
Supplementary Material: Scalable Adaptation of State

Complexity for Nonparametric Hidden Markov Models
Paper published at NIPS 2015

Michael C. Hughes mhughes@cs.brown.edu

William Stephenson wtstephe@gmail.com

Erik B. Sudderth sudderth@cs.brown.edu

Brown University Department of Computer Science, Providence, RI, USA.

Contents

A Experiment Details 2
A.1 Toy Data . 3
A.2 Speaker Diarization . 4
A.3 Motion capture dataset. 5
A.4 Chromatin epigenomic dataset . 6

B Variational objective function L 6
B.1 Term Lhdp-global . 6
B.2 Term Lhdp-local . 6
B.3 Term Ldata . 7
B.4 Term Lentropy . 7

C Data-generation densities F and H 8
C.1 F : Multivariate Gaussian, H : Gaussian-Wishart . 8
C.2 F : Multivariate Auto-Regressive, H : Matrix Normal-Wishart 9

D Surrogate bound derivation details 11
D.1 Bound on cumulant function of Dirichlet . 11
D.2 Bound on cumulant function of sticky Dirichlet. 12

E Global update for q(u|ρ̂, ω̂) 13
E.1 Constrained Optimization Problem . 13
E.2 Unconstrained Optimization Problem . 14

F Merge move details. 15
F.1 Construction of candidate proposal . 15
F.2 Evaluation of L for candidate merges . 17
F.3 Attempting multiple non-overlapping pair-wise merges at once. 18

G Delete move details. 19
G.1 Candidate selection. 19
G.2 Delay of delete proposals. 19

H Birth move details. 19
H.1 Proposal selection details. 19
H.2 Proposal evaluation details. 20

1

A. Experiment Details

Here, we describe how to recreate the experiments from Sec. 5 of the main paper. Our open-source
Python package bnpy1 contains learning algorithms for all variational methods (stochastic with fixed
truncation, memoized with fixed truncation, and memoized with birth-delete-merge proposals). We
have released a specialized repository called x-hdphmm-nips20152 that contains the exact scripts
needed to call bnpy inference routines to reproduce our expeirments and plotting scripts to recreate
our exact plots in Sec. 5 of the main paper. Thorough documentation can be found in the included
README file.

Model Hyperparameters. The performance of our algorithms depends on several hyperparame-
ters: stickiness κ, concentration parameters γ, α, likelihood hyperparameters, etc. For each dataset,
we document the values of hyperparameters used in each experiments both here in this supplement
and in plain-text settings files within the x-hdphmm-nips2015 codebase. See the mathematical
formulas in Sec. C.1-C.2 to understand how these command line options translate into valid hyper-
parameter specifications.

Gibbs sampler code. Additionally, the x-hdphmm-nips2015 project contains the Matlab code
we adapted from Fox et al. (2011) to run our experiments. The three big changes to Fox’s original
code are listed here. First, we changed initialization to use the same starting segmentation as our
variational algorithms. Second, we disabled hyperparameter resampling in favor of fixed values of
γ, α, κ and other likelihod hyperparameters. Fixing these makes it possible to fairly compare to our
variational methods, which all keep hyperparameters fixed. Finally, we adjusted how the Matlab
code saves-to-disk so that it is consistent with corresponding runs in bnpy. Otherwise, the individual
updates used in the sampler are the same as the original code release by Fox et al. (2011).

Learning rate schedule. For all datasets, we set the learning rate ρt for stochastic variational
at update iteration t to ρt = (1 + t)0.51. This is a fairly aggressive schedule, recommended in past
work by ?. Future work could tune this specifically for each dataset, but we chose to simplify the
comparisons here. Note that under this setting, SVI reaches noticeably better objective scores than
memoized methods on the chromatin experiments (Fig. 4 of the main paper), but performs worse on
the larger-scale motion capture experiments (Fig. 7). See the file settings-bnpyHDPHMMstoch.txt
for where this is defined in the codebase.

Algorithm Hyperparameters. The performance of our algorithms depends not only on some
model parameters, but also on some inference parameters (setting batch sizes, number of laps to
run, update schedules, number of merge moves to perform per lap, etc.). The exact settings used
are all encoded as plain-text files in the x-hdphmm-nips2015 codebase.

Initialization. Across all experiments in this paper, we used the same procedure to initialize
algorithms given the provided data sequences and a specific number of clusters K. We call this
procedure ”random-contiguous-blocks”, since it selects subwindows of data sequences at random
and uses these to create the global likelihood parameters (via the standard global step). We specify
it via the flag --initname randcontigblocks in bnpy. You can read more about this procedure in
the included toy data IPython notebook.3.

We found this worked well with all datasets here. To generalize to a new dataset, though, it is
often advantageous to define the window length used as longer or shorter than our default, since some
datasets have much longer segments than others. Also, higher-dimensional datasets can benefit from
using more data in initialization. We thus suggest testing a few possible values of --initBlockLen
for a new dataset to be sure of good performance. Of course, if the dataset has very little self-
transition (lots of fast-switching states), another type of initialization may be preferred.

1. http://bitbucket.org/michaelchughes/bnpy-dev
2. http://bitbucket.org/michaelchughes/x-hdphmm-nips2015
3. http://bitbucket.org/michaelchughes/x-hdphmm-nips2015/raw/master/notebooks/DDToyHMM-nipsexperiments.ipynb

2

http://bitbucket.org/michaelchughes/bnpy-dev
http://bitbucket.org/michaelchughes/x-hdphmm-nips2015
http://bitbucket.org/michaelchughes/x-hdphmm-nips2015/raw/master/notebooks/DDToyHMM-nipsexperiments.ipynb

κ = 0:

1 10 100 1000
num pass thru data

−1.6

−1.5

−1.4

tr
ai

n
ob

je
ct

iv
e

1 10 100 1000
num pass thru data

8
20

40

60

80

nu
m

 s
ta

te
s

K

1 10 100 1000
num pass thru data

0.0

0.2

0.4

0.6

0.8

H
am

m
in

g
di

st
.

κ = 50:

1 10 100 1000
num pass thru data

−1.6

−1.5

−1.4

tr
ai

n
ob

je
ct

iv
e

1 10 100 1000
num pass thru data

8
20

40

60

80

nu
m

 s
ta

te
s

K

1 10 100 1000
num pass thru data

0.0

0.2

0.4

0.6

0.8

H
am

m
in

g
di

st
.

stoch
sampler

memo
delete,merge
birth,delete,merge

sampler: K=10 after 2000 laps in 74 min.

0 200 400 600 800

sampler: K=8 after 5000 laps in 169 min.

0 200 400 600 800

Figure 1: Algorithm comparison on toy dataset, using a non-sticky state transition model with κ = 0
(top row) and sticky model with κ = 50 (middle row). Left column: Objective function score L as
more training data is seen. Middle column: Number of effective states K used in the segmentation
of the training dataset. For all algorithms, we count a state as present if it is assigned to at least
one timestep of data in the estimated hard segmentation. Right column: Hamming distance between
aligned segmentations and the ground truth segmentation. All non-birth algorithms are initialized using
a common set of over-complete segmentations, with either K = 50 (dashed lines) or K = 100 states
(solid lines). Comparing the non-sticky (top row) and sticky (middle row) models, we see that the sticky
model encourages faster convergence for all algorithms. The non-sticky sampler takes thousands of laps
through the dataset for Hamming distance to drop near zero, but it does reach that configuration, as
illustrated in the segmentations in the bottom row. In contrast, the sticky sampler reaches this ideal by
around 200 laps according to the middle trace plots. Both sticky and non-sticky models clearly prefer
the ideal segmentation, but algorithm convergence is particularly sensitive to the sticky hyperparameter.
Fixed-truncation methods (stochastic and memoized) are particularly vulnerable to slow convergence
here. In contrast, our state-adaptive methods reach ideal configurations within 20 laps regardless of
whether the model is sticky or not.

A.1 Toy Data

Dataset details. Within the x-hdphmm-nips2015 repository, this dataset is named DDToyHMM,
which stands for diagonally-dominant toy HMM dataset. We have saved the exact dataset used for
training as a MAT file within the datasets/ directory of this repo.

This toy dataset has N = 32 sequences divided into B = 8 batches. Each sequence has length
Tn = 1000. When we show segmentations in the the main paper, we always show segmentations for
sequences 1, 3, 5, and 7, which together form a good representation of all 8 true states.

3

Each observation is a 2D real vector xnt ∈ R
2. We use a full-covariance Gaussian for likelihood

F and a corresponding Wishart distribution for the prior H .

Model hyperparameters.

--gamma 10

--alpha 0.5

--startAlpha 5

--stickyKappa 0 or 50

--nu D+2

--ECovMat eye

--sF 1.0

--kappa 1e-7

--MMat zero

Detailed experiment. In Fig. 1, we show trace plots that compare the progress of various algo-
rithms under two settings: non-sticky dynamics (κ = 0) and sticky dynamics (κ = 50). Comparing
non-sticky and sticky models, we see that the sticky model generally encourages faster convergence
for all algorithms. In particular, for the Gibbs sampler of Fox et al. (2011), the non-sticky sampler
takes thousands of laps through the dataset for Hamming distance to drop near zero, but it does
reach that configuration, as illustrated by the segmentations in the bottom row. In contrast, the
sticky sampler reaches this ideal by around 200 laps according to the trace plots. Thus, the perfor-
mance of the sampler can be quite sensitive to the value of the provided sticky hyperparameter. We
thank an anonymous reviewer for suggesting this detailed analysis.

Note that across Fig. 1 in both sticky and non-sticky cases, our adaptive algorithms with
birth/merge/delete proposals eliminate the redundant states more quickly than non-adaptive com-
petitors. Our proposal moves enable fast convergence regardless of the hyperparameter values,
suggested that algorithms with greater power to escape local optima can avoid some sensitivity
exhibited by more limited methods.

A.2 Speaker Diarization

Within the x-hdphmm-nips2015 repository, this dataset is named SpeakerDiar. Our experiment
repository saves the exact dataset used (including relevant preprocessing, which we duplicated from
Fox et al. (2011)), in a MAT file under the datasets/ directory.

There are N = 21 sequences, which have no overlap in terms of common speakers. Thus,
we process each one independently. This makes “memoized” inference equivalent to full-dataset
inference because there is only one batch. It also makes stochastic inference irrelevant, so we only
compare to the sampler as a baseline method.

We use a full covariance Gaussian likelihood F with corresponding Wishart prior. The relevant
hyperparameters are:

--gamma 10

--alpha 0.5

--startAlpha 10

--stickyKappa 100

--nu D+2

--ECovMat covdata

--sF 0.5

--kappa 1e-7

--MMat zero

For Hamming distance computations on this dataset, we utilize the provided annotations of
each sequence into “background” (non-speech) and “foreground” (speech) states. We only count

4

timesteps labeled as foreground in the distance computation, and ignore any assignments to timesteps
labelled background. Our dataset clearly marks background labels with negative integer labels, while
foreground states have non-negative labels {0, 1, ...}.

A.3 Motion capture dataset.

Within the x-hdphmm-nips2015 repository, we have the smaller N = 6 dataset named MoCap6,
and the larger one MoCap124. The repository saves the exact dataset used (including relevant
preprocessing, which we duplicated from Fox et al. (2014)), in a MAT file under the datasets/
directory.

We use a first order AR Gaussian likelihood. We process each of the N = 6 sequences as its one
batch. For the larger N = 124 dataset, we divide sequences into 20 batches.

--gamma 10

--alpha 0.5

--startAlpha 10

--stickyKappa 100

--nu D+2

--ECovMat diagcovfirstdiff

--sF 0.5

--VMat same

--sV 0.5

--MMat eye

Scripts for visualizing the skeleton trace of a specific data segment can be found in a specialized
git repository 4.

Discussion of Fig. 6 of main paper: For non-adaptive methods on the 6-sequence dataset,
we compare each algorithm initialized from abundant initializations of 30 (dashed) and 60 (solid)
states. It seems the 30 state models are slightly preferred (especially for the sampler). However, for
our adaptive models with deletes and merges (red curves) and with births (purple), the number of
states in the initialization does not seem to matter too much.

Discussion of Fig. 7 of main paper: For non-adaptive methods on the 124-sequence dataset,
we compare each algorithm initialized from abundant initializations of 100 (dashed) and 200 (solid)
states. For the stochastic method (SVI, yellow curves), under all initializations we see a rapid drop
in the number of states used during the first lap. To explain this, remember that with 20 batches for
124 sequences, each batch will have around 6 sequences. From the segmentation figure, it is clear that
state usage patterns have lots of variety across sequences, which each sequence only using a handful
of states. The aggressive learning rate we use in the first lap will tend to severely downweight any
initial states not used in the first few batches, which explains the rapid drop in Fig. 7. In contrast,
the memoized method (blue) is designed to use global information for each parameter update, not
just the current batch. We further enforce this by delaying the first global update until at least 50
sequences are seen. This makes the memoized results a large improvement on the stochastic results
for this dataset.

Among non-adaptive memoized runs, we see a clear preference in the trace plots for 100 states
over 200 states (dashed lines reach higher objective scores). Furthermore, using delete and merge
moves only (red) shows that we can reduce down to about 30 states and reach even higher levels
of performance. Similarly, starting from 1 state with birth moves (purple), we can grow to nearly
comparable levels of performance. We hope to answer why the purple curves do not quite reach the
performance of the red curves in future work. Regardless, the set of adaptive methods reach high
objective scores much more consistently than non-adaptive methods.

4. http://github.com/michaelchughes/mocap6dataset/

5

A.4 Chromatin epigenomic dataset

We used the binary data for chromatin marker protein presence and absence for the whole genome
preprocessed and made available by Ernst and Kellis (2010). We divided up the very long original
24 sequences (one per chromosome) into smaller sets to test the ability of our algorithms to handle
many batches. To divide each sequence, we searched for intervals with at least 50 consecutive all-zero
observations, which are somewhat common since much of the genome is “junk”. We picked division
points in the middle of these empty segments to use to split up into more manageable size sequences,
while avoiding artifacts at the starts of each sequence as much as possible.

In the end, we obtained N = 173 sequences, ranging in size from Tn = 10000 to Tn = 200, 000
timesteps (aka observations). Each observation is a 41-dimensional binary vector. For the likelihood
F , we used a Bernoulli with a corresponding Beta prior. The relevant hyperparameters are:

--gamma 10

--alpha 0.5

--startAlpha 10

--stickyKappa 100

--lam1 0.1

--lam0 0.3

which means the Beta prior was equal to: φkd ∼ Beta(0.1, 0.3).

B. Variational objective function L

Here, we give complete, final expressions for computing each term of our objective L in terms of
the global free parameters and local free parameters. Where possible, we use summary statistics
M(ŝ), S(x, r̂) instead of the local parameters ŝ, r̂ so it is clear how this computation works in the
memoized setting. First, we recall our definition of L as a composition of additive terms from the
main paper:

L = Lhdp-global + Lhdp-local + Ldata + Lentropy (1)

B.1 Term Lhdp-global

Lhdp-global(ρ̂, ω̂) , Eq

[

K
∑

k=1

log
p(uk | γ)

q(uk | ρ̂k, ω̂k)

]

(2)

=

K
∑

k=1

cB(1, γ)− cB(ρ̂kω̂k, (1− ρ̂k)ω̂k)

+
(

1− ρ̂kω̂k

)

Eq[log uk] +
(

γ − (1− ρ̂k)ω̂k

)

Eq[log 1−uk]

where we have Eq[log uk] = ψ(ρ̂kω̂k)− ψ(ωk), and Eq[log 1− uk] = ψ((1 − ρ̂k)ω̂k)− ψ(ωk).

B.2 Term Lhdp-local

We can write this term in two parts: Lhdp-local = Lsur + Lhdplocaltrans.

Surrogate term that bounds the Dirichlet cumulant function. This term requires the lower
bound developed in Sec. D.2

6

Lsur(ρ̂, ω̂) = K logα0 +K2 logα+K
(

log(κ)− log(α+ κ)
)

(3)

+ (log(α+ κ)− log(κ))
∑K

k=1 Eq[βk]

+
∑K

k=1KEq[log uk] + [K(K+1−k)+1]Eq[log 1−uk]

where the expectations Eq[log uk] and Eq[log 1−uk] are given above, and for each k = {1, 2, . . .K}
we have:

Eq[βk] = ρ̂k
∏k−1

m=1(1−ρ̂m) (4)

Eq[β>K] =
∏K

m=1(1−ρ̂m).

Remainder term that gathers transition factors. Here, we gather all terms related to the
transition factors q(π) and generation of state sequence z.

Lhdplocaltrans(ŝ, ρ̂, θ̂) , Eq

[

log p(z|π) +

K
∑

k=0

log
p(πk|αkβ + κδ(k))

q(πk|θ̂k)

]

− Lsur (5)

= −

K
∑

k=0

cD(θ̂k) +

K
∑

k=0

K+1
∑

ℓ=1

(

Mkℓ(ŝ) + αkEq[βℓ] + κδℓ(k)− θ̂kℓ

)

Pkℓ(θ̂)

Where we have summary statistics

Pkℓ(θ̂) , Eq[log πkℓ] = ψ(θ̂kℓ)− ψ(
∑K+1

m=1 θ̂km), k ∈ {0, 1, . . .K} (6)

Mkℓ(ŝ) ,

{

Eq[
∑

n

∑Tn−1
t=1 δk(znt)δℓ(znt+1)] =

∑N

n=1

∑T−1
t=1 ŝntkℓ k ∈ {1, 2, . . .K}

Eq[
∑N

n=1 δℓ(zn1)] =
∑N

n=1 r̂n1ℓ k = 0

Where the row of M with index 0 corresponds to a special starting state.

B.3 Term Ldata

Gathering all terms relevant to data generation, we have

Ldata(x, τ̂ , r̂) , Eq

[

log p(x|z, φ) + log p(φ)
q(φ)

]

(7)

=
K
∑

k=1

cH(τ̄)− cH(τ̂k) + (Sk + τ̄ − τ̂k)
T
Eq(φk|τ̂k)[φk cF (φk)]

The expectations of φk and cF (φk) depend on the chosen densities for likelihood F and prior H , but
generally work out to closed-form functions of the parameters τ̂k and τ̄ .

B.4 Term Lentropy

The final term gives the entropy of the assignment distributions.

Lentropy(ŝ, r̂) , −

N
∑

n=1

Eq [log q(zn)] , Eq [log q(zn)] = r̂n1k log r̂n1k +

Tn−1
∑

t=1

ŝntkℓ log
ŝntkℓ

r̂ntk
. (8)

which can also be computed from the entropy summary quantities in matrix H , as described in the
main paper.

Lentropy(H) =

B
∑

b=1

K
∑

k=0

K
∑

ℓ=1

Hb
kℓ (9)

Hb
0ℓ = −

∑

n r̂n1ℓ log r̂n1ℓ, Hb
kℓ = −

∑

n

∑Tn−1
t=1 ŝntkℓ log

ŝntkℓ

r̂ntk
, (10)

7

C. Data-generation densities F and H

C.1 F : Multivariate Gaussian, H: Gaussian-Wishart

Multivariate Gaussian When the likelihood function F is Gaussian, each state k has two pa-
rameters:

Λk D ×D symmetric, pos. definite matrix precision matrix

µk real vector, size D mean vector

Where we have the useful expectations:

EF [xnt] = µk EF [(xnt − µk)(xnt − µk)
T] = Λ−1

k (11)

The likelihood density F is defined as:

F : log p(xnt|µk,Λk) = −
D

2
log(2π) + (

1

2
) log |Λk| (12)

−
1

2
vec(xnx

T
n)

T vec(Λk) + xTnΛkµk −
1
2µ

TΛkµk

In exponential family notation, we have sufficient statistic:

sF (xnt) =
[

1 xn vec(xnx
T
n)
]

(13)

Multivariate Gaussian-Wishart The conjugate prior H is a Gaussian-Wishart distribution. It
has four parameters:

ν ν > 0 degrees-of-freedom, larger means more unimodal

B D ×D symmetric, positive definite matrix scale matrix

κ κ > 0 controls precision on µ relative to Λ

m real vector, size D mean of µ

We generally use m = 0, although we give the next two equations with general m for the sake of
completeness. Under this prior, we have the following useful expectations:

EH [µk] = m, EH [Λ−1
k] =

B

ν −D − 1
(14)

The exact density of H is defined as:

H : log p(µk,Λk|τ̄) = log p(µk|τ̄ ,Λk) + log p(Λk|τ̄) (15)

= c(ν,B,m, κ) + (
v −D

2
) log |Λ| −

1

2
vec(B + κmmT)T vec(Λ)

+ (κm)TΛµ−
1

2
(κ)µTΛµ

where we have the cumulant function for H defined as:

cH(ν,B,m, κ) = −
D

2
log(2π)−

D(D − 1)

4
log π −

Dν

2
log 2 (16)

−

D
∑

d=1

log Γ
(ν + 1− d

2

)

+
D

2
log κ+

ν

2
log |B|

8

Hyperparameters Options for Gaussian-Wishart Priors Within bnpy, several command
line options specify the hyperparameters ν,B, κ,m in our experiments:

--ECovMat [eye,covdata,diagcovfirstdiff]

--sF <scalar>

--kappa <scalar>

--nu <scalar>

Given these arguments, variables kappa and sF are straightforwardly set to provided values. The
degrees-of-freedom variable is set so that ν = min(ν,D + 2), which guarantees the prior has a valid
mean.

Finally, the ECovMat parameter describes how to set B by constraining the mean or expectation
of the covariance matrix Σ = E[Λ−1

k] under the Wishart prior.

Σ = sF ·

ID ECovMat = ’eye’
∑N

n=1

∑Tn

t=1(xnt − x̄)(xnt − x̄)
T ECovMat = ’covdata’

∑N

n=1

∑Tn

t=1(ynt − ȳ)(ynt − ȳ)
T ECovMat = ’covfirstdiff’

(17)

where ynt = xnt − xnt−1 is the first difference at observation index (n, t).
Thus, together the input keyword options sF and ECovMat determine the value of Σ, the expected

covariance matrix. We can then easily set the parameter B accordingly: B = (ν −D − 1)Σ.

C.2 F : Multivariate Auto-Regressive, H: Matrix Normal-Wishart

When the likelihood function F is first-order auto-regressive Gaussian 5, each state k has two
parameters:

Λk D ×D symmetric positive definite precision matrix (18)

Ak D ×D matrix regression coefficients

where parameter Ak defines the expected value of each successive data item: EF [xnt|xnt−1] =
Akxnt−1., while parameter Λk defines the covariance matrix of state k.

The likelihood density F is defined as:

F : log p(xnt|Ak,Λk, xnt−1) = logNormal(xnt|Akxnt−1,Λ
−1
k) (19)

= −
D

2
log(2π) +

1

2
log |Λk| −

1

2
(xnt−Akx

T
nt−1)Λ(xnt−Akxnt−1)

Expanding the quadratic form, we can rewrite it as several trace products.

(xnt−Akxnt−1)
TΛk(xnt−Akxnt−1) = tr(Λkxntx

T
nt)− 2tr(ΛkAkxnt−1x

T
nt) + tr(AT

k ΛkAkxnt−1x
T
nt−1)
(20)

In exponential family notation, we have sufficient statistic:

sF (xnt, xnt−1) =
[

1 vec(xntx
T
nt) vec(xnt−1x

T
nt) vec(xnt−1x

T
nt−1)

]

(21)

Matrix-Normal Wishart The conjugate prior H when F is an AR process is the Matrix-Normal
Wishart distribution. It has four parameters:

ν ν > 0 degrees-of-freedom, larger means more unimodal

B D ×D symmetric, positive definite matrix scale matrix forΛk

V D ×D symmetric, positive definite matrix determines covariance of Ak relative to Λk

M D ×D mean of Ak

5. Generalization to R-order dynamics is possible, but we do first-order only for simplicity.

9

We have the useful expectations:

E[Λ−1
k] =

1

ν −D + 1
B (22)

E[Ak] =M

Cov[Ak] =
1

ν −D + 1
(V −1 ×B)

The log density of H is defined as

logMatrixNormalWish(Ak,Λk|ν,B,M, V −1) = cMNW (ν,B,M, V) (23)

+
ν − 1

2
log |Λk|

−
1

2
tr
(

[AT
k ΛkAk]V

)

+tr
(

[ΛkAk]VM
T
)

−
1

2
tr
(

[Λk](B +MVMT)
)

The cumulant function cMNW of the Matrix Normal Wishart is given by:

cMNW (ν,B,M, V) = cWish(ν,B) + cMN (M,V) (24)

cWish(ν,B) = −
D(D − 1)

4
log π −

D

2
(log 2)ν −

D
∑

d=1

log Γ
(ν + 1− d

2

)

+
ν

2
log |B|

cMN (M,V) = −
D2

2
log 2π +

D

2
log |V |

Hyperparameters Options for Matrix-Normal-Wishart Priors We specify several com-
mand line options to specify the hyperparameters ν,B, V,M in our experiments.

--nu <scalar>

--ECovMat [eye,covdata,diagcovfirstdiff]

--sF <scalar>

--VMat [eye, same]

--sV <scalar>

--MMat [eye, zero]

Given these keywords, we transform ECovMat and sF options into a numerical value for B via the
same procedure we use for Gaussians, in Eq. (17). Similarly, we enforce ν = min(ν,D + 2) so that
the prior specifies a valid mean.

The VMat option works as follows:

V = sV ·

{

ID eye

Σ−1 same
(25)

where Σ is the matrix defined in Eq. (17). Specifying ’same’ for the value of VMat results in an
identity matrix covariance for parameter Ak.

The MMat option works as follows:

M = sM ·

{

ID eye

0D zero
(26)

where ID and 0D are the identity matrix and the matrix of all zeros, respectively, each of size D×D.

10

D. Surrogate bound derivation details

D.1 Bound on cumulant function of Dirichlet

As in the main paper, we define the cumulant function cD of the Dirichlet distribution as

cD(αβ) = cD(αβ1, αβ2, . . . αβK , αβK+1) , log Γ(α)−

K+1
∑

k=1

log Γ(αβk) (27)

where α > 0 is a positive scalar, and β = {βk}
K+1
k=1 is a vector of positive numbers that sum-to-one.

The log-Gamma function log Γ(·) has the following series representation6 for scalar input x > 0:

− log Γ(x) = log x+ γx+

∞
∑

n=1

(

log
(

1 +
x

n

)

−
x

n

)

(28)

where γ ≈ .57721 is the Euler-Mascheroni constant.
Substituting this expansion for every log Γ(·) in the definition of cD, we find

cD(αβ) = − logα− γα−
∞
∑

n=1

(

log
(

1 +
α

n

)

−
α

n

)

(29)

+

K+1
∑

k=1

[

logαβk + γαβk +

∞
∑

n=1

(

log

(

1 +
αβk

n

)

−
αβk

n

)

]

Here, all the infinite sums are convergent. This allows some regrouping, and we find that several
terms cancel to zero. Our expression for cD(αβ) now simplifies to:

cD(αβ) = − logα+

K+1
∑

k=1

logαβk (30)

+
∞
∑

n=1

(

log

(

K+1
∏

k=1

(

1 +
αβk

n

)

)

− log
(

1 +
α

n

)

)

Finally, via the binomial product expansion below, we realize that the infinite sum must be larger
than zero.

K+1
∏

k=1

(

1 +
αβk

n

)

= 1 +

K+1
∑

k=1

αβk

n
+ pos. const. →

K+1
∏

k=1

(

1 +
αβk

n

)

≥
(

1 +
α

n

)

(31)

Thus, by simply leaving off the infinite sum from Eq. (31) we have a valid lower bound on cD(·):

cD(αβ) ≥ − logα+

K+1
∑

k=1

logαβk (32)

Expanding logαβk = logα+ log βk, we can further simplify to

cD(αβ) ≥ csur(α, β) , K logα+

K+1
∑

k=1

log βk (33)

6. http://mathworld.wolfram.com/LogGammaFunction.html

11

http://mathworld.wolfram.com/LogGammaFunction.html

D.2 Bound on cumulant function of sticky Dirichlet.

Applying the above bound to the case of the sticky hyperparameter gives an equation analogous to
Eq. (33):

cD(αβk + δkκ) ≥ K logα− log(α+ κ) + log(αβk + κ) +
K+1
∑

m=1
m 6=k

log(βm) (34)

Evaluating this term requires computing Eq[log(αβk + κ)], which has no closed form in terms of
elementary functions. Instead of calculating this directly, we use the concavity of logarithms to
lower bound this term:

log(αβk + κ) ≥ βk log(α+ κ) + (1− βk) log(κ) (35)

= βk

(

log(α+ κ)− log(κ)
)

+ log κ

We justify this bound by noting that for any practical value of κ (say, κ ∼ 100), this inequality is
very tight, as shown in Fig. 2 in the main paper. Empirically, we find that κ almost always needs
to be either zero, in which case we do not apply the bound, or in the low hundreds, in which case
the gap in the bound is completely negligible.

Plugging this bound in Eq. (34), we find

cD(αβk + δkκ) ≥ csur−κ(α, κ, β, k) , K logα+ log(κ)− log(α+ κ) +

K+1
∑

m=1
m 6=k

log(βm) (36)

+ βk

(

log(α+ κ)− log(κ)
)

This equation gives us a surrogate bound on the cumulant function for a single sticky transition
vector. We next need to compute the sum of K sticky cumulant functions, plus one non-sticky
cumulant function for the starting state.

Using our surrogate functions, we have

csur(α, β) +
∑K

k=1 csur−κ(α, κ, β, k) = K logα0 +K2 logα (37)

+K
(

log(κ)− log(α+ κ)
)

+
(

log(α+ κ)− log(κ)
)

∑K
k=1 βk

+
∑K+1

k=1 log βk +
∑K

k=1

∑K+1
m=1
m 6=k

log(βm)

In the last line, the first sum comes from the stating state’s cumulant function, the second nested
sum comes from the others. We can combine these two terms to find that

csur(α, β) +
∑K

k=1 csur−κ(α, κ, β, k) = K logα0 +K2 logα+K
(

log(κ)− log(α+ κ)
)

(38)

+
(

log(α+ κ)− log(κ)
)

∑K

k=1 βk

+ log βK+1 +K
∑K+1

k=1 log(βk)

12

Finally, we can rewrite these sums of surrogate cumulants in terms of variable u instead of β, since
the transformation is deterministic. We find

csur(α, β(u)) +

K
∑

k=1

csur−κ(α, κ, β(u), k) = K logα0 +K2 logα+K
(

log(κ)− log(α+ κ)
)

(39)

+
(

log(α + κ)− log(κ)
)

∑K

k=1 βk(u)

+

K
∑

k=1

(

K log uk + [K(K + 1− k) + 1] log(1−uk)
)

We can now easily compute expectations of Eq. (39), since Eq[βk] and Eq[log uk] have known closed
forms when q(uk) = Beta(ρ̂kω̂k, (1− ρ̂k)ω̂k).

E. Global update for q(u|ρ̂, ω̂)

Here, we derive the results needed to perform numerical optimization of the top-level beta parame-
ters, ρ̂ and ω̂. We only show the results with the sticky hyperparameter; optimization for the case
of κ = 0 is covered completely by previous work (Hughes et al., 2015) for the HDP topic model. For
all equations from that paper, you need only substitute in K +1 for the number of documents D to
translate from topic models to HMMs.

To begin our derivation, we rewrite the overall (surrogate) objective function L as a function
of ρ̂ and ω̂, the parameters the global step updates. This means regrouping fragments of the
surrogate term Lsur, the top-level term Lhdp-global, and the subset of Lhdplocaltrans that depends
on q(u). Combining all these terms together and substituting in the surrogate cumulant bound
gives the complete objective necessary for learning ρ̂, ω̂. Note that we have dropped any additive
terms constant with respect to ρ̂, ω̂ in this expression, since they have no bearing for our numerical
optimization problem.

Lobj(ρ̂, ω̂) =

K
∑

k=1

(

− cB(ρ̂kω̂k, (1− ρ̂k)ω̂k) (40)

+
(

K + 1− ρ̂kω̂k

)(

ψ(ρ̂kω̂k)− ψ(ω̂k)
)

+
(

K(K + 1− k) + 1 + γ − (1− ρ̂k)ω̂k

)(

ψ((1 − ρ̂k)ω̂k)− ψ(ω̂k)
)

)

+

K
∑

ℓ=1

Eq[βℓ]

(

log(α+ κ)− log κ+

K
∑

k=0

αkPkℓ(θ̂)

)

+ Eq[βK+1]

(

K
∑

k=0

αkPk,K+1(θ̂)

)

where αk = α for k ≥ 1.

E.1 Constrained Optimization Problem

Our goal is to find the ρ̂, ω̂ that maximize Lobj . Remember that ρ̂, ω̂ parameterize K Beta distribu-
tions, and so have certain positivity constraints. Thus, we need to solve a constrained optimization
problem:

argmaxρ̂,ω̂ Lobj(ρ̂, ω̂) (41)

subject to ρ̂k ∈ (0, 1) ω̂k > 0, k = 1, . . . ,K

13

We now give the expressions for the gradient ∇Lobj , with respect to each entry of ω̂ and ρ̂.

Gradient for ω̂. Taking the derivative of Eq. (40) with respect to each entry ω̂m of ω̂, for m ∈
1, 2, . . .K, is:

∂Lobj
∂ω̂m

=
(

K + 1− ρ̂mω̂m

)(

ρ̂mψ1(ρ̂mω̂m)− ψ1(ω̂m)
)

(42)

+
(

K(K + 1−m) + 1 + γ − (1− ρ̂m)ω̂m

)(

(1− ρ̂m)ψ1((1− ρ̂m)ω̂m)− ψ1(ω̂m)
)

where ψ1 , d2

dx2 log Γ(x) is the trigamma function.

Gradient for ρ̂. Define ∆ as a K ×K + 1 matrix of partial derivatives of Eq[βk]:

∆mk ,
∂

∂ρ̂m
Eq[βk] =

− 1
1−ρ̂m

Eq[βk] m < k
1
ρ̂m

Eq[βk] m = k

0 m > k

(43)

Now, the derivative of Lobj with respect to each entry ρ̂m of the vector ρ̂, for m ∈ 1, 2, . . .K, is:

∂Lobj
∂ρ̂m

= ω̂m

(

K + 1− ρ̂mω̂m

)

ψ1(ρ̂mω̂m) (44)

− ω̂m

(

K(K + 1−m) + 1 + γ − (1− ρ̂m)ω̂m

)

ψ1((1 − ρ̂m)ω̂m)

+
∑K

ℓ=1 ∆mℓ

(

log(α+ κ)− log κ+
∑K

k=0 αkPkℓ(θ̂)

)

+∆m,K+1

(

K
∑

k=0

αkPk,K+1(θ̂)
)

E.2 Unconstrained Optimization Problem

In practice, we find that it is numerically more efficient to first transform our constrained optimiza-
tion problem above into an unconstrained problem, and then solve the unconstrained problem via a
modern gradient descent algorithm (L-BFGS).

Both target variables ρ, ω have simple bound constraints on each of their K entries. Each entry
of ρ lies in [0, 1], while each entry of ω must be larger than 0. We can define an invertible transform
between constrained scalars ρk, ωk and unconstrained real scalar variables ck, dk as follows:

ck , sigmoid−1(ρk)

dk , logωk

ρk , sigmoid(ck) =
1

1 + e−ck

ωk , edk

(45)

As shorthand, we write ρ(c) to denote the vector ρ obtained by transforming the input vector c.
Similarly, we write ω(d) to be the vector ω obtained by applying the transform to input d. We can
then define an unconstrained optimization problem

c∗, d∗ ← argmaxc,d LG

(

ρ(c), ω(d)
)

(46)

The optimal values c∗, d∗ can be simply transformed to ρ∗, ω∗, which are by construction optimal
solutions to our original problem.

Our unconstrained objective can be solved via gradient descent, where the gradients can be easily
computed by the chain rule using our original gradients with respect to ρ, ω as inputs.

14

The gradient at entry m of vector c is

δ

δcm
[LG] ,

δ

δcm
[ρm] ·

δ

δρm
LG (47)

= ρm(1− ρm)
δ

δρm
LG, where ρm ,

1

1 + e−cm

Similarly, the gradient at entry m of vector d is

δ

δdm
[LG] ,

δ

δdm
[ωm] ·

δ

δωm

LG (48)

= ωm

δ

δωm

LG, where ωm , edm

F. Merge move details.

As in previous work, our merge moves propose a candidate model in which all posterior assignment
mass from two original states j, k has been combined into a new single state m that replaces both
j, k. This proposed candidate model is evaluated under the variational objective function L. If
the new objective value improves on (has larger value than) the original, we keep the candidate.
Otherwise we discard it and continue with the original.

F.1 Construction of candidate proposal

Below, we outline the four stages of constructing the candidate proposal: (1) selecting the pair of
states to try to merge, (2) creating candidate local free parameter values s′, which are interpreted
as soft assignment state sequences; (3) creating the representative sufficient statistics N ′,M ′, and
(4) creating candidate global parameters ρ′, ω′, π′, τ ′. Note that step 2 is a purely “conceptual”
step: we need not explicitly construct local parameters s′ of the candidate in the implementation.
Instead, we can directly manipulate sufficient statistics to avoid huge runtime and memory costs of
local construction (e.g. when there are hundreds of sequences).

In the last subsection, we’ll discuss how to evaluate the objective function for the candidate
configuration. Throughout the process, remember that the input for a proposal is the current
model, represented by the current free variational parameters ŝ, ρ̂, ω̂, π̂, τ̂ .

Proposal Step 1/4: State selection.

Selecting a promising pair of states to merge is critical. We can just propose a pair at random, but
this is unlikely to succeed. Instead, we can rate all possible pairs based on the partial objective

L′partial , L
′
data(x, S

′, τ̂ ′) + Lhdplocaltrans(M
′, ρ̂′, θ̂′) + Lsur(ρ̂

′, ω̂′) + Lhdp-global(ρ̂
′, ω̂′) (49)

where each candidate quantity is quickly computed via the procedures defined below. Any pairs for
which this score is below zero need not be consided, because L′partial < 0 implies that L′ < L.

Proposal Step 2/4: Local parameter construction

To construct the candidate, we assume a single fixed rule for creating s′ from s, the originally inferred
state sequence probabilities. The rule is simply this: any mass previously assigned to states j, k is
now assigned to a new state, m.

To illustrate how to create s′ from s, we’ll first show a few examples. We’ll assume that the
dataset x has only one sequence (thus dropping the n-index), and that our original model has K = 4
states.

15

We’ll consider a slice of s at a particular timestep t. This is a K ×K matrix, where entry in row
j and column k gives the probability that zt−1 is in state j and zt is in state k.

st =

.01 .02 .03 .14

.01 .12 .13 .04

.01 .12 .13 .04

.11 .02 .03 .04

(50)

First, suppose we have selected to merge states 3 and 4. Below is the resulting candidate s′.

st =

.01 .02 .03 .14

.01 .12 .13 .04

.01 .12 .13 .04

.11 .02 .03 .04

→ Merge 3&4→ s′t =

.01 .02 .17

.01 .12 .17

.12 .14 .24

 (51)

Alternatively, suppose we are merging states 1 and 2. The resulting s′ is

st =

.01 .02 .03 .14

.01 .12 .13 .04

.01 .12 .13 .04

.11 .02 .03 .04

→ Merge 1&2→ s′t =

.16 .16 .18

.13 .13 .04

.13 .03 .04

 (52)

Generalizing from these two examples, we can formalize the construction rules. First, some
definitions. We can divide the original states into two mutually exclusive sets: P and P̄ . Let
P = {j, k} denote the pair of states being merged and P̄ the set of all other states. Then, we can
give formulas for every entry of s′ as follows:

s′tmm = stjj + stkk + stjk + stkj (53)

s′tmℓ = stjℓ + stkℓ, ∀ℓ ∈ P̄

s′tℓm = stℓj + stℓk, ∀ℓ ∈ P̄

s′tℓℓ′ = stℓℓ′ , ∀ℓ, ℓ′ ∈ P̄

Here, for simplicity, our indexing system ignores the fact that the matrix will get re-indexed after
the merge. That is, if we merge states 1 and 2, then what was originally state 4 will become state
3 in the candidate.

When applied at every timestep t, this procedure will output a s′ with K−1 states. By construc-
tion, we know that the output s′ is a valid “soft” state sequence, meaning it satisfies the requirements
of positivity and sums-to-unity:

s′tjk > 0
∑K−1

j=1

∑K−1
k=1 s′tjk = 1 ∀t ∈ {1, 2, . . . T − 1} (54)

Thus, we can use s′ as a valid free parameter for the candidate variational distribution q′(z). Note
that given s′t (adjacent timestep joint distribution), we can easily construct the parameters r′ (the
single-timestep marginals), and σ′

t (adjacent-timestep conditionals) using their definitions. Thus,
our local parameter construction is complete.

Proposal step 3/4: Sufficient statistics

In this proposal step, we need a procedure to summarize the new soft state sequence assignments s′

into the sufficient statistics M ′ (state transition counts) and S′ (data statistics). Naturally, we can
simply follow the definitions of these statistics, computing the values of M ′, S′ via relevant sums
over instantiations of s′, r′. However, instantiating the local parameters and computing the sum can
be expensive (linear in the number of sequences N and timesteps T) in runtime and memory.

16

Fast computation from original statistics. Alternatively, we can avoid summing over s′, r′

and instead directly manipulate the original values of M and S to determine M ′, S′. Given the
additive construction of s′ from s, it is easy to show the same rules apply to manipulate sufficient
statistics.

First, for data statistics S we have a simple rule:

S′
m = Sj + Sk, S′

ℓ = Sℓ, ℓ ∈ P̄ (55)

Next, for state transition counts M we can follow the same rules as for constructing s′t:

M ′
mm =Mjj +Mkk +Mjk +Mkj (56)

M ′
mℓ =Mjℓ +Mkℓ, ∀ℓ ∈ P̄

M ′
ℓm =Mℓj +Mℓk, ∀ℓ ∈ P̄

M ′
ℓℓ′ =Mℓℓ′ , ∀ℓ, ℓ′ ∈ P̄

The resulting values ofM ′, S′ from these rules will exactly represent the whole dataset under candi-
date local assignments s′, r′. Thus, constructingM ′, S′ fromM,S is exact yet much more affordable
than naive construction via sums of the local parameters.

Proposal Step 4/4: Global parameter construction

The conclusion of step 3 above yields valid summaries M ′, S′ for a candidate model with K − 1
states. We now develop the procedure for creating candidate global parameters.

Data-generation parameters . To construct {τ̂ ′k}
K−1
k=1 , we can simply apply the closed-form

global update with the candidate summaries {S′
k}

K−1
k=1 . Note that any unaffected state in set P̄ need

not be edited at all.

HDP state-appearance probability parameters Given summaries M ′ for a candidate with
K − 1 states, there is not a straight-forward way to simultaneously construct θ̂ (which control the
state-transition variational factor on πj) and ρ̂, ω̂ (which control the top-level conditional probabil-

ities u). The variational update to θ̂ depends on ρ, and vice versa.
To escape this “chicken-and-egg” problem, we propose the following step-by-step procedure,

which uses our original parameters ρ̂ to estimate an initial candidate ρ̂′, and then follows-up with a
conventional update to θ̂′.

First, we obtain ρ̂′ (vector of size K − 1) via a series of closed-form arithmetic operations:

• Compute β∗
ℓ , Eq(u|ρ)[βℓ] for every original state ℓ ∈ P̄

⋃

{j, k}

• Compute β∗
m = β∗

j + β∗
k .

• Calculate ρ′ that would satisfy Eq(u|ρ′)[βℓ] = β∗
ℓ , for every candidate state ℓ ∈ P̄

⋃

{m}

Finally, given ρ̂′, and the summaryM ′, we update θ̂′ via the closed-form update rule in Sec. 3 of the
main paper. Recall that this rule does not involve ω̂′ at all. Optionally, we can perform one final
update to ρ̂′, ω̂′ given the new θ̂′. This is recommended. Alternatively, we can keep the temporary
value of ρ̂′ defined above and obtain a heuristic value for ω̂′ (vector of size K − 1) from the original
by simply keeping all original entries of ω̂ that are not involved in the merge as they are, and setting
the merged state m’s to ω̂′

m = ω̂j + ω̂k.

F.2 Evaluation of L for candidate merges

Given a candidate set of free parameters for a model with K − 1 states, we need to evaluate the
objective L(ŝ′, θ̂′, ρ̂′, ω̂′, τ̂ ′) to decide if it improves on the original objective score.

17

Examining the formula for L, we can see that global parameters θ̂′, ρ̂′, ω̂′, τ̂ ′ and sufficient statis-
ticsM ′, S′ allow computation of all terms but one: the term Lentropy. Otherwise, we could construct
a candidate model and make a decision about acceptance without touching any local data.

However, this entropy term must be calculated by explicitly instantiating s′t at every timestep.
Note that we need not instantiate all slices simultaneously. Instead, we can take the original value
of s, and iterate over timesteps, summing up the relevant data to compute Lentropy(ŝ

′) as we go,
lowering memory usage from O(TK2) to O(K2).

F.3 Attempting multiple non-overlapping pair-wise merges at once.

The merge procedure above outlines how to construct and evaluate a candidate model for a single
merge pair. However, examining only one pair at a time may require many passes through a large
dataset before all relevant merges are attempted and accepted. The natural question is whether we
can simultaneously evaluate and accept several merge pairs in a single pass through the dataset, as is
possible with DP mixtures in Hughes and Sudderth (2013) and HDP topic models in Hughes et al.
(2015).

The only problematic term in this regard is the entropy, Lentropy. All other terms in the objective
are either purely functions of global variables or linear functions of sufficient statistics. Earlier,
Eq. (8) decomposes Lentropy into a sum over the entries of a non-negative matrix H . As above, we’ll
assume there is only one sequence for simplicity, so the notation below will omit the index n which
specifies which sequence is under consideration. First, we define special starting-state entropy term
H0k:

H0k , −r̂1k log r̂1k (57)

Next, we define the state-transition entropy Hjk for 1 ≤ j ≤ K as:

Hjk , −
∑

t=2 ŝtjk log
ŝtjk
r̂tj

(58)

Using these positive scalars Hjk, which always satisfy Hjk > 0 for all values 0 ≤ j ≤ K and
1 ≤ k ≤ K, we can rewrite the entropy term Lentropy as a sum over entries of H :

Lentropy =
∑K

k=1

∑K

j=0Hjk (59)

Single pair computation. First, consider how we should efficiently compute the entropy for a
single merge pair j, k, given s′. From the construction of s′ in Eq. (53), we see that for large K, any
entries in the entropy table H which have both states not involved in the merge will not change at
all. That is, for ℓ, ℓ′ ∈ P̄ , both s′ℓ,ℓ′ = sℓ,ℓ′ and σ

′
ℓ,ℓ′ = σℓ,ℓ′ . Thus, H ′

ℓ,ℓ′ = Hℓ,ℓ′ , and we need not
recompute this value.

The values that will change are any entry of H that involve either j alone, k alone, or both j

and k. There are exactly 2K − 3 such entries. So, we need to compute only 2K − 3 entries of H ′

from-scratch. The rest we can copy from the original matrix H directly into the appropriate entries
of H ′.

What is the computational benefit to this procedure? If we naively computed the complete scalar
entropy term for a merge pair, we would require traversing T timesteps, and perform K2 work at
each one. Using the scheme described above, we perform only O(TK) work to compute a H ′ table
once given the original H .

Multiple pair computation Now, consider two candidate merge pairs: j, k into new state m
and j′, k′ into new state m′. We could of course consider an either-or decision, where one of these
candidates is accepted but not both.

However, we wish to contemplate accepting both. Specifically, the case that both j = j′ or k = k′

is definitely not going to work. There would be substantial overlap among the 2K−3 “replacement”
entries of H ′ that need to be computed for each set.

18

The case where j, k, j′, and k′ are all distinct is more manageable, but still we will not be able to
evaluate L′′entropy (the objective if both were accepted) using only the 2K − 3 entries of H ′ outlined
above. There will be two entries of these “substitution” values H ′ that will be incorrect. The specific
two entries that must be custom-computed are H ′

mm′ and H ′
m′m, which will involve the transitions

from new state m from the first pair to new state m′ of the second, and vice versa. We cannot
exactly evaluate L′′entropy without considering these terms.

However, we can consider a pessimistic estimate of Lentropy for the case of a double merge. As
entropies are always non-negative, we can easily leave out H ′

mm′ and H ′
m′m from the sum in Eq. (59).

From the basic properties of entropy, we know that the entropy term of a candidate will always
decrease from the original, so this omission provides a rather tight lower bound on the candidate
entropy. In practice, we find this “omit entries” strategy is enough to guarantee acceptance on many
real-world datasets.

G. Delete move details.

G.1 Candidate selection.

Deletes are more flexible than merges at reassigning mass but require expensive local steps on the
target data. To keep costs affordable, before each lap we find a group of L states whose unified
target set is at most 10 sequences. We prioritize states that have not been attempted before. We
then collect the unified target set and try all L deletes one at a time. If no group can be found
(L = 0), no move is performed.

G.2 Delay of delete proposals.

Given a naive initialization, greedily applying many delete proposals may yield short-term improve-
ments in the objective L, but long-term under-performance. This can occur because given enough
update-cycles, a few junk states may evolve into useful states that the model prefers not to delete.
This is especially important if birth moves are not enabled, which means the model cannot ever
expand its truncation after a deletion. When possible, we recommend delaying the onset of delete
proposals for several complete laps. In our experiments, we found that delays of 5 laps are sufficient.

H. Birth move details.

H.1 Proposal selection details.

Bisection proposal: Linear search that improves Ldata We recommend one concrete pro-
posal that takes advantage of sticky state persistence: First, choose an interval [a, b] of the current
estimated sequence zn1...znT , where we set znt = argmaxk[r̂n1 r̂n2 . . . r̂nK], which is its max-
marginal assignment. We choose end points [a, b] randomly based on the current changepoints of
sequence zn. We sometimes randomly perturb these endpoints to look at intervals that are not
necessarily current segment boundaries.

Given interval [a, b], the goal is to split this interval into two contiguous blocks each assigned to
a new state, or just produce one state for the whole block if that is more favorable. To do so, we
perform a linear search for an optimal cut point m satisfying a < m < b. The search objective is
to maximize the term Ldata for the two potential state statistics Sam, Sbm, where Sam represents
the statistics of xn over the timestep interval [a,m], and likewise Smb covers the interval [m, b].

Concretely, Sam =
∑m

t=a sF (xnt), and Smb =
∑b

t=m+1. The score we evaluate simplifies from the
general Ldata term to:

Ldata(Sam, Smb) = −cH(Sam + τ̄)− cH(Smb + τ̄) + const (60)

19

This search for m works very well in practice and takes only linear time (in length of the interval) to
evaluate. To control cost on very long intervals, we may only consider a subset of possible m values
evenly spaced within [a, b].

This procedure is enabled in the bnpy software by the keyword option initname=bisectGrownBlocks.
See the plain-text file settings-bnpyHDPHMMcreateanddestroy.txt for where this is established
within the x-hdphmm-nips2015 repository.

Smart selection of intervals to target. With large models, naively choosing intervals or states
to target will often waste time on proposals that are unlikely to be accepted. As a simple remedy,
we recommend tracking an integer count of how many previous failures have occured with each
existing state, and biasing the selection of intervals [a, b] within zn towards either those that belong
to a state which has yielded successful proposals in the recent past, or a state that have not been
targeted recently. Alternatively, more data-driven selection is possible and would likely be effective.

H.2 Proposal evaluation details.

Proposal Refinement. Given proposed new local parameters r̂′n, ŝ
′
n for the sequence n from our

bisection procedure, we refine these values by running several iterations of memoized local and global
updates. The final output of the refinement phase is the pair of revised values r̂′n, ŝ

′
n. The cost of

each refinement iteration is dominated by the O(TnK
′2) dynamic programming required for the

local step. So long as K ′ does not get too large, this remains very affordable. The advantage is
that we can greatly improve the chances of success. In practice, each time we visit a sequence n we
perform several proposals (each followed by one or more refinement steps), and then accept or reject
the whole new configuration once. We find this is a quick way to make large changes.

Batches with multiple sequences. If batches have multiple sequences, bookkeeping becomes
slightly more involved but births guaranteed to improve the objective are still possible. We first
illustrate the case of two sequences in the batch, labelled n1 and n2. When we visit the first sequence
n1 for a local step, we have statistics S,M representative of the whole dataset (including the previous
assignments to n1 and n2), and previously stored batch statistics Sb,Mb, which summarize both n1

and n2. When we propose new candidate assignments for n1, we need to allow new states to also
propagate to n2. To do so, we use candidate statistics M ′, S′ formed by including both the previous
stats Mb, Sb for the batch and the new assignments to n1.

S′ = S + S′
n1

M ′ =M +M ′
n1

(61)

While this construction technically double-counts sequence n1, these statistics are temporary and
used only to create temporary global parameters the proposal of n2. This allows n2 to use any states
it used previously (since its old assignments are counted) and any new states found in n1 (since those
new assignments are counted). It’s vitally important to keep the previous batch assignment statistics,
otherwise if n2 had previously used some unique states found in no other sequence, candidate states
S′,M ′ without those would lead to global parameters without them and a local step where they
would effectively disappear from n2.

For batches with many sequences, we keep up the successive process of proposing some new
states at sequence n, and then retaining these new assignments (and any other new assignments
made) as well as previous assingments in the temporary statistics. Again, we emphasize that this
double-counting is temporary, and only used to find a final set of proposed values {r̂n, ŝn} for all
sequences n in the batch b. After proposing for all sequences in the batch, the accept or reject
decision is made with exact statistics that reflect the new assignments only (and fixed assignments
from other batches).

20

References

Jason Ernst and Manolis Kellis. Discovery and characterization of chromatin states for systematic annotation
of the human genome. Nature biotechnology, 28(8):817–825, 2010.

Emily B Fox, Erik B Sudderth, Michael I Jordan, and Alan S Willsky. A sticky HDP-HMM with application
to speaker diarization. Annals of Applied Statistics, 5(2A):1020–1056, 2011.

Emily B Fox, Michael C Hughes, Erik B Sudderth, and Michael I Jordan. Joint modeling of multiple time
series via the beta process with application to motion capture segmentation. Annals of Applied Statistics,
8(3):1281–1313, 2014.

Michael C. Hughes and Erik B. Sudderth. Memoized online variational inference for Dirichlet process mixture
models. In Neural Information Processing Systems, 2013.

Michael C. Hughes, Dae Il Kim, and Erik B. Sudderth. Reliable and scalable variational inference for the
hierarchical Dirichlet process. In Artificial Intelligence and Statistics, 2015.

21

	Experiment Details
	Toy Data
	Speaker Diarization
	Motion capture dataset.
	Chromatin epigenomic dataset

	Variational objective function L
	Term Lhdp-global
	Term Lhdp-local
	Term Ldata
	Term Lentropy

	Data-generation densities F and H
	F: Multivariate Gaussian, H: Gaussian-Wishart
	F: Multivariate Auto-Regressive, H: Matrix Normal-Wishart

	Surrogate bound derivation details
	Bound on cumulant function of Dirichlet
	Bound on cumulant function of sticky Dirichlet.

	Global update for q(u | ,)
	Constrained Optimization Problem
	Unconstrained Optimization Problem

	Merge move details.
	Construction of candidate proposal
	Evaluation of L for candidate merges
	Attempting multiple non-overlapping pair-wise merges at once.

	Delete move details.
	Candidate selection.
	Delay of delete proposals.

	Birth move details.
	Proposal selection details.
	Proposal evaluation details.

