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Parsing Visual Scenes
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Are Images Bags of Features?

Inspired by the successes of topic models for text data,
some have proposed learning from local image features
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First Approach: Fei-Fei & Perona 2005, Sivic et. al. 2005
 Ignore spatial structure entirely (bag of “visual words”)

Second Approach: Russell et. al. 2006, Todorovic & Ahuja 2007
e Cluster features via one or more bottom-up segmentations



Segmentation: Mean Shift

EDISON: Comaniciu & Meer, 2002

o Cluster by modes of appearance features
e Often sensitive to bandwidth parameter
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Segmentation: Normalized Cuts
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Shi & Malik 2000; Fowlkes, Martin, & Malik 2003
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 Implicit bias towards equal-sized regions |

 Is this a good model for real scenes?
Labelje



Segmentation: New Approach
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Spatially Dependent Pitman-Yor Processes
e Automatically infers the number of segments

 Handles regions of widely varying size and appearance
« Statistical framework for discovering shared categories



Outline

Natural Scene Statistics R
» Counts, partitions, and power laws -
Spatial Priors for Image Partitions

» What's wrong with Potts models? \‘

» Hierarchical Pitman-Yor processes

» Spatial dependence via Gaussian processes

Unsupervised Image Analysis

» Image segmentation

» Visual category discovery



Priors on Counts & Partitions

Segmentation as Partitioning

« How many regions does this image contain?
 What are the sizes of these regions?

Unsupervised Object Category Discovery

« How many object categories have | observed?
 How frequently does each category appear?



Pitman-Yor Processes

The Pitman-Yor process defines a distribution on
Infinite discrete measures, or partitions
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v ~ Beta(l — a,b + ka) Dirichlet process:
a=20



Why Pitman-Yor?

Generalizing the Dirichlet Process

» Distribution on partitions leads to a
generalized Chinese restaurant process

» Special cases arise as excursion lengths
for Markov chains, Brownian motions, ...

Power Law Distributions
DP PY

Number of unique

clusters in N O(b l0g N) O(bNa)

observations

Size of sorted 1+b —k 1
cluster weight k O (ab( b ) O aabk a
Natural Language Goldwater, Griffiths, & Johnson, 2005
Statistics Teh, 2006




Natural Scene Statistics

e Does Pitman-Yor prior match human segmentation?
 How do statistics vary across scene categories?

Oliva & Torralba, 2001



Manual Image Segmentation
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Labels for more than 29,000 segments in 2,688 images of natural scenes



Object Sizes and Counts
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Object Name Frequencies

Proportion of forest Segments
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Hierarchical Pitman-Yor Model

Set of segments or layers
Pitman-Yor prior: l 04 l ' Y | Pitman-Yor prior:
segment sizes » «

l label frequencies
No supervision : (0]

aside from
Pitman-Yor
hyperparameters ' )« Set of global, shared
visual categories
Set of features in image | Set of images

(superpixel color & texture)
Hierarchical DP: Teh et. al. 2004 Hierarchical PY N-gram: Teh 2006
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Outline

Natural Scene Statistics
» Counts, partitions, and power laws

» Hierarchical Pitman-Yor processes
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Spatial Priors for Image Partitions

» What’'s wrong with Potts models? ‘

» Spatial dependence via Gaussian processes

Unsupervised Image Analysis

» Image segmentation

» Visual category discovery



Discrete Markov Random Fields
Ising and Potts Models

p(z) = Z(ﬁ) . gleg%t(z&zlt)

Bst > 0 Zs = Zz{
0 otherwise

109 st (2s, 2¢) = {

Previous Applications

i i Rother,
* Interactive foreground segmentation Kolmogorov, &Blake 2004

e Supervised training for known categories

...but very little success at segmentation of
unconstrained natural scenes.

Verbeek & Triggs, 2007
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States sorted by size: largest in blue, smallest in red



1996 IEEE DSP Workshop

The Ising/Potts model is not well suited to segmentation
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Figure 1. < N(x) > vs 3 for 64 x 64 x 4-state Potts

model
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Even within the phase
transition region, samples
lack the size distribution
and spatial coherence of
real Image segments



M 128 x128 grid

- 8 nearest neighbor edges

- K =5 states

Potts potentials: (3 = 2/3
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Spatially Dependent Pitman-Yor
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(as in Level Set Methods)

e Assign each pixel to - ‘

the first surface which
exceeds threshold

(as in Layered Models) \f
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Generalized Spatial DP, 2007 .
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Spatially Dependent Pitman-Yor

Non-Markov
« Gaussian
Processes:
~ N(0,1)
uk:?, 1wy

PY prior:
Segment size

v, ~ Beta(l — a, b+ ka)

. Normal

Ei CDF
®(u)
=min{k | up; < P v)} « Feature |
s MUlt(ta) Assignments




Preservation of PY Marginals
Why Ordered Layer Assignments?

k—1
= v || (1 — vp)
=1

T, m, T, T,

Uk:]fp(zi=k|zi#k—l,...,l)

Stick Size Prior ===p Random Thresholds

Lh

\.' v, ~ Beta(l —a, b+ ka) - U = P (vp)

F=%
o
I

Probability Density

Probability Density

0.1

= - — 0
0.2 0.4 0.6 0.8 1 —4

-2 0 >
Stick—Breaking Proportion Stick—Breaking Threshold

GC‘-‘-




Samples from Spatial Prior
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Learning & Inference

probability that features at locations

GP Covariance
C:: => [ " .
L] (y;, yj) are in the same segment

» Bag of features:
Cij = 0(y; — y;)
» Image distance

gy
oy
L]
T ea,
[]

- - b
——n [ !

UC Berkeley Pb
boundary detector

» Intervening countours .
Cij = B—A(yi—:@[j)z

Mean Field Variational Inference

» Factorized Gaussian posteriors on thresholds &
eigenvector expansion of dense covariance

» Jointly optimize surface & threshold via conjugate gradient
» Initialize by annealing to reduce local optima



Outline

Natural Scene Statistics
» Counts, partitions, and power laws
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» What's wrong with Potts models? ‘

» Hierarchical Pitman-Yor processes

Spatial Priors for Image Partitions

» Spatial dependence via Gaussian processes

Unsupervised Image Analysis

» Image segmentation

» Visual category discovery
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Mountain Segments: PY-Edge

LabelMe Segments:




Mountain Baseline: NCuts

LabelMe Segments:




Visual Categories: Coast




Visual Categories: Tallbuilding
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Challenge Structured Objects
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LabelMe Segments:




Conclusions

Dependent Pitman-Yor Processes allow...

»> efficient variational parsing of scenes
Into unknown numbers of segments

» empirically justified power law priors

» learning of shared appearance models
from related images & scenes

Future Directions

» parallelized, scalable learning from
extremely large image databases

» nonparametric models of dependency
In other application domains
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