Representation in Low-Level Visual Learning

Erik Sudderth

Brown University Department of Computer Science

Generative Models: A Caricature

Turk & Pentland 1991, Moghaddam & Pentland 1995

"Knowledge"

Training Faces

Most visual learning has used overly simplified models

What about Eigenbikes?

Representation Matters

The Traditional Solution: Dataset Selection

Caltech 101

LabelMe Excerpt, Sudderth et al., 2005

Natural Scenes, Olive & Torralba, 2001

A Success: Part-Based Models

Pictorial Structures *Fischler & Elschlager, 1973* Generalized Cylinders Marr & Nishihara, 1978 Recognition by Components Biederman, 1987

Constellation Model Perona, Weber, Welling, Fergus, Fei-Fei, 2000 to ...

Efficient Matching Felzenszwalb & Huttenlocher, 2005

Discriminative Parts Felzenszwalb, McAllester, Ramanan, 2008 to ...

Low-Level Vision: Discrete MRFs

Ising and Potts Markov Random Fields

$$p(z) = \frac{1}{Z(\beta)} \prod_{(s,t) \in E} \psi_{st}(z_s, z_t)$$

$$\log \psi_{st}(z_s, z_t) = \begin{cases} \beta_{st} > 0 & z_s = z_t \\ 0 & \text{otherwise} \end{cases}$$

Maximum Entropy model with these (intuitive) features.

Previous Applications

- Interactive foreground segmentation
- Supervised training for known categories

...but very little success at segmentation of unconstrained natural scenes.

GrabCut: Rother, Kolmogorov, & Blake 2004

Verbeek & Triggs, 2007

Region Classification with Markov Field Aspect Models

Verbeek & Triggs, CVPR 2007

10-State Potts Samples

States sorted by size: largest in blue, smallest in red

1996 IEEE DSP Workshop

The Ising/Potts model is not well suited to segmentation tasks

R.D. Morris X. Descombes J. Zerubia INRIA, 2004, route des Lucioles, BP93, Sophia Antipolis Cedex, France.

Figure 1. $< N(\mathbf{x}) > vs \beta$ for $64 \times 64 \times 4$ -state Potts model

 $N(z) \rightarrow \frac{\text{number of edges on which}}{\text{states take same value}}$

→ edge strength

Even within the *phase transition* region, samples lack the *size distribution* and *spatial coherence* of real image segments

Geman & Geman, 1984

128 x128 grid 8 nearest neighbor edges K = 5 states Potts potentials: $\beta = 2/3$

200 Iterations

10,000 Iterations

Spatial Pitman-Yor Processes

- Cut random *surfaces* (Gaussian processes) with *thresholds*
- Surfaces define *layers* that occlude regions farther from the camera

Technical Challenges

- Learn statistical biases that are consistent with human segments
- Inference problem: find the latent segments underlying an image

Improved Learning & Inference

Ghosh & Sudderth, in preparation, 2011 (image from Berkeley Dataset)

Improved Learning & Inference

Ghosh & Sudderth, in preparation, 2011 (image from Berkeley Dataset)

Improved Learning & Inference

Ghosh & Sudderth, in preparation, 2011 (image from Berkeley Dataset)

Showing only most likely mode, but model provides posterior distribution over (non-nested) segmentations of varying resolution and complexity.

Human Image Segmentations

Sign in (why?)

There are 299506 labelled objects

Polygons in this image (IMG, XML)

sky buildinas building occluded building building cars side van side occluded cars side car side occluded car side occluded car side crop buildinas building person walking occluded sidewalk fence road window window window

Labels for more than 29,000 segments in 2,688 images of natural scenes

Statistics of Human Segments

How many objects are in this image?

Object sizes follow a power law

Labels for more than 29,000 segments in 2,688 images of natural scenes

Estimating Image Motion

Motion in Layers

Wang & Adelson, 1994

Darrell & Pentland, 1991, 1995

Jojic & Frey, 2001

Weiss 1997

Optical Flow Estimation

Middlebury Optical Flow Database (Baker et al., 2011)

Ground truth optical flow (occluded regions in black, error not measured)

Optical Flow: A Brief History

Quadratic (Gaussian) MRF: Horn & Schunck, 1981

Their model with modern parameter tuning and inference algorithms

Optical Flow: A Brief History

Robust MRF: Black & Anandan, 1996; Black & Rangarajan, 1996

Their model with modern parameter tuning and inference algorithms

Optical Flow: A Brief History

Refined Robust MRF: Sun, Roth, & Black, 2010

Optical Flow in Layers

Sun, Sudderth, & Black, NIPS 2010

Explicitly models occlusion via support of ordered layers, rather than treating as unmodeled outlier.

Current lowest average error on Middlebury benchmark

Optical Flow Estimation

Ground Truth: Middlebury Optical Flow Database

Ground truth optical flow (occluded regions in black, error not measured)

Layers, Depth, & Occlusion

Older layered models had unrealistically simple models of layer flow & shape, or did not explicitly capture depth order when modeling occlusions.

Questions?

