics of natural flow fig]#i8].

While such MRF priors are flexible, they capture very littepéndence between pixels separated by
even moderate image distances. In contrast, real scendstexdierent motion over large scales,
due to the motion of (partially) rigid objects in the world §apture this, we associate an affine (or
planar) motion model, with parameteg, to each layek. We then use an MRF to allow piecewise
smoothdeformationgrom the globally rigid assumptions of affine motion:

1 ii i il Y
Eait(ui, Ou) = B} Z Z Ps ((uti - “ejtk) = (uy! — uet]k )) 2

(i,9) (7,3") € (i,5)



Here,a@ftk denotes the horizontal motion predicted for pix&lj) by an affine model with pa-
rametersd;,.. Unlike classical models that assume layers are globally fitdoy a single affine
motion [6, 25], this prior allows significant, locally smdadeviations from rigidity. Unlike the ba-
sic smoothness prior of Eg. (1), this semiparametric canstn allows effective global reasoning
about non-contiguous segments of partially occluded adjddore sophisticated flow deformation
priors may also be used, such as those based on robust raitellons [22, 28].

3.2 Layer Support and Spatial Contiguity

The support for whether or not a pixel belongs to a given layisrdefined using a hidden random
field g,. We associate each of the firkt — 1 layers at time with a random continuous function
g., defined over the same domain as the image. This hidden dufjgois illustrated in Figure 1.

We assume a single, unique layer is observable at eachdacatid that the observed motion of
that pixel is determined by its assigned layer. Analogousvel set representations, the discrete
support of each layer is determined by thresholdipg pixel (i, j) is considered visible when
g+ (4,7) > 0. Letsq (4, 7) equal one if layek is visible at pixel(i, j), and zero otherwise; note that
>k suk(i, j) = 1. For pixels(i, j) for which g, (4, j) < 0, we necessarily havey (i, j) = 0.

We define the layers to be ordered with respect to the caneetaaslayerk occludes layers’ > .
Given the full set of support functions., the unique layek;’ for which 8 y4id (i,j) = lis then

kil =min ({k|1<k<K—1,g4(i,7) > 0} U{K}). (3)

Note that layerK is essentially a background layer that captures all pixetsassigned to the first
K — 1 layers. For this reason, only — 1 hidden fieldsz,, are needed (see Figure 1).

Our use of thresholded, random continuous functions to eddiyer support is partially motivated
by known shortcomings of discrete Ising/Potts MRF modetsiftage partitions [15]. They also
provide a convenient framework for modeling the tempora gpatial coherence observed in real
motion sequences. Spatial coherence is captured via a i@awesmditional random field in which
edge weights are modulated by local differences in Lab agotors I (i, j):

Espacefgtk) - 5 Z Z wlljj/ (gtk (Za.]) - gtk(llv.]/))Qa (4)
(i:9) (i3 ET(i.5)
ij 1 cls clsl
uty = { expf - LT - @6 | ®

The threshold. > 0 adds robustness to large color changes in internal objetttree Temporal
coherence of surfaces is then encouraged via a corresgp@diunssian MRF:

Etime(8tks 8t+1,k, Utk Vi) = Z(gtk(ivj) — grr k(i 4wl §+ vk))*. (6)
(i:5)
Critically, this energy function uses the corresponding/ffld to non-rigidly align the layers at

subsequent frames. By allowing smooth deformation of thepstt functionsg;., we allow layer
support to evolve over time, as opposed to transformingglesigid template [12].

Our model of layer coherence is inspired by a recent methoihfage segmentation, based on
spatially dependent Pitman-Yor processes [21]. That waakes connections between layered oc-
clusion processes argtick breakingrepresentations of nonparametric Bayesian models. By as-
signing appropriate stochastic priors to layer threshdhus Pitman-Yor model captures the power
law statistics of natural scene partitions and infers arr@mpate number of segments for each
image. Existing optical flow benchmarks employ artificiadlgnstructed scenes that may have dif-
ferent layer-level statistics. Consequently our expenitsén this paper employ a fixed number of
layersK.

3.3 Depth Ordering and Occlusion Reasoning

The preceding generative process defines a sek afrdered layers, with corresponding flow
fields uy, vy, and segmentation masks,. Recall that the layer assignment masksre a



deterministic function (threshold) of the underlying donbus layer support functiong (see
Eg. (3)). To conS|stentIy reason about occlusions, we exartie layer assignments; (i, j) and

Sepr k(i +up, j + v”) at locations corresponded by the underlying flow fields. Téusls to a far
richer occlusion model than standard spatially indepenalgtfier processes: geometric consistency
is enforced via the layered sequence of flow fields.

Let If(i,j) denote an observed image feature for piXelj); we work with a filtered
version of the intensity images to provide some invariangeillumination changes. If
sty §) = sev1,6(0 +uyp, j +v,7.) = 1, the visible layer for pixeli, j) at timet remains unoc-
cluded at time + 1, and the image observations are modeled using a standgtdri®ss (or, here,
feature) constancy assumption. Otherwise, that pixel Basrbe occluded, and is instead generated
from a uniform distribution. The image likelihood model daen be written as

P(If | If+17 utvvtvgtvgtJrl) X eXp{_Edata(uta Vi, 8t gt+1)}
e I N e A T
(i,9)
+ Aaser (i, ) (1= sep1k(i +ugp j + Ui‘;i))) }

wherep,(-) is a robust potential function and the constaptarises from the difference of the log
normalization constants for the robust and uniform distidns. With algebraic simplifications, the
data error term can be written as

Egal(us, Vi, 8t, 8t 1) =
Z Z (pd(If(lv .]) - If+1(l + uggaj + vzi;)) - /\d)stk (7’3 j)5t+17k(i + uggaj + U,gg) (7)
k(i)
up to an additive, constant multiple 8f. The shifted potential functiofp.(-) — A\a) represents the
change in energy when a pixel transitions from an occludexhtanoccluded configuration. Note

that occlusions have higher likelihood only for sufficignithrge discrepancies in matched image
features and can only occur via a corresponding change én \agibility.

4 Posterior Inference from I mage Sequences

Considering the full generative model defined in Seandximum a posterioffMAP) estimation
for a7 frame image sequence is equivalent to minimization of thleviang energy function:

T—1 K
E(U-a v, 8, 9) = Z {Edata(ut, Vi, 8t gt+1) + Z /\a(Eaff(utk7 9tk) + Eaff(Vtka 9tk))

t=1 k=1
K—-1
+ Z )\bEspace(gtk) + )\CEtime(gtkvgt+l,ka Uk, Vtk)} + Z )\bEspacéng)- (8)
k=1 _

Here\,, \», and). are weights controlling the relative importance of the affispatial, and tempo-
ral terms respectively. Simultaneously inferring flow felthyer support maps, and depth ordering
is a challenging process; our approach is summarized below.

4.1 Relaxation of the Layer Assignment Process

Due to the non-differentiability of the threshold procdsattdetermines assignments of regions to
layers, direct minimization of Eq. (8) is challenging. Faedéated approach to image segmentation,
a mean field variational method has been proposed [21]. Hemtnat segmentation model is based
on a much simpler, spatially factorized likelihood model éolor and texture histogram features.

Generalization to the richer flow likelihoods consideretehaises significant complications.

Instead, we relax the hard threshold assignment procesg the logistic functiow(g) = 1/(1 +
exp(—g)). Applied to Eq. (3), this induces the following soft layes@mments:

o eOegui ) Tty o(=Aeguw (0, 4)), 1<k < K,
S, §) =

9
152! o(=Aegurr (7)), =K. ©
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Figure 2:Results on the “Venus” sequence with 4 layers. The two backygt layers move faster than the two
foreground layers, and the solution with the correct depdeng has lower energy and smaller error. (a) First
frame. (b-d) Fast-to-slow ordering: ERE252 and energy-1.786 x 10°. Left to right: motion segmentation,
estimated flow field, and absolute error of estimated flow fiéfe) Slow-to-fast ordering: EPBE.195 and
energy—1.808 x 10°. Darker indicates larger flow field errors in (d) and (g).

Note thato (—g) = 1 — o(g), andeK:1 S11(4,7) = 1 for any g, and constank, > 0.

Substituting these soft assignmesys(i, ) for s« (4, 7) in Eq. (7), we obtain a differentiable energy
function that can be optimized via gradient-based methadslated relaxation underlies the classic
backpropagation algorithm for neural network training.

4.2 Gradient-Based Energy Minimization

We estimate the hidden fields for all the frames togetherdenhiing the flow fields, by optimizing
an objective involving the relevaiya(- ), Espacd ), andEiime(-) terms. We then estimate the flow
fieldsuy, v, for each frame, while fixing those of neighboring frames draltidden fields, via the
Egatd+), Pas(+), and Eyme(+) terms. For flow estimation, we use a standard coarse-toviging-
based technique as described in [22]. For hidden field esmawe use an implementation of
conjugate gradient descent with backtracking and linecbe&@eeSupplemental Materidbr details.

5 Experimental Results

We apply the proposed model to two-frame sequences and d¢erpth the forward and backward
flow fields. This enables the use of the temporal consistegiey by treating one frame as both
the previous and the next frame of the ofhéie obtain an initial flow field using the Classic+NL
method [22], cluster the flow vectors inf§ groups (layers), and convert the initial segmentation
into the corresponding hidden fields. We then use a two-l&alssian pyramid (downsampling
factor(.8) and perform a fairly standard incremental estimation efftbw fields for each layer. At
each level, we perforra0 incremental warping steps and during each step alternsodhe for the
hidden fields and the flow estimates. In the end, we thresheldidden fields to compute a hard
segmentation, and obtain the final flow field by selecting the fleld from the appropriate layers.

Occluded regions are determined by inconsistencies battiechard segmentations at subsequent
frames, as matched by the final flow field. We would ideally likecompare layer initializations
based on all permutations of the initial flow vector clustérs this would be computationally inten-
sive for largek . Instead we compare two orders: a fast-to-slow order apjategfor rigid scenes,
and an opposite slow-to-fast order (for variety and robestip We illustrate automatic selection of
the preferred order for the “Venus” sequence in Figure 2.

The parameters for all experiments are setto= 3, \, = 30, A\ = 4, \y = 9, \e = 2,

o; = 12, andd. = 0.004. A generalized Charbonnier function is used fgi(-) and p,(-) (see
Supplemental Material Optimization takes about hours for the two-frame “Urban” sequence
using our MATLAB implementation.

5.1 Resultson the Middlebury Benchmark

Training Set As a baseline, we implement the smoothness in layers mo@glugng modern
techniques, and obtain an average training end-point €&@E) 0f0.487. This is reasonable but
not competitive with state-of-the-art methods. The preagosiodel withl to 4 layers produces
average EPEs @f.248, 0.212, 0.200, and0.194, respectively (see Table 1). The one-layer model is
similar to the Classic+NL method, but has a less sophigtit@hore local) model of the flow within

*0our model works for longer sequences. We use two frames befaif comparison with other methods.



Table 1:Average end-point error (EPE) on the Middlebury optical fllsnchmarkraining set.

Avg. EPE Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3  nZba Urban3
Weiss [26] 0.487 0.510 0.179 0.249 0.236 0.221 0.608 0.614 1.276
Classict++ 0.285 0.271 0.128 0.153 0.081 0.139 0.614 0.336 0.555
Classic+NL 0.221 0.238 0.131 0.152 0.073 0.103 0.468 0.220 0.384
Tlayer 0.248 0.243 0.144 0.175 0.095 0.125 0.504 0.279 0.422
2layers 0.212 0.219 0.147 0.169 0.081 0.098 0.376 0.236 0.370
3layers 0.200 0.212 0.149 0.173 0.073 0.090 0.343 0.220 0.338
4dlayers 0.194 0.197 0.148 0.159 0.068 0.088 0.359 0.230 0.300
3layersw/ WMF 0.195 0.211 0.150 0.161 0.067 0.086 0.331 0.210 0.345
3layersw/ WMF C++lnit 0.203 0.212 0.151 0.161 0.066 0.087 0.339 0.210 0.396

Table 2:Average end-point error (EPE) on the Middlebury optical fllsnchmarkest set

Rank Average | Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy

EPE

Layers++ 43 0.270 0.08 0.19 0.20 0.13 0.48 0.47 0.15 0.46
Classic+NL 6.5 0.319 | 0.08 0.22 0.29 0.15 0.64 0.52 0.16 0.49
EPE in boundary regions

Layerst++ 0.560 0.21 0.56 0.40 0.58 0.70 1.01 0.14 0.88
Classic+NL 0.689 | 0.23 0.74 0.65 0.73 0.93 1.12 0.13 0.98

that layer. It thus performs worse than the Classic+NLatfization; the performance improvements
allowed by additional layers demonstrate the benefits oferéd model.

Accuracy is improved by applyingls x 15 weighted median filtefWMF) [22] to the flow fields of
each layer during the iterative warping step (EPEIftw 4 layers:0.231, 0.204, 0.195, and0.193).
Weighted median filtering can be interpreted as a non-lqzatial smoothness term in the energy
function that integrates flow field information over a largpatial neighborhood.

The “correct” number of layers for a real scene is not wellrkdi(consider the “Grove3” sequence,
for example). We use a restricted number of layers, and ntbdeemaining complexity of the flow
within each layer via the roughness-in-layers spatial tand the WMF. As the number of layers
increases, the complexity of the flow within each layer dases, and consequently the need for
WMF also decreases; note that the difference in EPE for tlag&r-model with and without WMF

is insignificant. For the remaining experiments we use thsior with WMF.

To test the sensitivity of the result to the initializatiove also initialized with Classic++ (“C++Init”
in Table 1), a good, but not top, non-layered method [22]. &Nerage EPE for to 4 layers increases
t0 0.248, 0.206, 0.203, and0.198, respectively. While the one-layer method gets stuck irr ol
minima on the “Grove3” and “Urban3” sequences, models wdtitonal layers are more robust to
the initialization. For more details and full EPE resulese $heSupplemental Material

Test Set  For evaluation, we focus on a model wittayers (denoted “Layers++" in the Middlebury
public table). On the Middlebury test set it has an average &R).270 and average angular error
(AAE) of 2.556; this is the lowest among all tested methods [2] at the timeriding (Oct. 2010).
Table 2 summarizes the results for individual test sequendde layered model is particularly
accurate at motion boundaries, probably due to the use ef-lgecific motion models, and the
explicit modeling of occlusion irFqa (EQ. (7)). For more extensive results, see $upplemental
Material.

Visual Comparison Figure 3 shows results for th&layer model on several training and test
sequences. Notice that the layered model produces a maipnentation that captures the major
structure of the scene, and the layer boundaries correspalhth static image edges. It detects most
occlusion regions and interpolates their motion reasgnabll. Several sequences show significant
improvement due to the global reasoning provided by ther&yenodel. On the training “Grove3”
sequence, the proposed method correctly identifies marmg th@tween the branches and leaves as
background. It also associates the branch at the bottorh c@gher with branches in the center.
As the branch moves beyond the image boundary, the layereeélrnrgerpolates its motion using
long-range correlation with the branches in the center. dntrast, the single-layered approach
incorrectly interpolates from local background regionseTSchefflera” result illustrates how the
layered method can separate foreground objects from theghmmd (e.g., the leaves in the top
right corner), and thereby reduce errors made by singlerlagproaches such as Classic+NL.
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Figure 3:Results on some Middlebury training (rowso 3) and test (rows to 6) sequenceslop to bottom:
“RubberWhale”, “Grove3”, “Urban3”, “Mequon”, “Scheffletaand “Grove”. Left to right: First image frame,

initial flow field from “Classic+NL”, final flow field, motion sgmentation (green front, blue middle, red back),
and detected occlusions. Best viewed in color and enlageatiaw comparison of detailed motions.

6 Conclusion and Discussion

We have described a new probabilistic formulation for l@geimage motion that explicitly models
occlusion and disocclusion, depth ordering of layers, Aedeémporal consistency of the layer seg-
mentation. The approach allows the flow field in each layerateelpiecewise smooth deformation
from a parametric motion model. Layer support is modeledgian image-dependent hidden field
prior that supports a model of temporal layer continuityrdiree. The image data error term takes
into account layer occlusion relationships, resultingieréased flow accuracy near motion bound-
aries. Our method achieves state-of-the-art results oNitidlebury optical flow benchmark while
producing meaningful segmentation and occlusion detecésults.

Future work will address better inference methods, esfigeidetter scheme to infer the layer or-
der, and the automatic estimation of the number of layersniiaational efficiency has not been
addressed, but will be important for inference on long seqas. Currently our method does not
capture transparency, but this could be supported usinff &ager assignment and a different gen-
erative model. Additionally, the parameters of the modeldde learned [23], but this may require
more extensive and representative training sets. Finthyparameters of the model, especially the
number of layers, should adapt to the motions in a given serpie
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Please see the main paper for a description of the opticalflodel, its optimization, and the main
results. Sections 1-3 below provide more details of the expnts in the main paper, as well as
some additional results. Section 4 provides detailed ftasior the gradients of the energy function
with respect to the optical flow and hidden layer support §eld

1 Implementation Details

To gain robustness against lighting changes, we followifi@]@pply the Rudin-Osher-Fatemi (ROF)
structure texture decomposition method [3] to pre-protiessnput grayscale sequences. We lin-
early combine the texture and structure components in thiegption20:1. The parameters are set
according to [6].

We use the generalized Charbonnier penalty function) = (2% + €2)® with ¢ = 0.001 and
a = 0.45 [4] for pq(-) in the data termEya @andp,(-) in the spatial flow termpFas.

We compute the initial flow field using the Classic+NL methdfdnd fit K affine motion fields to
the initial forward flow field. The fitting method is similar t-means, where we cluster the flow
vectors and fit the affine parameters of each cluster. A péxekible at the layer that best explains
its motion and invisible at the other layers. To avoid locahima, we perform25 independent
runs of the fitting method and select the result with the lavigsng error. Warping the resultant
segmentation using the backward flow field produces thalrségmentation of the next frame.

To convert the hard segmentation into the initial hidderd§ethekth (¢ < K) hidden field takes
value 1.5 at pixels visible at theith layer and—1.5 otherwise. Around occlusion/disocclusion
regions, the layer assignment tends to change from one fiathe next. We detect pixels where the
layer assignments, aligned by the initial flow field, dis&greor these pixels we divide their initial
hidden field values by0 to represent our uncertainty about the initial layer agsignt in these
occlusion/disocclusion regions. The initial motion of thisible pixels in each layer is the same as
the initial flow field from Classic+NL, while the motion of thevisible pixels is interpolated by the
fitted affine motion to the flow field.

2 More Experimental Results on the Middlebury Data Set

Table 1 provides the full end-point error (EPE) results feerg training sequence using all the
methods discussed in the main paper. We also evaluate beagaats of the proposed method.



The results in the main paper are obtained Wiilwarping steps per level, which is computationally
expensive. Using warping steps has slightly better overall performancelfdrlayers, but20
warping steps produces more accurate results in motiondaoymegions.

To evaluate the method’s sensitivity to the initializatiove compare the energy of the final solu-
tions with initial flow fields from the Classic++ and the ClesdNL methods. As shown in Table 2,
solutions with the Classic++ initialization have similarezgy as those with the Classic+NL initial-
ization. Table 1 shows that the average EPE obtained fromihitalizations is also similar. This
suggests that the method works as long as the initializégisensible. We expect that our current
inference methods would not be able to recover from a realty pitialization.

Figure 3 and 4 show screen shots of the Middlebury publicetédl end-point error (EPE) and
average angular error (AAE). The proposed method (“Lay8ris¥anked first at the time of writing
(end of Oct. 2010) and also has the lowest average EPE andgav&AE both overall and in
boundary regions.

We also provide the visual results of the proposed methoti@training set in Figure 1 and on the
test set in Figure 2. Layers++ reduces many of the errors rogdiee Classic+NL method in the
motion boundary regions, produces sharp boundaries thagspmnd well to image structure, and is
able to recover fine structures such as the leaf stems in teeffiera” sequence.

Finally average EPE and average AAE for all the test sequsesreeshown in Table 3.

Table 1: Average end-point error (EPE) on the Middlebwayning set.

Avg. EPE Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3  nZba Urban3
Weiss [7] 0.487 0.510 0.179 0.249 0.236 0.221 0.608 0.614 1.276
Classic++ 0.285 0.271 0.128 0.153 0.081 0.139 0.614 0.336 0.555
Classic+NL 0.221 0.238 0.131 0.152 0.073 0.103 0.468 0.220 0.384
20 warping steps (WS)
1layer 0.248 0.243 0.144 0.175 0.095 0.125 0.504 0.279 0.422
2layers 0.212 0.219 0.147 0.169 0.081 0.098 0.376 0.236 0.370
3layers 0.200 0.212 0.149 0.173 0.073 0.090 0.343 0.220 0.338
4layers 0.194 0.197 0.148 0.159 0.068 0.088 0.359 0.230 0.300
Slayers 0.196 0.195 0.151 0.169 0.063 0.086 0.345 0.211 0.351
20 WS w/ WMF : overall (method from main paper)
1layer 0.231 0.235 0.144 0.155 0.075 0.106 0.462 0.245 0.426
2layers 0.204 0.217 0.149 0.156 0.070 0.090 0.357 0.219 0.373
3layers 0.195 0.211 0.150 0.161 0.067 0.086 0.331 0.210 0.345
4layers 0.193 0.195 0.150 0.155 0.064 0.087 0.351 0.222 0.321
Slayers 0.197 0.196 0.149 0.173 0.065 0.087 0.347 0.214 0.346
20 WS w/ WMF: boundary region
1layer 0.545 0.617 0.222 0.379 0.218 0.295 0.868 0.703 1.061
2layers 0.468 0.456 0.250 0.390 0.206 0.231 0.652 0.670 0.889
3layers 0.451 0.441 0.252 0.409 0.197 0.220 0.596 0.610 0.885
4layers 0.436 0.348 0.250 0.393 0.182 0.230 0.636 0.647 0.801
Slayers 0.437 0.345 0.250 0.438 0.182 0.221 0.626 0.602 0.834
3 WS w/ WMF: overall
1layer 0.219 0.231 0.119 0.152 0.074 0.097 0.454 0.230 0.394
2layers 0.195 0.211 0.122 0.159 0.070 0.084 0.364 0.205 0.346
3layers 0.190 0.212 0.128 0.163 0.066 0.080 0.347 0.206 0.321
4layers 0.194 0.192 0.132 0.158 0.063 0.081 0.365 0.227 0.337
Slayers 0.196 0.192 0.136 0.159 0.063 0.080 0.362 0.224 0.349
3 WS w/ WMF: boundary region
1layer 0.551 0.642 0.218 0.385 0.229 0.291 0.859 0.710 1.074
2layers 0.472 0.464 0.236 0.414 0.218 0.238 0.672 0.662 0.876
3layers 0.463 0.441 0.254 0.428 0.207 0.221 0.630 0.632 0.891
4layers 0.465 0.353 0.264 0.415 0.187 0.229 0.665 0.671 0.934
Slayers 0.466 0.354 0.271 0.418 0.191 0.220 0.653 0.662 0.962
20 WS w/ WMF: Classic++ init
1layer 0.248 0.232 0.144 0.155 0.079 0.107 0.523 0.261 0.487
2layers 0.206 0.218 0.149 0.156 0.072 0.090 0.373 0.218 0.372
3layers 0.203 0.212 0.151 0.161 0.066 0.087 0.339 0.210 0.396
4layers 0.198 0.195 0.149 0.155 0.064 0.087 0.342 0.229 0.360
Slayers 0.192 0.194 0.148 0.161 0.063 0.085 0.326 0.231 0.327

Table 2: Energy % 10°) of the solutions obtained by the proposed method with ttagers. The

energy is shown for all the sequences intifaéning set using two different initializations.
Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 n2Zrba Urban3

“Classic+NL" Init -1.814 -2.609 -2.370 -3.039 -2.679 -1.979 -3.198 -3.044
“Classic++" Init -1.814 -2.613 -2.369 -3.039 -2.680 -1.974 -3.200 -2.998




Figure 1:Results on the Middleburraining set. Left to right: first image, initial flow field given by Clas
sic+NL, final flow field, motion segmentation, and detectedugions (black). Best viewed in color and better

enlarged for comparing the flow fields.

3 Results on the “Hand” Sequence

While the method performs well on the Middlebury evaluatibow well do the results generalize
to other sequences? To find out, we apply the proposed motieBwayers to the challenging

“Hand” sequence [1], as shown in Figure 5. With the paramss#ings tuned to the Middlebury
training sequences, the proposed model does not recoveedins between fingers (Figure 5,
top row). With a different parameter setting (= 5, and\, = 90), the proposed model can
successfully recover the regions between fingers. The EPtiRsequence drops from754 to



Figure 2:Results on the Middleburtest set. Left to right: firstimage, initial flow field given by Clsis+NL,
final flow field, motion segmentation, and detected occlus{biack). Best viewed in color and better enlarged
for comparing the flow fields.

1.909. Moreover, note that the model successfully recovers fraifares of the initialization in the
regions between the fingers.

Table 4 compares this new parameter settings with the ofchgeton the Middlebury training se-
guences. The new settings produces an average training ERELS which is aboutl0% worse
than the result reported in the main paper.

This suggests that the proposed method may suffer from dtiagfto the Middlebury evaluation.
Future work should consider learning the parameters usimgra representative data set [5] and
automatically adapting the parameters to a particularesecp!



Optical flow evaluation results Statistics: Average SD R0.5 R1.0 R2.0 A50 A75 A95

Error type: endpoint angle interpolation normalized interpolation

Show images: © below table © above table
Average Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy
endpoint (Hidden texture) (Hidden texture) (Hidden texture) (Hidden texture) (Synthetic) (Synthetic) (Synthetic) (Stereo)
error avg.| GT im0 imi GT im0 im1 GT im0 im1 GT im0 im1 GT im0 im1 GT im0 im1 GT im0 im1 GT im0 m1
rank| all disc untext| all disc untext| al disc untext| all disc untext| all disc untext| all disc untext| all disc untext| al disc untext
Layers++ [38] 43| 0081 0211 0072 0193 0.5620.17 10| 0.201 0.401 0.186/ 0.131 0.581 0.071| 0.481 0.701 0.331 0477 1.011 033501519 0.14110.24 19 0.461 0.881 0.725]
Classic+NL [31] 6.5| 0.081 0.232 0.072(/0.22100.74100.1812| 0.296 0.656 0.199| 0.152 0.733 0.093| 0.642 10 1.123 0.336/0.1624 0.1340.2927| 0.492 0.982 0.74 )
MDP-Flow [26] 73| 0.093 0254 0.085) 0.1932 0.56410.18 12| 0.242 0.5520.2010| 0.165 0.919 0.093| 0.744 66 1.022 0.359 0.1270.1411 0.175/0.7819 1.6821 0.97 13|
OFH [39] 74| 0107 02560091D| 0193 0695 0.143/043121.0215 0173 0.1771.081s 0.082/0.87 10 |25907313| 04331691 0324 0102 0.134 0188 0.595 1.409 0.745
NL-TV-NCC [25] 84| 0107 0268 Ooﬂslo;ﬁm 0729 0.155/0.35100.8510 0.161| 0.152 0.702 0.093| 0.79s 1.167 0.5140.7815 1.3850.4814/0.1624 0.1519 0.2622| 0.554 1.164 0.552
Adaptive [20] 10.8/ 0.092 0265 0.061/0.23130.78110.1812/0.54 191.19210.2113] 0188 0919 0.108(0.8812 125207313 0.509 1.28s 0.313(0.14150.1624 0.22 16| 0.659 1375 0.79g
Adapt-Window [34] 11.7| 0.107 0.2430.0910 0.193 0.593 0.155| 0.274 0.64¢ 0.173| 0.185 0.8250.11 10| 0.744 1.075 0.5651.7833 1.7317 0.9529|0.2232 0.16 24 0.4535/0.7013 1.285 0.88 14|
DPOF [18] 11.9]0.12210.3320 0.085/0.26170.8014 0.20 16| 0.242 0.4920.2010{0.1910 0.8350.1315| 0.663 0.983 0.402/1.1120 1.41100.57 18/0.2537 0.1411 0.5537| 0.513 1.023 0.541
ComplOF-FED-GPU [36]12.3| 021207811 0.143| 0329 0.799 0.173/0.19100.99130.1110/0.8913 12913 0.7313/1.25211.7419 0.6419/0.1415 0.134 0.3028) 0647 1.5012 0.83 10|
Complementary OF [21] |12.5 2028110.1018| 0.181 0635 0.121| 0318 0.75s8 0.186/0.19100.97 12 0.1213|0.97 20 1.31 16 1.0021|1.7833 1.7317 0.8727| 0.115 0.122 0.22 15/0.68 10 1.48 11 0.95 17}
ACK-Prior [27] 12.6|0.1112 0.2540.0910| 0.181 0.592 0.132 0.274 0.644 0.161] 0.152 0.784 0.093| 0.827 1.146 0.7110/1.9035 1.9022 0.9932|0.23 35 0.17 25 0.49 26/ 0.77 17 1.44 10 0.91 15|
Classic++ [32] 12.8| 0.093 0.254 0.072/0.23130.7811 0.19 15/0.43 12 1.0014 0.2214{0.2013 1.1117 0.108/0.87 10 1.3014 0.66 0.4771.6213 0.336(0.1727 0.14 11 0.3231/0.7920 1.64 12 0.92 15
Aniso. Huber-L1 [22] 13.1] 0.1070.2811 0.086|0.31220.88 13 0.28 24/ 0.56 21 1.1318 0.2923|0.20130.9211 0.13 15| 0845 1.208 0.709| 0.391 1234 0.281/017270.1512 0.27 25 0.647 1.367 0.79g
TriangleFlow [30] 14.5{0.11120.29140.0910/0.26 17 0.9522 0.17 10/ 0.47 17 1.07 15_0.186 0.165 0.875 0.093/1.0722 1.47 28 1.1023/0.8716 1.399 0.57 15{0.1519 0.1934 0.23 13| 0.636 1.3350.84 11
TV-L1-improved [17] 16.0| 0.092 0265 0072 0208 0.71s 0.167/0.53 18 1.1820 0.2214/0.2117 1.2422 0.11 10|0.90 14 1.31 16 07211|Ti27| 9323 0.8424(0.1820 0.17 28 0.31 20/ 0.73 15 1.62 17 0.87 13
CBF [12] 16. 0| 0.107 0.28110.09 10|0.34 24 0.80 14 0.37 25{0.43 120.9512 0.26 18/0.21 17 1.14 15 0.1315{0.90 14 1.27 12 08217| 0412 1.234 0.302/0.23350.1934 0.3933/0.76 16 1.56 14 1.02 19|
Brox et al. [5] 17.4/0.11120.32180.1123|0.27 20 0.93 20 0.22 20/ 0.39 11 0.94 11 0.24 17{0.24 19 1.2523 0.1315/1.10 26 1.39 23 1.43 3 917 1.77200.5515) 0.102 0.134 0.111/0.9122 1.8323 1.13 24
Rannacher [23] 17.8/0.11120.31160.09 10|0.25 15 0.84 17 0.21 18| 0.57 23 1.27 27 0.26 18|/0.24 19 1 3226 0.1315/0.91 17 1.33 18 0.721 2619525 0.7822/0.1519 0.14 11 0.26 22/ 0.69 12 1.58 16 0.86 12
F-TV-L1[15] 17.9|0.14 25 0.35230.1427/0.34 24 0.98 23 0.26 23| 0.59 26 1.1921 0.26 18{0.27 24 1.36 27 0.1622/0.90 14 1.30 14 0.76 1 |>_ﬁ 1.62130.3610/0.1311 0.1519 0.20 12/ 0.68 10 1.56 14 0.66 3|
Secand-order prior [8] |18.5/0.1112 0.311560.0910[0.26 17 0.9320 0.20 16| 0.57 23 1 2526 0.26 18|0.20 13 1.04 12 0.1213[0.94 18 134 19 0.83 19{0.6113 1.9323 0.47 13[0.2030 0.16 24 0.34 32| 0.77 17 1 6418 1.07 21

Figure 3: Screen shot of the Middlebury public end-point error (EP&)lé¢; the proposed method is
“Layer++”.

Optical flow evaluation results Statistics: Average SD R25 R5.0 R10.0 A50 A75 A95

Po— Error type: endpoint angle interpolation normalized interpolation
Show images: © below table © above table © type: endpoint gle Interpolation

Average Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy
angle (Hidden texture) (Hidden texture) (Hidden texture) (Hidden texture) (Synthetic) (Synthetic) (Synthetic) (Stereo)
error avg.| GT im0 imi GT im0 imi GT im0 imi GT im0 imi GT im0 imi GT im0 imi GT im0 imi GT im0 imi
rank| all disc untext| al disc untext| all disc untext] al disc untext) all disc untext| al disc untext| all disc untext| all disc untext
Layers++ [38] 41| 3111 8221 2.793| 2433 7.021 2.248| 2.431 5.771 2.18s 2.131 9.711 1.161| 2.361 3.021 1.961 3814 1142 3227/274144.01122.3515 1.451 3.061 1792
Classic+NL [31] 58| 3202 8722 2814/3.0210 106524413 3465 884423811| 2783 1433 1463 283> 3682 2312 3402 9.091 2763(28718 382928623 1672 3532 2265
MDP-Flow [26] 79| 3486 9467 3.108| 2454 736224111 3213 831327814 318817810 1.70s| 3.033 3.873 2608 3432 1264 2814 219538812 160441312 99619 3.8622
OFH [39] 8.8|3.90109.77103.6217| 2.84511.011 2.045/5.521414.415 1.893| 3.52920.519 1.607| 3.185 4.0652.8213 3.86514.1113.5911 1.773 3625 1.817| 2.645 7.089 2.153
NL-TV-NCC [25] 94| 3899 9.163 2.986| 2.870 9.696 1.993/4.441011.640 1.761| 2.642 11.82 1.484|3.4917 46020 2.475/4.6716 13.574.26182.83174.57252.8421| 2.624 6.006 2.254|
C OF [21] |10.4|4.44 19 11215404 21| 2516 9777 1742 3935 1068 2.045/3871518.8122.1915| 3174 4.00429215(4.6414 138836413 2175 336225115 3.085 7.048 36517,
Adaptive [20] 11.1] 3.293 9436 2.281|3.101111.4122.4614/6.58 19 15.719 25212 3.147 1566 1.565/3.67214.46153.4821| 3.321 13.06 2.381/2.76154.39241.9311|3.58128.1812 2.889
DPOF [18] 11.54.67 2¢ 12.622 3.309|3.57 18 10.683.1220 3.092 7.502 2.329| 3.066 14.851.8211| 3.217 4.18582.7912{4.4711 1253 3.3354.09323.92146.9637] 2.093 4393 1.741
ACK-Prior [27] 11.8/4.1915 927436015 2.401 8214 1.651 3.404 8.965 1.842) 2.874 1444 1.4423.3611 4.1563.0717/6.3530 16.117 4.9021/4.2133 48028 6.03236/3.2911 5995 2.82g
/Adapt-Window [34] 12.4|4.0712 9325354 14| 2422 79732 1.993 3476 8995 2.056[3.5511 17.00 197 12| 3.340 4.2192.82132(5.9323 14.813 4.8320/4.3234 46127 5.3935/3.2710 589431611
CDmp\DF—FEDfGPU[ﬁﬁ—]hZIS 42817 11.3163.7018[3.251213.017 2166 4.069 1129 1.954/3.9116 19.2142.0113| 3.206 4.1562.6410/4.6112 16.117 3.9014(2.9821 3.7773.6930 2.856 7.4410 2.53 |
Aniso. Huber-L1[22] 135 3.717 10.111 3.087|4.36 22 13.017 3.77 23/6.92 21 15.317 3.6022{3.54 10 15.972.0414|3.38124.4514 2.475 3.886 12.95 2.7423.37264.36232.8522| 3.1697.52112.9010
Classic++ [32] 14.2| 3375 9679 2.915/3.2814 12,115 2.6115/5.46 13 14.114 3.0015{3.6312 20.217 1.70s| 324843411 2603/4.651516.015 3.6012(3.0923 3.94 15 3.2825/4642110.4223.7119
TV-L1-improved [17] 15.5| 3.364 9638 2622| 2.82710.710 2.237/6.5018 15.820 2.7313[3.8014 21.322 1.76 10| 3.3404.3813 2.393|5.9724 18.124 56727/ 3.5727 4.92313.4329/4.0117 9.84 18 3.44 14|
Brox et al. [5] 16.8[4.44 19 12.4 19 4.2224|3.72 19 13.520 3.06 18/ 4.97 11 13.3 12 3.11 16{4.58 21 22.024 2.37 19|3.7922 4.6020 4.33 32 3.91717.021 3.459| 2.227 3.795 1.192{4.6220 10.020 3.3813
TriangleFlow [30] 16.8[4.12 13 10.6 13 3.47 12/3.47 17 13.119 2.4111/6.0016 15.216 2.177| 2.995 16.08 1.585(4.46335.79344.1529(5.4220 13.9105.2422/3.10255.47342.9024 3.027 6.827 3.64 15
|Rannacher [23] 17.2{4.1314 11.014 3.6116/3.39 15 12.3 16 2.80 16| 7.26 23 17 4 25 3.5921|4. 4020 23 126 224 17|3 4314 45418 2.567/5.41 19 18.5254.2317/2.9219 39113 2.8220|3.45129.14 14 3.27 12|
F-TV-L1[15] 17.8|5.44 25 12.521 5.69 28| 5.46 25 15.0 25 4.03 24| 7.48 24 16.321 3.4219|5.08 24 23 327 2.8122|3.4213 43411 3.0316| 405915115 3.185/2.431039214 1.878/3.90159.3517 2617
CBF [12] 18.7| 3.8858 10.212 3.5013/4.60 23 11.3 12 5.06 25| 5.43 12 13.1 11 3.3918{4.09 17 21.222 2.16 15|3.80 24 4.72 27 3.5222|4.33 10 14.412 3.015/4.9737 5.5135 4.9334/3.99 16 9.27 16 3.91 23]
p-harmonic [29] 20.2|4.64 23 13.023 4.4325/3.41 16 11.9 14 2.93 17| 7.60 25 18.127 3.96 24{4.6522 21.021 2.9723|3.46 15 4.33 10 3.34 18|4.7517 17.522 4.6019/3.0522 4.17 21 2.1514/5.09 24 10.924 3.77 20

Figure 4: Screen shot of the Middlebury public average angular ed&E) table; the proposed method is
“Layer++”.

4 Gradients of the Energy Function w.r. t. the Flow and the Hidden Fields

We use gradient-based methods to optimize the proposegdyefugrction and this section summa-
rizes the gradients with respect to the flow and the hiddeddielVe derive the gradient for each

Table 3: Average end-point error (EPE) and angular errorEA8n the Middlebury optical flow

benchmarktest set).
Rank Average | Army  Mequon  Schefflera  Wooder] Grove Urban  Yosemite  Teddy

EPE

Layers++ 43 0.270 0.08 0.19 0.20 0.13 0.48 0.47 0.15 0.46
Classic+NL 6.5 0.319 0.08 0.22 0.29 0.15 | 0.64 0.52 0.16 0.49
EPE in boundary regions

Layers++ 0.560 0.21 0.56 0.40 0.58 0.70 1.01 0.14 0.88
Classic+NL 0.689 0.23 0.74 0.65 0.73 | 0.93 1.12 0.13 0.98
AAE

Layers++ 4.1 2.556 3.11 2.43 2.43 2.13 2.35 3.81 2.74 1.45
Classic+NL 5.8 2.904 3.20 3.02 3.46 2.78 | 2.83 3.40 2.87 1.67
AAE in boundary regions

Layers++ 6.525 8.22 7.02 5.77 9.71 3.02 11.40 4.01 3.05
Classic+NL 7.823 8.72 10.60 8.84 14.30 | 3.68 9.09 3.82 3.53




Table 4: Average end-point error (EPE) on the Middlehtnayning set by the proposed model with

3 layers and two different sets of parameters.

Avg. EPE Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3  nZba Urban3
0.195 0.211 0.150 0.161 0.067 0.086 0.331 0.210 0.345
0.215 0.210 0.155 0.169 0.071 0.090 0.373 0.273 0.379

3layers (A
3layers (A
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> >
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Figure 5:Results on the “Hand” sequence. Top: using same parametérese used for the Middlebury data
set (EPE2.754). Bottom: using parameters tuned for hand (EIP#9). Left to right: first image, initial flow
field given by Classic+NL, final flow field, motion segmentatiand detected occlusions (black). Best viewed
in color.

individual term in the objective. From these it is easy tcambthe formula for the overall objective.
Most of the derivations are straightforward and we only efate where there are subtle points.

4.1 Gradients w.r.t.the Hidden Field

Temporal Coherence Term The hidden fields, , appears in the temporal coherence term at time
t andt — 1. For the one at time,

OFEiime(8t,k, 8t+1,k, Uth, Vik)
6gtk(ivj)
Thg termEﬁme(gt,Lk,.gt,k,.u-t,l,k,.vt,l,k) in_volves.th.e ex_pressiog!tk(z' + U_?—LN + z_)t”_Lk),_
which we compute using bi-linear interpolation. This isreekr operation applied to the hidden field
g and we can express it as a mati¥;_; x, applied to the vectorized hidden fiedd . (:). Here
“:” means arranging the matrix into a vector in a column- -majayyvthat is, in the same way as the

MATLAB vectorization operator. NovW,_ ,g: x(:) is the vectorized, warped result using the
flow field from framet — 1 to framet and

= 2(gsx (i, 7) —gt+1,k(i+ui7;,j +’Uii))' 1)

Eime(8t—1,6:8tk) = |81—1,%(:) — Wi—1 18 (2)|[*. 2
Its gradient w. r. g (:) is
Ve, Fime(8t—1,k: 8tk) = 2W{_ | t(Wi_168u (1) — 8e—1.(2))- (3)

Note that there is no need to construct the maix_; ;. in the implementation and we just need to
perform the interpolation operation and its transpose.

Data Term Similarly, the hidden fielg; , appears in the data term at timeandt — 1. What is
subtle is that the hidden field of a front layer influences thmderm of the layers behind. We will
first give the gradient of the soft layer assignment w. re.hidden field, which plays a major role
of the later derivations. Recall that the soft layer assigniis

~ PN ( egtk(l j)) Hk’ 10( egtk’(iaj))a 1 < k<K
Su(1,5) =

Hk:/ 1 U( egtk’ (17]))7 k=K
Using the property of the logistic functiari(x) = o(z)o(—z), we can obtain its gradient w.r. t. the
hidden field

(4)

S k Z7j S y y . .
m = )\eStk(la])0(_)\69151(7,,]))7 k=1 (5)
| Aol f)o(Aegaif), k> 1.



Note that thek < | case means that the hidden field of a layer behind does no¢mndtuthe data
term of the layers in front of it.

It is straightforward to obtain the gradient of the data tetrtimet w. r. t. the hidden fielg; as

aEdata(uta Vi, 8t gt+1) o

89151(7;5.].)

S( s o dij s, ij 0341 (i, ) - i g
S (a1 6d) = I+ o) = M) st s i i+ @
k bl

The formula for the data term at time— 1 is a little more complicated because it depends on
the soft layer assignment at timevarped by the flow field. To simplify the notation, we define

han (i, 7) = (pd(lf(i,j) — I3 (4 ul, j ) — /\d) 541.(1,7) and rewrite the data term at time
t — 1 in the vector product form as

EoaeW—1,vi-1,8-1,8t) = hy—1 ()T W1 18.(:), (7)
where the warping operat®,_, j, is the same as above.
Now we can obtain the gradient of the data term w. r. t. thedndikldg,;, as

Ve EdatdWi—1,vi—1,81-1,8t) = Vg, St )W{_1 1he1 (). (8)

Note thatV,, 5:1(:) is a diagonal matrix becau ’“(E’j)) = 0for (i,§) # (i, ).

St
gtk

Color-modulated Spatial Term It is easy to obtain the gradient &fpaceW. I. t. the hidden field
because of its quadratic form:

E -
aLC‘_(g,”“) = Z Qw%«(gtk(@j) =g (@', ). ©)
8gtk (Za.]) (i’,5)€T(i,5)

4.2 Gradients w.r. t. the Horizontal Flow Field

Due to symmetry, we only give the gradient formulas for theazemtal flow field; the vertical case
is analogous.

Temporal Coherence Term Using the chain rule, we obtain

. ij - ij - 9941k ij ij
= 2(grr1x(i +ug, j+vp,) — gtk(w))T(I + uy, J 4 vg)

(10)
wheredg,+1 /0 is the partial derivative of the hidden field in the horizdimsage directionz.

OFEiime(8t .k, 8t+1,k, Wtk Vik)
ij
Ouyy,

Data Term The data term is different from the standard data term foicapflow estimation in

that the warped soft layer assignmént; x (i + uii,j + U:i) also depends on the flow field. As a
result

OF a0, Vi, 81, Grv1) _
3u3€

—pa@ (0, 5) = Ty (i + ugd, 5+ v) 5;1 (i + ugh, j + vi)3u (4, §) 301, (0 + uph,  + vj3)

spe - N N LT N P TR
+ (pd(It (i7) = La (i 4w J + 0g)) = Ad)stk(z,J)g%(z +ugd o) (11)

Again the partial derivatives with respectitacorrespond to partials in the horizontal image direc-
tion.



Spatial Prior Term  Before each warping step, we estimate the affine flow fiald, , vy,,) for
each layer. We solve for the parametéssusing a simple least squares estimate given the current
flow field for the layer. This could be improved by deriving tpartial derivatives of the affine
parameters w. r. t. the robust formulation and solving fenthalong with the other parameters. This
is future work.

With the affine flow field fixed, we can obtain the gradient of spatial term w.r. t. the flow field as

E 9 . . o .y
OBl fu) 5 (i — ) — Gl — ). 12)
Ui (i’,5") €L (i,5)

With these gradient formulas, it is straightforward to penf the incremental estimation for the flow
field [2].
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