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Abstract

Languages for open-universe probabilistic
models (OUPMs) can represent situations
with an unknown number of objects and iden-
tity uncertainty. While such cases arise in
a wide range of important real-world appli-
cations, existing general purpose inference
methods for OUPMs are far less efficient
than those available for more restricted lan-
guages and model classes. This paper goes
some way to remedying this deficit by in-
troducing, and proving correct, a generaliza-
tion of Gibbs sampling to partial worlds with
possibly varying model structure. Our ap-
proach draws on and extends previous generic
OUPM inference methods, as well as aux-
iliary variable samplers for nonparametric
mixture models. It has been implemented
for BLOG, a well-known OUPM language.
Combined with compile-time optimizations,
the resulting algorithm yields very substan-
tial speedups over existing methods on sev-
eral test cases, and substantially improves the
practicality of OUPM languages generally.

1 Introduction

General purpose probabilistic modelling languages aim
to facilitate the development of complex models while
providing effective, general inference methods so that
the model-builder need not write model-specific in-
ference code for each application from scratch. For
example, BUGS (Spiegelhalter et al., 1996) can rep-
resent directed graphical models over indexed sets of
random variables and uses MCMC inference (in par-
ticular, Gibbs sampling where this is possible).

As the expressive power of modelling languages in-
creases, the range of representable problems also
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grows. The class of first-order, open-universe prob-
abilistic languages, including BLOG (Milch et al.,
2005a) and Church (Goodman et al., 2008), han-
dles cases in which the number of objects (in BUGS,
the index set) is unknown and perhaps unbounded,
and object identity is uncertain. It is still possible
to write a complete inference algorithm for BLOG,
based on MCMC over partial worlds; each such world
is constructed from the minimal self-supporting set
of variables relevant to the evidence and query vari-
ables. Generality has a price, however: BLOG’s
default Metropolis—Hastings inference engine samples
each variable conditioned only on its parents (Milch &
Russell, 2006). This approach leads to unacceptably
slow mixing rates for many standard models, in which
evidence from child variables is highly informative.

Our goal is to remedy this situation, primarily by ex-
tending the range of situations in which Gibbs sam-
pling from the full, conditional posterior can be used
within BLOG. Section 2 of this paper introduces the
terminology of contingent Bayesian networks (CBNs),
which we will use as the propositional “abstract ma-
chine” for open-universe stochastic languages. Sec-
tion 3 surveys previous work related to general pur-
pose sampling of CBNs and describes its limitations.
Section 4 then describes our novel Gibbs sampling al-
gorithm for CBNs which addresses these limitations;
its implementation for BLOG is described in Sec-
tion 5. Finally, we present experimental results on
various models in Section 6, demonstrating substan-
tial speedups over existing methods.

2 Contingent Bayesian Networks

This section repeats, and in some cases generalizes,
definitions proposed by Milch et al. (2005b). A con-
tingent Bayesian network (CBN) consists of a set of
random variables V, and for each variable X € V, a do-
main dom(X) and decision tree Tx. The decision tree
is a directed binary tree, where each node is a predi-
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Figure 1: The CBN of Example 1, in which the Blade-
Flash sensor model differs for helicopters and planes.

cate on some subset of V. Each leaf of 7x encodes a
probability distribution parameterized by a subset of
V, and defined on dom(X).

Example 1. An aircraft of unknown WingType — He-
licopter or FixedWingPlane — is detected on a radar.
Helicopters have an unknown RotorLength, and de-
pending on this length they might produce a character-
istic pattern called a BladeFlash (Tait, 2009) in the
returned radar signal. A FixedWingPlane might also
produce a BladeFlash. As summarized in Figure 1,

TWingType ="
T | F»  if WingType = Helicopter
RotorLength = 1,411 otherwise
F;5(RL)

if WingType = Helicopter
TBladeFlash = £,

otherwise

where RL is an abbreviation for RotorLength.

An instantiation o is an assignment of values to a sub-
set of V. We write vars(o) for the set of variables to
which o assigns values, and ox for the value that o
assigns to a variable X. ¢X=% is a modified instanti-
ation which agrees with o except for setting X to a.
An instantiation o is said to be finite if vars(o) is fi-
nite. An instantiation o supports X if all the variables
needed to evaluate 7x are present in o. In Exam-
ple 1, [WingType=FixedWing] supports BladeFlash,
but [WingType=Helicopter| does not.

We write o7, for the minimal subset of o needed to
evaluate Tx, and px (- | oy ) for the resulting distri-
bution of X. The parents of X in o are vars(ory ),
while the children of X in o are

Ao, X)={Y | Y € vars(0), X € vars(or,)}. (1)

The subset of vars(or, ) which were used to evaluate
internal nodes of 7x (rather than the leaf) are the

switching parents of X in o. Intuitively, changes in
the values of switching parents can switch the distri-
bution of X, as well as its set of parents. A switching
variable in o is a switching parent for one or more
variables in 0. For the CBN of Example 1, the in-
stantiation [ WingType=Helicopter, RotorLength=6,
BladeFlash=true | makes WingType a switching par-
ent of both RotorLength and BladeFlash.

An instantiation o is self-supporting if it supports all
variables in 0. Assuming that the CBN is well-defined
(Milch et al., 2005b), we can define the probability of
a self-supporting instantiation as follows:

plo)= ]

X € vars(o)

px(ox | ory) (2)

An instantiation o is feasible if p(c) > 0.

3 Related Work

Milch and Russell (2006) have previously shown
that the state space for Markov chain Monte Carlo
(MCMC) inference in CBNs may consist of mini-
mal partial instantiations that support the evidence,
E, and query variables, (). This idea has been ex-
ploited to build the current, default inference engine
for BLOG. Standard sampling algorithms for nonpara-
metric, Dirichlet process mixture models use a related
representation: they instantiate parameters for those
mixture components which support the evidence, as
well as a few auxiliary components (Neal, 2000). Our
new algorithm builds on both of these methods.

3.1 Parent-Conditional Sampling

In the absence of a model-specific, user supplied
proposal distribution, BLOG’s existing inference en-
gine relies on a parent-conditional proposal. This
algorithm picks a variable, X, at random from all
non-evidence variables in the current instantiation o,
V(o) = vars(o) — E, and proposes a new instantiation
o' with the value of X drawn from px(- | oz ). If X
was a switching variable in o, we may then need to in-
stantiate new variables, and uninstantiate unneeded
ones, to make ¢’ minimal and self-supporting over
Q U E. All new variables are instantiated with val-
ues drawn from their parent-conditional distribution.

We say that any ¢’ constructed by this procedure is

reachable from o via X, or o X o', The following
properties are easily seen to be true of reachability.

Proposition 1. A minimal self-supporting feasible in-
stantiation o’ is reachable from an instantiation o via
X if and only if X € vars(o) Nvars(o’), and o and o’
agree on all other variables in vars(c) N vars(o”).



Proposition 2. If o % o', then there does not exist
Y eV(o), Y # X, such that o Lo

The nature of this proposal distribution g(c — o)
makes it quite simple to compute the acceptance ratio
for the Metropolis—Hastings (MH) method (Andrieu
et al., 2003), which takes the following form:

/ /
alo — o) :min{l’p(gmHU)} (3)
p(o)g(oc — o’)
For any ¢’ reachable from o via X, the unique way
of proposing this transition is to select X from V' (o),
propose the value o’y for it, and finally propose corre-
sponding values for all new variables in ¢’. Thus,

q(o‘—>a') =

px (o | o7y) 11

V(o) py(o'y [ oF) (4)

Y evars(o’)—vars(o)

From Equations (2) and (4), the terms correspond-
ing to vars(o’) — vars(o) cancel in p(c’)/q(c — o).
Similarly, terms in vars(c) — vars(c’) cancel in
q(¢! — o)/p(o). Further, it is easy to see that for
variables Y € vars(o) Nvars(o’) — A(o, X) N A(o’, X),
o1, = o7, Hence, py(- | o,) = py (- | 07, ) and the
terms for all such variables Y, including X, cancel out.
Finally, the acceptance ratio a(c — ¢') reduces to:

py(oy |o7,)
py(oy |oT,)

L V@

YeA(o,X)NA(c!,X)

()

Note the dependence on those variables which are chil-
dren of X in both o and ¢’. The overall algorithm is
summarized in Figure 2.

3.2 Gibbs Sampling

Equation (5) summarizes the main problem with
parent-conditional sampling: if the proposed value for
the sampled variable X does not assign high probabil-
ity to the children of X, the move will be rejected. To
avoid undue assumptions, hierarchical Bayesian statis-
tical models often use dispersed or “vague” priors, so
that such parent-conditional proposals have extremely
low acceptance probabilities.

The Gibbs sampler addresses this issue by directly
sampling X from its full conditional distribution,
px (- | oy—x), rather than its parent-conditional prior
px(- | o7y). This method was originally proposed
by Geman and Geman (1984) for inference in undi-
rected Markov random fields, and later popularized as
a general Bayesian inference method by Gelfand and

1. Create an initial, minimal, self-supporting feasible
instantiation o consistent with the evidence FE,
and including the query variables Q.

2. Initialize statistics of the query variables to zero.
3. Repeat for the desired number of iterations:

(a) Choose X € V(o) uniformly at random.

(b) Randomly propose ¢’ such that o Lo using
the distribution of Equation (4).

(¢c) Compute the acceptance ratio, a(c — o),
via Equation (5).

(d) With probability a(c — o'), set o «— o’.
Otherwise, leave o unchanged.

(e) Update query statistics using o.

4. Report query statistics.

Figure 2: General purpose inference in CBNs using
parent-conditional Metropolis—Hastings proposals, as
in (Milch & Russell, 2006).

Smith (1990). For discrete variables X, the Gibbs sam-
pler computes a weight w(a) for each a € dom(X):

w(a)=px(alor) ]

Y € A(o,X)

py(oy | 07, (6)

A new value o’y is then sampled from a normalized dis-
tribution with mass proportional to these non-negative
weights. Viewed as a Metropolis-Hastings proposal,
the acceptance probability for the Gibbs sampler al-
ways equals one; Gibbs moves are never rejected.

The Gibbs sampler can be consistently applied to vari-
ables with finite, countable, or even uncountable do-
mains, so long as the full conditional posterior can be
tractably normalized and sampled from. For models
specified via languages like BUGS, Gibbs sampling has
proven quite successful. However, most existing appli-
cations and analysis of the Gibbs sampler implicitly
assume a closed universe model, and instantiate the
full, finite set of variables at all iterations. If this al-
gorithm were naively applied to a CBN, then for some
switching variables X and configurations a € dom(X),
oX=2 might not support some children of X. For such
inconsistent model configurations, the normal Gibbs
weight w(a) cannot be evaluated.

One possible solution, proposed in the context of
Dirichlet process (DP) mixture models by Neal (2000),
augments o with auziliary variables chosen so that
0X=% is self-supporting for all a € dom(X). This aug-
mented o, which is now no longer minimal, is used to
construct the Gibbs weights; following the move any
remaining non-supported variables are discarded.



dom(X) = {0, 1,2}
X ~ Categorical(.1, .6, .3)

dom(Y;) = {0,1} for all i e N

Bernoulli( H—$X )
Y; ~ (1
Bernoulli( f7==v7)

if (X +4) mod2=0
otherwise

Evidence: Y; = true. Query: X.

Figure 3: A CBN which requires infinitely many auxil-
iary variables for standard Gibbs sampling approaches.

Such auxiliary variables are always sampled condi-
tioned on o, given the current value of X. For exam-
ple, if cx = a and if o was augmented with a variable
Z needed to support X =? for some b€ dom(X) — a,
then we would sample Z from pz(- | U%(Z:a). This can
lead to poor mixing rates, or an inconsistent sampler
if pz(- | 07=*) and pz(- | 05~") have non-overlapping
support. Note that this issue doesn’t arise with the
DP mixture sampler, since 7 had no dependence on
X, and pz(- | U)T(Zza) =pz(-| 0¥Zzb) for any a, b.

To further illustrate this issue, consider the model of
Example 1 and a minimal instantiation, o = [ Wing-
Type = FixedWingPlane, BladeFlash = True |. If we
were to apply a typical auxiliary variable method to
do MCMC sampling in this model, we would first in-
stantiate RotorLength given WingType = FixedWing-
Plane, and then construct Gibbs weights for Wing-
Type = FixedWingPlane and Helicopter. However,
the only value of RotorLength that can be sampled
given WingType = FixedWingPlane is null, and this
value has probability 0 with WingType = Helicopter.
The resulting chain will not mix to the true posterior.

In fact, there are cases when the auxiliary variable
method is not well defined, because we may need an
unbounded number of auxiliary variables. Consider
the rather artificial but instructive CBN in Figure 3,
and an instantiation o = [X =0,Y; = 1,Y; = 1]. To
augment o such that it is self-supporting for all values
of X, we certainly need to add Y3, since Y5 depends on
Y3 when X = 1. But Y3 depends on Y; when X = 0,
and so we need to add Yy, and so on. Ultimately, we
would need to instantiate Y; for all ¢ > 1.

4 Gibbs Sampling in Contingent
Bayesian Networks

We now develop a general-purpose extension of stan-
dard Gibbs samplers, which is applicable to arbitrary
switching variables with finite domains. The pro-
posal for a switching variable, X, will proceed in
three steps. First, the instantiation, o, is reduced
to a subset of variables, core(o, X), that is guaran-

=y

0o 01 o)

Figure 4: The three partial instantiations considered
for Gibbs sampling of X given Y7 as evidence. Here, oy
is the current instantiation, and o1, o9 are candidate
new configurations.

teed to exist in a minimal, self-supporting instantia-
tion constructed from oX=%, for any a € dom(X). Sec-
ond, we construct minimal self-supporting instantia-
tions o4, ¢ = 1,...,|dom(X)| — 1, for each value in
dom(X) — {ox}. These instantiations agree with o on
core(o, X ), but assign different values to X. Any re-
maining variables in these o; configurations are sam-
pled from their parent-conditional priors. For nota-
tional simplicity, we define oy = o. Finally, we assign
weights to these 0,7 =0,...,|dom(X)|—1, and make
a transition proportional to these weights.

It may seem counter-intuitive to first reduce the in-
stantiation, and then extend it. After all, the pair of
algorithms described in Section 3, parent-conditional
sampling and auxiliary variable Gibbs sampling, first
extended the current instantiation before reducing it.
The motivation for our approach is simple: variables
whose existence depends on the value of X should be
sampled in a world with the appropriate value of X.

Consider again, for example, the model in Figure 3,
and three partial instantiations illustrated in Figure 4.
Now, starting from o (in which X = 0), we could have
fixed the value of Y5 when constructing oo (in which
X = 2). However, the distribution of Y3 given X = 2
is quite different from that given X = 0, and fixing
the value of Y5 could lead to low probability instan-
tiations. The resampling of non-core variables like Y5
also simplifies the detailed balance equations discussed
later. In particular, our algorithm is designed so that
the distribution of o5 does not depend on whether we
start from og or o7. Thus, when demonstrating de-
tailed balance between pairs of instantiations, we need



not reason about other instantiations which might be
involved in the transition. This last observation relies
on the fact that core(og, X) = core(oy, X). We will
first prove this in general.

Definition 1. For an instantiation o and variables
X,Y,Z € vars(o), if Tz refers to X and Y, and the
first reference to X precedes the first reference to Y,
the edge linking Y to Z is said to be contingent on X.

Definition 2. Let core(o, X) denote the subset of
variables in vars(o) — {X} which have a path (pos-
sibly of length zero) consisting of parent-child edges,
excluding edges contingent on X, to some variable in
QUE.

Note that we have left X out of core(o, X) mainly for
simplifying the subsequent text. However, it is not
hard to see that there is a path from X to Q U E not
contingent upon X. For example, consider the shortest
path from X to QU F and let this path start with the
X — Y edge. Now, the edge X — Y is not contingent
upon X (by definition) and if some other edge, W —
Z, along this path is contingent upon X then we can
find a shorter path starting with X — Z. It should
be further noted that all the ancestors of X have a
path to X not contingent upon X (otherwise, a cyclic
instantiation would make the CBN not well-formed).
Hence all the ancestors of X are in core(o, X).

Definition 3. For an ingtantiation o and variable
X € vars(o), let Y(o,X) = Ao, X) N core(o, X) de-
note the children of X also contained in core(o, X).

Proposition 3. For any pair of minimal self-
supporting instantiations, o and o', and variable X
common to them, if o and o’ agree on core(o, X) then
core(o, X) = core(o’, X) and Y(0,X) = Y(o/, X).

Proof. Let Y € core(o, X), then either Y €Q U E or
there exists a path of edges not contingent on X from
Y to QUE. Clearly, if Y € QUE then Y € core(o’, X).
Otherwise, let Z be the first child in such a path. Since
X is not referenced before Y in 7, X is also not refer-
enced before any W referenced before Y in 7. Such a
variable W must also be in core(o, X) since W has the
same path to QUE via Z as Y. But ¢ and ¢’ agree on
core(o, X) and hence on W. Since o and ¢’ agree on
all the variables referred before Y in 7 it follows that
the evaluation of 7z up to Y is identical in ¢ and o’.
Hence, the Y to Z edge is not contingent on X in o’.
By induction, the path from Y to Q U E in ¢’ is not
contingent on X, which implies that Y € core(c’, X).

Now, suppose core(o, X) C core(c’, X). For any ele-
ment in core(c’, X) — core(o, X) there must be a path
of edges not contingent upon X in ¢’ to Q U E via
some variables in core(o, X) U {X} (trivially, since
QUE Ccore(o, X)U{X}). Let Y and Z be one such
parent-child pair in o’ s.t. Y € core(o’, X)—core(c, X)

and Z € core(o, X) U {X}. Now, all the variables re-
ferred in 7z up to the first reference of X (if any)
would also be in core(o, X) since they have an edge to
Z which is not contingent on X. Since o and ¢’ agree
on core(o, X), the evaluation of 7z would follow an
identical path in o and ¢’ up to the first reference of
X. Therefore, since Y is not referred to after X while
evaluating 7z in o’, it follows that Y € core(o, X).

Let YeY(0,X), i.e. Y is a child of X in ¢ and
Y € core(o, X). From the above result Y € core(o”, X)
and we will next show that Y is a child of X in ¢’. Con-
sider the evaluation path of 7y in . All the variables
that are referred before X are also in core(o, X) by def-
inition. Since these variables will have the same value
in ¢’, it follows that the evaluation of 7y in ¢’ will lead
to X being referred. In other words, X is a parent of
Y in ¢/ which implies that Y (o, X) C YT(0’,X). By
symmetry, T(¢’, X) C T(0, X) O

Proposition 4. For any two minimal self-supporting
instantiations, o and o', there is at most one vari-
able X common to them such that o and o' agree on
core(o, X), but differ on X.

Proof. Assume to the contrary that there exist two
such variables X and Y. Now, since o and o’ agree
on core(o, X) but differ on Y, it follows that YV &
core(o, X). Hence Y cannot be in Q U E. But since
o is a minimal instantiation, Y must have a path to
QU FE. Now consider the shortest path of Y to QU E.
Some edge, W — Z, in this path must be contingent
on X. Hence we can construct a path from X to QUE
via Z which can’t be contingent on Y (otherwise, Y
would have a shorter path to Q@ U E). This implies
that X € core(o,Y), but then o and ¢’ agree on X, a
contradiction. O

For each value in dom(X), the corresponding partial
instantiation o; is assigned the following weight:

pX(UiX | UiTX) H

o) =g 0]

py (oiy | UiTy)

(7)
Up to a multiplicative constant, this expression re-
duces to Equation 6 if X is not a switching vari-
able. The complete pseudo-code is given in Fig-
ure 5. Note that if X is not a switching variable then
core(o, X) = vars(c) — X and the algorithm reduces
to regular Gibbs sampling.

Y €Y(0,X)

It only remains to show that detailed balance holds
between any two minimal instantiations oy and o7.
It follows from Propositions 3 and 4 that there is
at most one shared variable X such that a transi-
tion is possible between oy and o7 by sampling X.
Thus, the only way for this transition to occur from



1. Create an initial, minimal, self-supporting feasible
instantiation o consistent with the evidence FE,
and including the query variables Q.

2. Initialize statistics of the query variables to zero.
3. Repeat for the desired number of iterations:

(a) Choose X € V(o) uniformly at random.
(b) If X has finite domain (say, dom(X) =
{vg,...,vn—1} and ox = vg).
i. Compute core(o, X).
ii. Construct oy: core(o, X) U {X}
fori=1,...,n—1.

X=v;

ili. Compute w(o;) from Equation (7) for i =
0,...,n—1.

iv. Normalize w(-) and sample an index j
from this distribution. Set o < o;.

Else
i. Randomly propose ¢’ such that o X o
using the distribution of Equation (4).

ii. Compute the acceptance ratio, a(oc —

o'), via Equation (5).
iii. With probability a(c — '), set o « o’.
Otherwise, leave o unchanged.

(c) Update query statistics using o.

4. Report query statistics.

Figure 5: General purpose Gibbs sampling in CBNs

oo is to first select X for sampling with probability
L Next, the new variables in o1, (09, X,01) =

[V(oo)l"
vars(oq) — core(op, X) — {X}, must be sampled with
probability [, . W(00,X,00) PY (o1yloig, ). Finally, we
must select o1 out of all the other random instanti-
ations, with probability m Now, the
instantiations os,...,0,_1 are random variables and
hence the overall transition probability, ¢(c9 — o1),
depends on the expected value of this last probability

under the distribution of these random variables:

1 U}(G'l)
H py (o1y \ JlTy)E 7111
V(@) y ey o) 2imo w(0)

We can construct a similar expression for the reverse
move probability, and note that the numerator in the
expectation is a constant, and the rest of the expecta-
tion doesn’t depend on which of g or o7 we start out

with. Thus, 420=01) jg.
q(c1—00)

|V(01)| ’w(01) HY6¢(007X701)pY(01Y | UlTy)

[V(oo)| w(oo) Iy e p(or,%,00) PY (00y | 00T;,)

Substituting for w(o) and w(oyp):

PY(Uly | UlTy)
pY(on | UOTY)

Q(Uo — 01) _ H
q(o1 — 00) Y € Y(0,X)
px(o1x | 017y ) . Hyew(ame)pY(UlY | 017y )

pX(UOX ‘ JOTX) HYew(a'l,X,ao) pY(UOY | UOTY)

Observe that the only terms missing from % above

are those for variables in core(o, X) — T (0, X ). How-
ever, if Y € core(o, X) then oy = o} and further if
Y & A(o, X) all the parents of Y are also in core(o, X)
and hence have the same values in o and ¢’. Thus
these variables have identical values and distributions
in 0p and o7 and their terms cancel out. Finally,

_ p(o1)

p(Uo)

Q(Uo - 01)
Q(Ul - 00)

5 BLOG Compiler

We have implemented our algorithm in a new imple-
mentation of the BLOG language, which we will refer
to as blogc'. The broad outline of our implementa-
tion is similar to Milch’s public-domain Metropolis-
Hastings version, except in two significant aspects.

First, for variables with (possibly unknown) finite do-
main, we always use Gibbs sampling. By statically
analyzing the structure of the model we can deter-
mine which variables are switching variables, which
ones need to be resampled for each transition, etc.
Based on the analysis, appropriate code is generated
that does the actual sampling and reporting.

Consider, as an example, the BLOG model in Figure 6.
This model describes the prior distribution of two
types of aircraft — fixed-wing planes and helicopters.
These planes may produce an arbitrary number of
blips on the radar (the fact that plane a produces a
blip b is represented by setting Source(b) = a). Fur-
ther, helicopters due to the interaction of their rotor
with the radar beam can produce blade-flashes in the
radar blip. In this model, the variable RotorLength(a)
for all aircraft a can easily be Gibbs sampled. If
WingType(a) =Helicopter then RotorLength(a) can
be either Short or Long, otherwise it can only be null
(as per BLOG semantics for a missing else clause).
While compiling the model we can detect that the
children variables of WingType(a) in any instanti-
ation are all the BladeFlash(b) variables such that
Source(b) = a. In order to speed up the computa-
tion of the Gibbs weights at runtime, we maintain a
list, for each object a of type Aircraft, of all objects b
of type Blip such that Source(b) = a.

bloge is available for download from:

http://code.google.com/p/bloge/



The variable WingType(a) is more interesting. It
can only take two possible values, but since it is a
switching variable, care has to be taken when sam-
pling it. In particular, the variable RotorLength(a)
has to be uninstantiated. This is because all the chil-
dren edges from RotorLength(a) are contingent on the
value of WingType(a). Note that Source(b) for all ob-
jects b of type Blip is also a switching variable. How-
ever, in this case the decision to uninstantiate a vari-
able WingType(a) such that Source(b) = a depends
on whether there exists another object b such that
Source(b') = a.

The second major difference in our implementation is
the handling of number variables. Instead of directly
sampling the number variables, our implementation
proposes birth and death moves. In the radar example,
for each object w of type WingType, we generate an
Aircraft object that has no blips assigned to it. The
death move kills off such objects with no blips. In
order to get faster mixing, we allow some extra flexi-
bility in the birth and death move during an “initial-
ization” phase. During this phase, birth and death
moves ignore the probability of child variables. To un-
derstand the motivation, assume for a moment that
the expected number of blips for a given aircraft was
one million. Now, a birth move which proposes an air-
craft with 0 blips would be almost certainly rejected.
By allowing such birth moves during initialization, we
give the inference engine an opportunity to later at-
tach blips to the aircraft.

6 Experimental Results

We have compared the convergence speed and accu-
racy of blogce against the existing generic Metropolis-
Hastings inference engine provided with BLOG, which
we will refer to as BLOG-MH. Since a Gibbs and a
MH sampler perform different amount of work in each
sample we felt that it was more appropriate to com-
pare the two inference engines with respect to time.
In order to control for the compiler optimizations in
blogec we have implemented a version of BLOG-MH
in blogc which we will refer to as bloge-MH. For some
of the other experiments we have also implemented a
version of Gibbs sampling that doesn’t uninstantiate
and resample variables not in the core, which we shall
refer to as blogc-noblock.

In the following three models each inference engine is
run for a varying number of samples, where a sample
is as defined by that inference engine. For each num-
ber of samples, inference is repeated 20 times with a
different random seed and the mean and variance of a
query variable is plotted against the average elapsed
time (in seconds).

type AircraftType;
type Length;

type Aircraft;
type Blip;

origin AircraftType WingType(Aircraft);
random Length RotorLength(Aircraft);
origin Aircraft Source(Blip);

random Boolean BladeFlash(Blip);

guaranteed AircraftType Helicopter, FixedWingPlane;
guaranteed Length Short, Long;

#Aircraft (WingType = w)
if w = Helicopter then
~Poisson [1.0]
else
~“Poisson [4.0];

#Blip “Poisson[2.0];

#Blip(Source = a) ~ Poisson[1.0];
RotorLength(a) {
if WingType(a) = Helicopter then
~“TabularCPD [[0.4, 0.6]]
};

BladeFlash(b) {
if Source(b) = null then
“Bernoulli [.01]
elseif WingType(Source(b)) = Helicopter then
“TabularCPD[[.9,.1],[.6,.4]]
(RotorLength(Source(b)))
else
“Bernoulli [.1]
};

obs {Blip b} = {bl, b2, b3, b4, b5, b6};

obs BladeFlash(bl) = true;
obs BladeFlash(b2) = false;
obs BladeFlash(b3) = false;
obs BladeFlash(b4) false;
obs BladeFlash(b5) false;
obs BladeFlash(b6) = false;

query WingType(Source(bl));
query WingType (Source(b2));
query WingType (Source(b3));
query WingType (Source(b4));
query WingType (Source(b5));
query WingType (Source(b6)) ;

Figure 6: Example of helicopters and fixed-wing planes
being detected by a radar
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Figure 7: Results on the Alarm Bayes Net

First, we evaluate on the Alarm network of (Beinlich
et al., 1989) available from the Bayes Network Repos-
itory? (Friedman et al., 1997). This is a Bayes Net
with 37 discrete random variables of which we observe
9. The results are summarized in Figure 7. The im-
portant thing to note is that the variance achieved by
blogc in less than 2 seconds is much better than that
achieved by bloge-MH in 15 seconds and by BLOG-
MH in 40 seconds. The compiler optimizations are
clearly giving a big boost but the Gibbs sampling is
helping considerably as well.

Next, we consider the model in Figure 8 which is the
urns-and-balls example of (Milch et al., 2005a) with a
slight twist. Balls have a weight instead of a discrete
color. Figure 9 shows that blogc converges significantly
faster than BLOG-MH. However, all the improvement
here is being driven by the compiler optimizations as
evidenced by the fact that blogc-MH is keeping pace
with blogc. This similarity is likely due to the fact
that our current blogc implementation does not resam-
ple the TrueWeight variables from their full posterior.
This shortcoming arises because blogc does not yet
support Gibbs updates for continuous variables, and
is not a limitation of the proposed Gibbs sampler for
switching variables. Nevertheless, the example demon-
strates the soundness of the blogc-MH implementation
in addition to the compiler optimizations.

Our final result is on the radar example of Figure 6.
For this model we experimented running blogc with-
out the logic which detects that RotorLen(a) must
be uninstantiated when sampling WingType(a). This
mode is labeled as blogc-noblock in Figure 10. In
this experiment we are querying the probability that

*http://www.cs.huji.ac.il/site/labs/compbio/Repository/

type Ball;
type Draw;

random Real TrueWeight(Ball);
random Ball BallDrawn(Draw);
random Real ObsWeight (Draw) ;

guaranteed Draw Draw[10];

#Ball ~ Poisson[6.0];

TrueWeight(b) ~ UniformReal [0.0, 100.0];
BallDrawn(d) ~ UniformChoice({Ball b});

ObsWeight (d) {
if BallDrawn(d) != null then
“UnivarGaussian[1] (TrueWeight (BallDrawn(d)))
};

obs ObsWeight (Drawl) = 61.
obs ObsWeight(Draw2) = 64.
obs ObsWeight(Draw3) = 17.
obs ObsWeight(Draw4) = 81.
obs ObsWeight (Draw5) = 40.
obs ObsWeight (Draw6) = 81.
obs ObsWeight (Draw7) = 82.
obs ObsWeight (Draw8) = 82.
obs ObsWeight(Draw9) = 82.
obs ObsWeight (Drawl0) = 60.

3O WO OO0 N
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query TrueWeight (BallDrawn(Drawl));
query TrueWeight (BallDrawn(Draw2));
query TrueWeight (BallDrawn(Draw3));
query TrueWeight (BallDrawn(Draw4));
query TrueWeight (BallDrawn(Draw5));
query TrueWeight (BallDrawn(Draw6)) ;
query TrueWeight (BallDrawn(Draw7));
query TrueWeight (BallDrawn(Draw8)) ;
query TrueWeight (BallDrawn(Draw9));
query TrueWeight (BallDrawn(Drawl0)) ;

Figure 8: Example of selecting balls with replacement
from an urn and measuring their weight
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Figure 9: Balls with unknown weights
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Figure 10: Results on the radar model

WingType(Source(bl)) = Helicoper. Given that
BladeFlash(bl) = true we expect this probability to
be quite high. blogc converges to the true probability
in less than a second. However, neither BLOG-MH
nor blogc-noblock are able to come close to the true
probability even after 30 seconds. This is explained by
the fact that these two samplers are unable to directly
sample the WingType(a) variables. The fact that they
are able to make any progress at all is due to the birth
move which creates new aircraft for each WingType
and samples their Rotor Len variable. Later, the move
which resamples Source(b) for each blip has the op-
portunity to select this new aircraft. These two moves
thus compensate for the fact that the move which at-
tempts to sample WingType(a) is always rejected.

In follow-on work, we plan to demonstrate inference

performance comparable to model-specific inference
code for a number of widely used statistical models.

7 Conclusions

We have demonstrated a significant improvement in in-
ference performance for models written in the BLOG
language. Our Gibbs sampling algorithm for CBNs
and our compiler techniques for generating efficient
inference code are generally applicable to all open-
universe stochastic languages.
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