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A VARIATIONAL BOUND IS
CONCAVE IN r

For each node i ∈ {H ∪ O+} of some document d, the
subset of terms in the variational bound of Eq. (9) that
depend on auxiliary variables ri can be written as:

Ldi(ri) =
∑

k∈P(i)

rk→iqk
[
f (uk→i)− f(w0→i)

]
.

The first partial derivative of this variational bound is

∂Ldi

∂rk→i
= qk

(
f (uk→i)− f(w0→i)−

wk→i

rk→i
f ′(uk→i)

)
,

and its second partial derivatives equal

∂2Ldi

∂rk→i∂r`→i
= 0,

∂2Ldi

∂r2k→i

= qk
w2

k→i

r3k→i

f ′′(uk→i).

Here, the function

f ′′(a) =
− exp(a)(

exp(a)− 1
)2 < 0

is the second derivative of f(a). Thus on the convex set
of auxiliary parameters defined by Eq. (7), the (diagonal)
Hessian matrix of Ldi is negative definite, and Ldi(ri) is
a strictly concave function of ri.

B INITIALIZATION OF r

We show that setting rk→i ∝ wk→i globally optimizes
our variational objective whenever the activation proba-
bilities qk for all parent nodes k ∈ P(i) are equal. To
prove this, note that optimizing Eq. (9) with respect to
rk→i is equivalent to maximizing∑

k∈P(i)

rk→i

[
f
(
w0→i +

wk→i

rk→i

)
− f(w0→i)

]
. (B.1)

Given the non-negativity and normalization constraints
in Eq. (7), we can apply Jensen’s inequality in the oppo-
site direction of typical variational derivations:∑

k∈P(i)

rk→i

[
f
(
w0→i +

wk→i

rk→i

)
− f(w0→i)

]
≤ f

( ∑
k∈P(i)

rk→i

(
w0→i +

wk→i

rk→i

))
− f(w0→i)

= f
(
w0→i +

∑
k∈P(i)

wk→i

)
− f(w0→i). (B.2)

The bound in the second line of Eq. (B.2) is achieved
with equality if and only if w0→i +

wk→i

rk→i
is constant for

all parent nodes, which occurs when rk→i ∝ wk→i.
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