Supplementary Material: Variational Training for
Large-Scale Noisy-OR Bayesian Networks

Geng Ji'?  Dehua Cheng?  Huazhong Ning>* Changhe Yuan>*
Hanning Zhou?  Liang Xiong”>  Erik B. Sudderth'
'UC Irvine 2Facebook Al 3WeRide.ai 4CUNY Queens College

A VARIATIONAL BOUND IS
CONCAVE IN r

For each node i € {H U O*} of some document d, the
subset of terms in the variational bound of Eq. (9) that
depend on auxiliary variables r; can be written as:

Lai(ri) = Z TroosiQi [f (ki) — F(wosi)].
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The first partial derivative of this variational bound is
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and its second partial derivatives equal
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Here, the function
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is the second derivative of f(a). Thus on the convex set
of auxiliary parameters defined by Eq. (7), the (diagonal)
Hessian matrix of L; is negative definite, and Lg;(r;) is
a strictly concave function of r;.

B INITIALIZATION OF r

We show that setting r,—,; < wg—s; globally optimizes
our variational objective whenever the activation proba-
bilities gy, for all parent nodes k € P(i) are equal. To
prove this, note that optimizing Eq. (9) with respect to
r,—; 1S equivalent to maximizing

> res |:f(w0~>i + ij%) - f(wow)}- (B.1)
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Given the non-negativity and normalization constraints
in Eq. (7), we can apply Jensen’s inequality in the oppo-
site direction of typical variational derivations:

Z Th—si [f (wom + f:ﬂl) - f(woai)}
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= f(w(Hz' + Z wk*}i) — fwoi).
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The bound in the second line of Eq. (B.Z) is achieved
with equality if and only if wg—,; + ‘:::1 is constant for
all parent nodes, which occurs when 75 —; X Wg—y;.
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