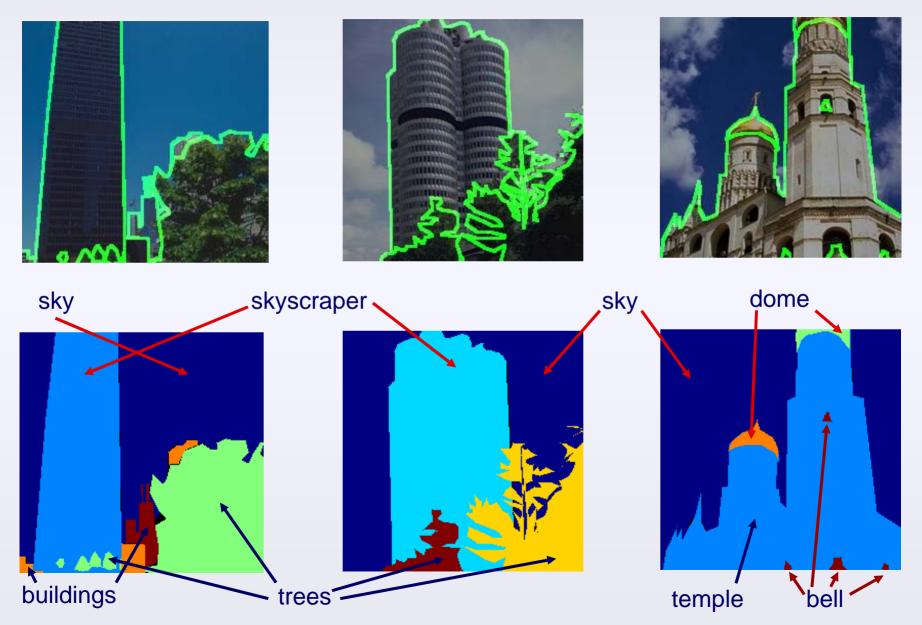
Shared Segmentation of Natural Scenes ^{using} Dependent Pitman-Yor Processes

Erik Sudderth & Michael Jordan University of California, Berkeley

Parsing Visual Scenes

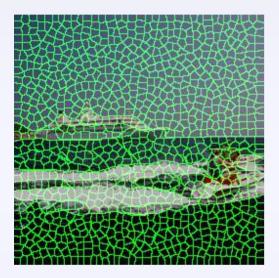


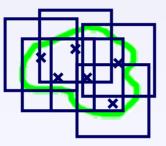
Are Images Bags of Features?

Inspired by the successes of *topic models* for text data, some have proposed learning from *local image features*

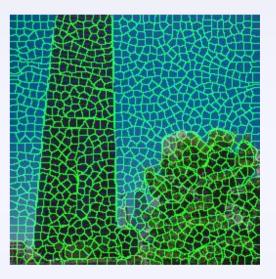
Are Images Bags of Features?

Inspired by the successes of *topic models* for text data, some have proposed learning from *local image features*





Compute color & texture descriptors for each superpixel



First Approach:

Fei-Fei & Perona 2005, Sivic et. al. 2005

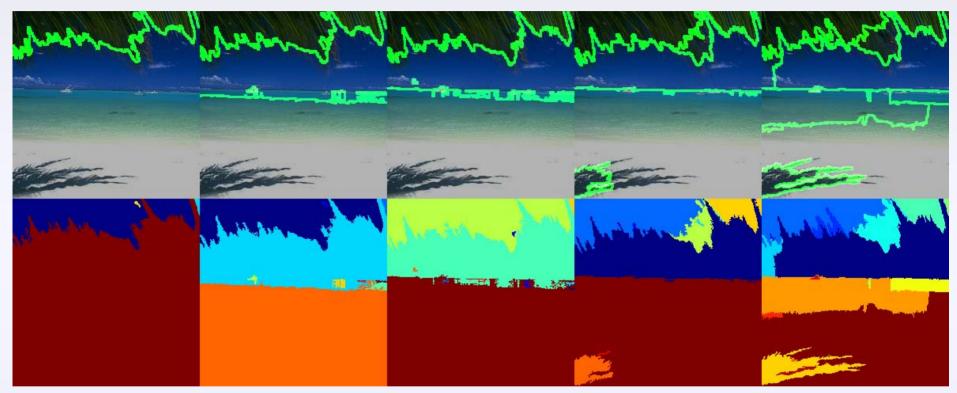
Ignore spatial structure entirely (bag of "visual words")

Second Approach:

Russell et. al. 2006, Todorovic & Ahuja 2007

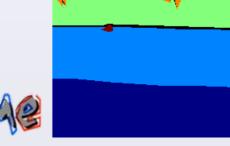
• Cluster features via one or more *bottom-up segmentations*

Segmentation: Mean Shift

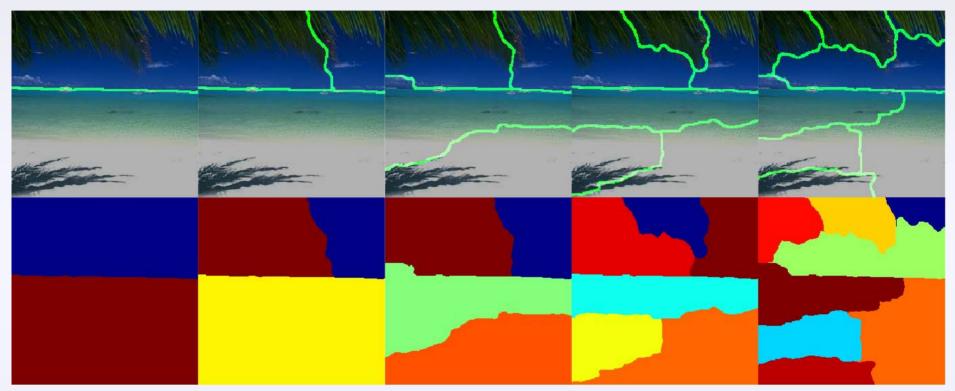


EDISON: Comaniciu & Meer, 2002

- Cluster by modes of appearance features
- Often sensitive to bandwidth parameter

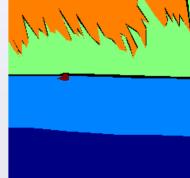


Segmentation: Normalized Cuts

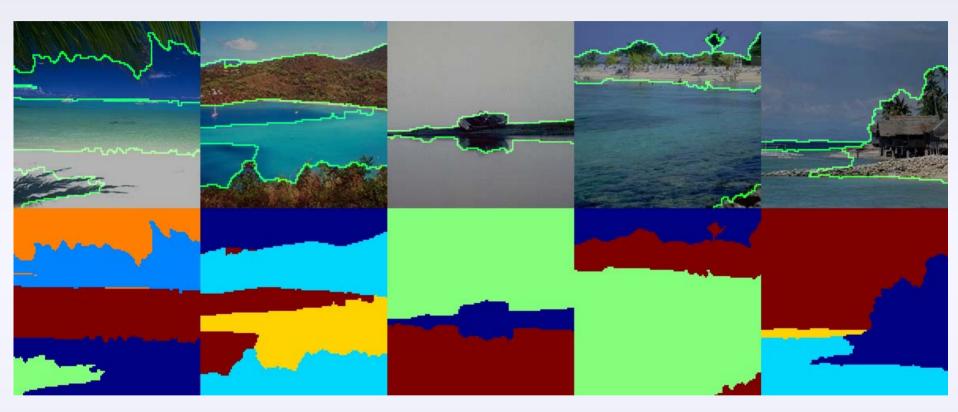


Shi & Malik 2000; Fowlkes, Martin, & Malik 2003

- Implicit bias towards equal-sized regions
- Is this a good model for real scenes?



Segmentation: New Approach



Spatially Dependent Pitman-Yor Processes

- Automatically infers the *number* of segments
- Handles regions of widely varying size and appearance
- Statistical framework for discovering *shared* categories

Outline

Natural Scene Statistics

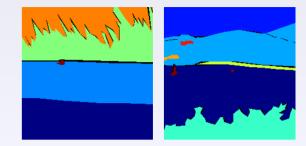
- Counts, partitions, and power laws
- Hierarchical *Pitman-Yor* processes

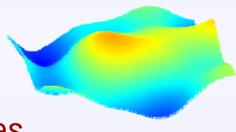
Spatial Priors for Image Partitions

- > What's wrong with Potts models?
- Spatial dependence via Gaussian processes

Unsupervised Image Analysis

- Image segmentation
- Visual category discovery





Priors on Counts & Partitions

Segmentation as Partitioning

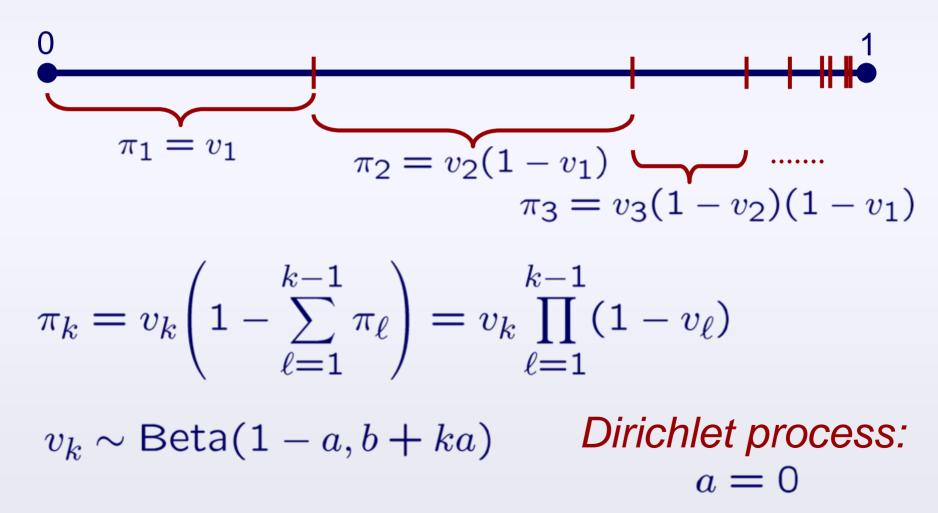
- How many regions does this image contain?
- What are the sizes of these regions?

Unsupervised Object Category Discovery

- How many object categories have I observed?
- How frequently does each category appear?

Pitman-Yor Processes

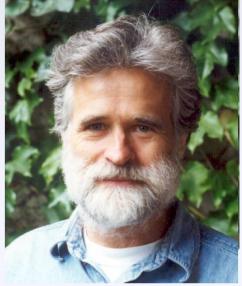
The *Pitman-Yor process* defines a distribution on infinite discrete measures, or *partitions*



Why Pitman-Yor?

Generalizing the Dirichlet Process

- Distribution on partitions leads to a generalized Chinese restaurant process
- Special cases arise as excursion lengths for Markov chains, Brownian motions, ...



Jim Pitman

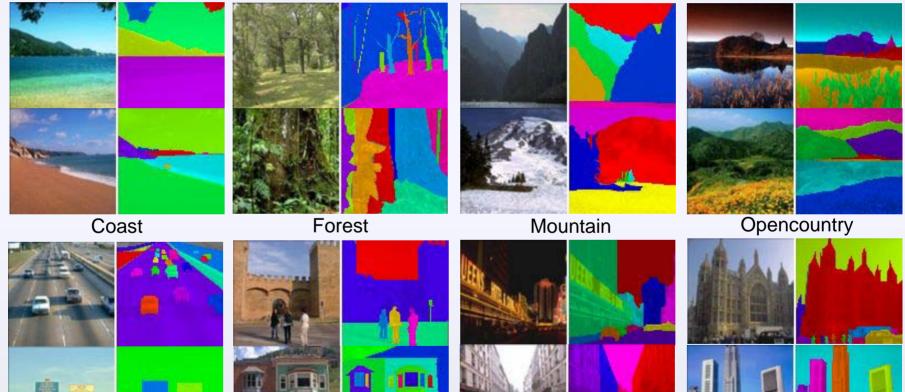
Power Law Distributions

	DP	ΡΥ
Number of unique clusters in N observations	$\mathcal{O}(b \log N)$	$\mathcal{O}(bN^a)$
Size of sorted cluster weight k	$\mathcal{O}\left(\alpha_b \left(\frac{1+b}{b}\right)^{-k}\right)$	$\mathcal{O}\left(\alpha_{ab}k^{-rac{1}{a}} \right)$

Natural Language Statistics Goldwater, Griffiths, & Johnson, 2005 Teh, 2006

Natural Scene Statistics

- Does Pitman-Yor prior match human segmentation?
- How do statistics vary across scene categories?



Insidecity

Tallbuilding Oliva & Torralba, 2001

Manual Image Segmentation

Sign in (why?)

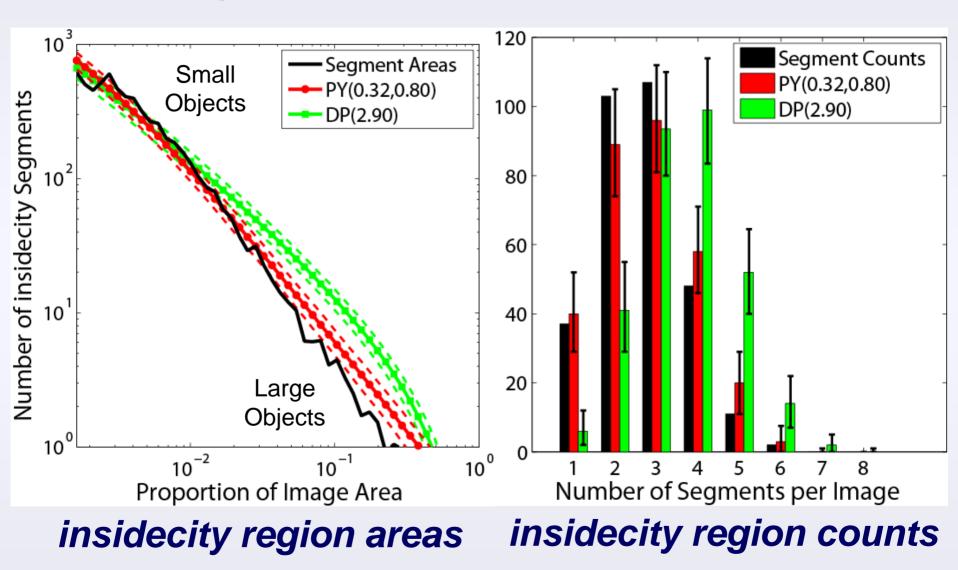
There are 299506 labelled objects

Polygons in this image (IMG, XML)

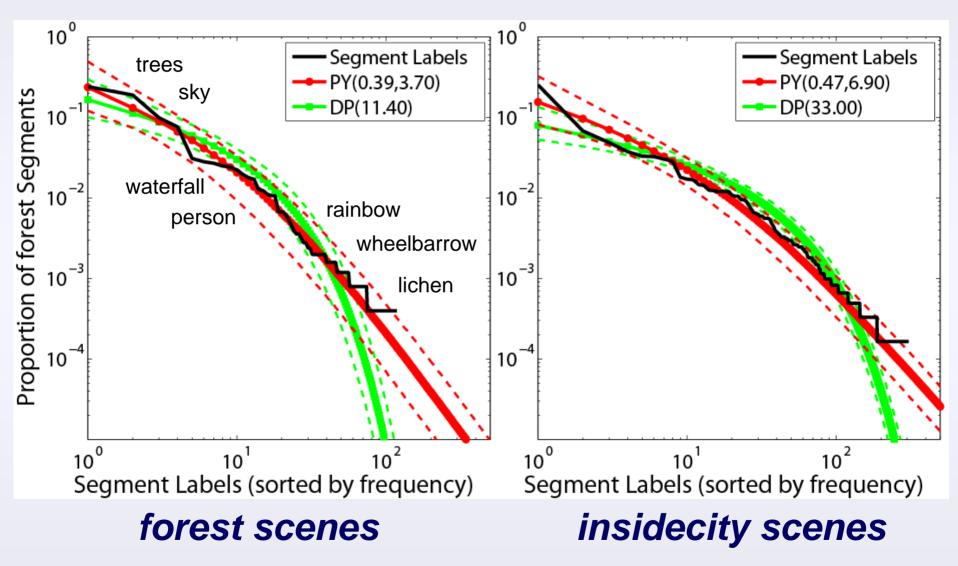
sky buildinas building occluded buildina buildina cars side van side occluded cars side car side occluded car side occluded car side crop buildings buildina person walking occluded sidewalk fence road window window window

Labels for more than 29,000 segments in 2,688 images of natural scenes

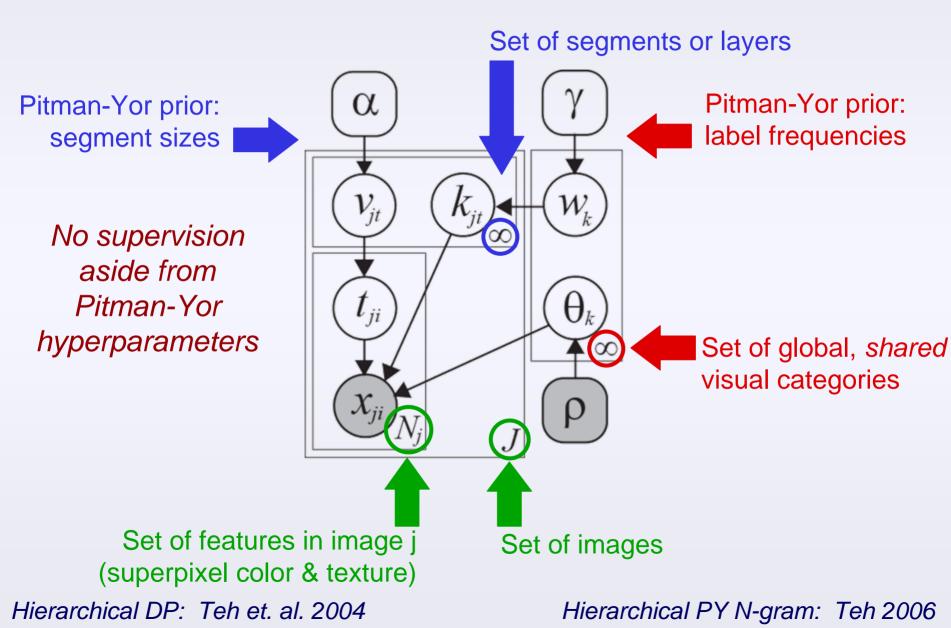
Object Sizes and Counts



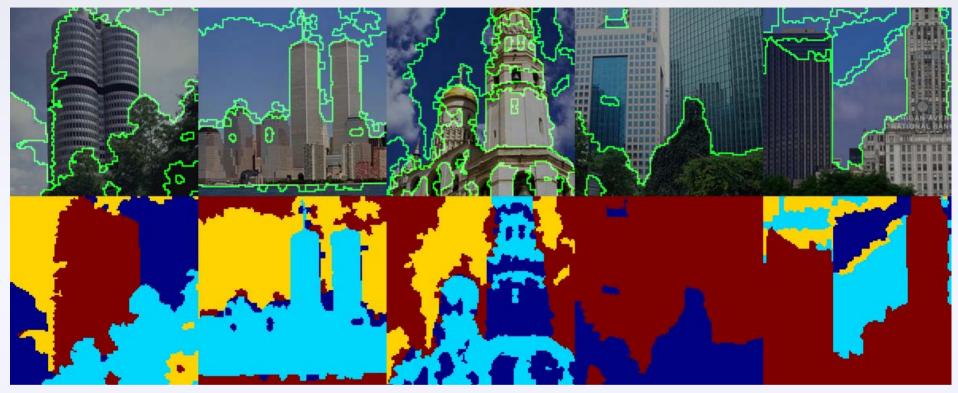
Object Name Frequencies

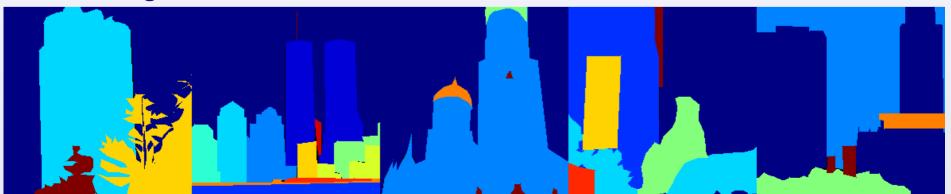


Hierarchical Pitman-Yor Model



Bag of Features Segmentation





Outline

Natural Scene Statistics

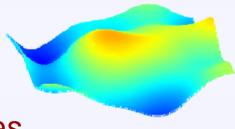
- > Counts, partitions, and power laws
- Hierarchical *Pitman-Yor* processes

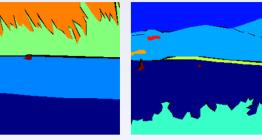
Spatial Priors for Image Partitions

- > What's wrong with Potts models?
- Spatial dependence via Gaussian processes

Unsupervised Image Analysis

- > Image segmentation
- Visual category discovery





Discrete Markov Random Fields

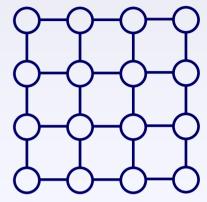
Ising and Potts Models

$$p(z) = \frac{1}{Z(\beta)} \prod_{(s,t)\in E} \psi_{st}(z_s, z_t)$$
$$\log \psi_{st}(z_s, z_t) = \begin{cases} \beta_{st} > 0 & z_s = z_t \\ 0 & \text{otherwine} \end{cases}$$

Previous Applications

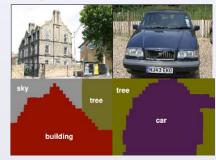
- Interactive foreground segmentation
- Supervised training for known categories

...but very little success at segmentation of unconstrained natural scenes.



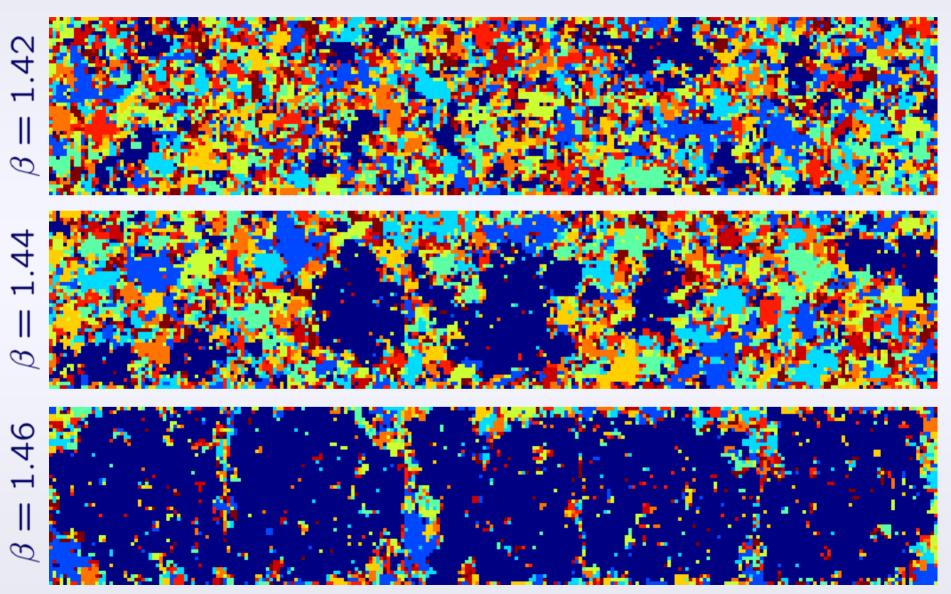
se

GrabCut: Rother, Kolmogorov, & Blake 2004



Verbeek & Triggs, 2007

10-State Potts Samples

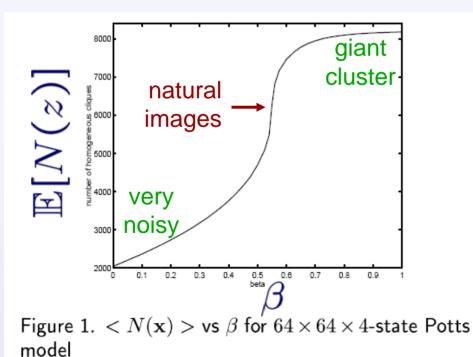


States sorted by size: largest in blue, smallest in red

1996 IEEE DSP Workshop

The Ising/Potts model is not well suited to segmentation tasks

R.D. Morris X. Descombes J. Zerubia INRIA, 2004, route des Lucioles, BP93, Sophia Antipolis Cedex, France.

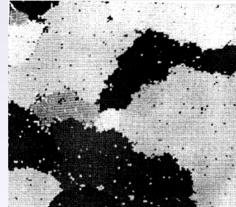


 $N(z) \rightarrow \frac{\text{number of edges on which}}{\text{states take same value}}$

→ edge strength

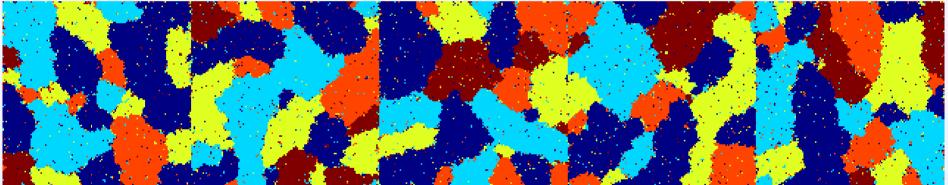
Even within the *phase transition* region, samples lack the *size distribution* and *spatial coherence* of real image segments

Geman & Geman, 1984



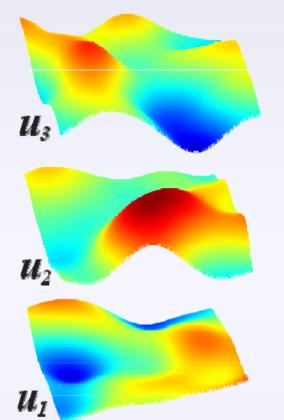
128 x128 grid 8 nearest neighbor edges K = 5 states Potts potentials: $\beta = 2/3$

200 Iterations

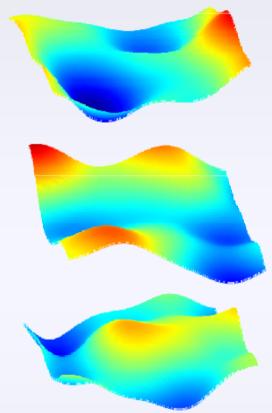


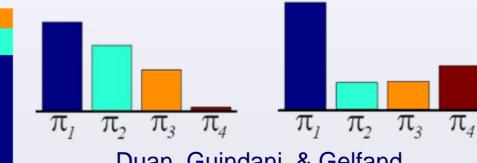
10,000 Iterations

Spatially Dependent Pitman-Yor

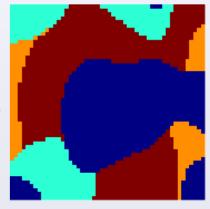


- Cut random *surfaces* (samples from a GP) with *thresholds* (as in Level Set Methods)
- Assign each pixel to the *first* surface which exceeds threshold (as in Layered Models)

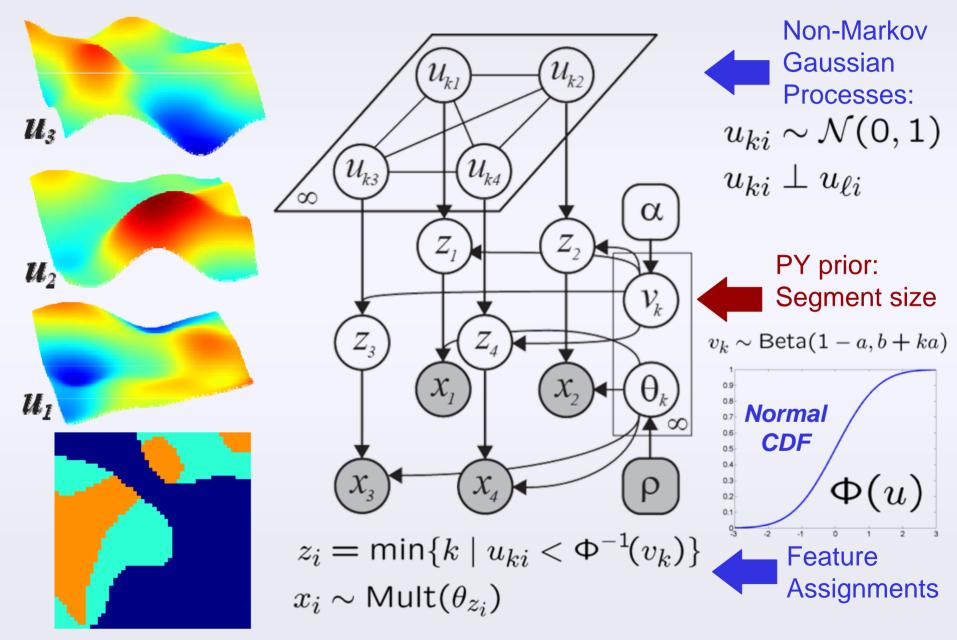




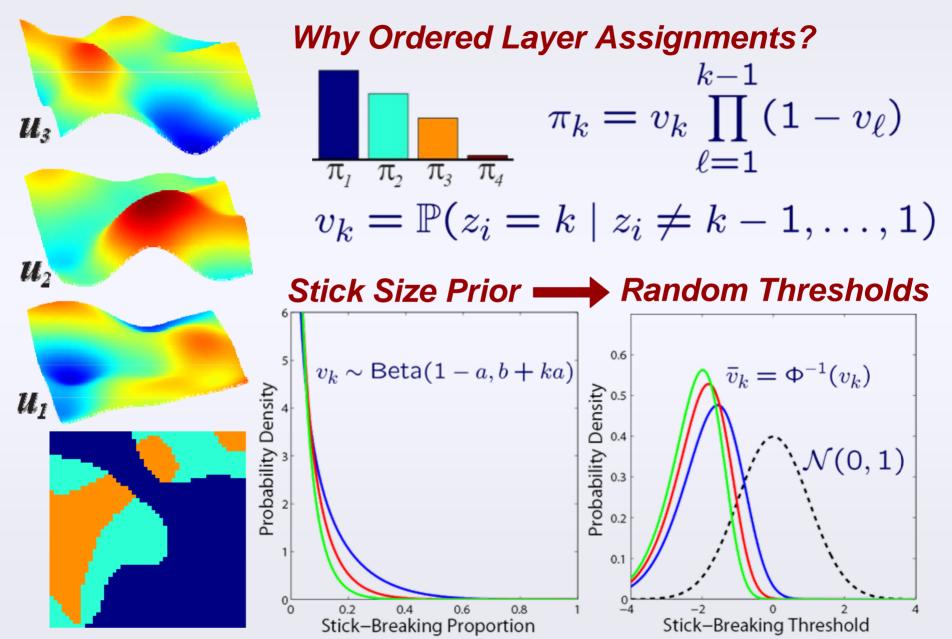
Duan, Guindani, & Gelfand, Generalized Spatial DP, 2007



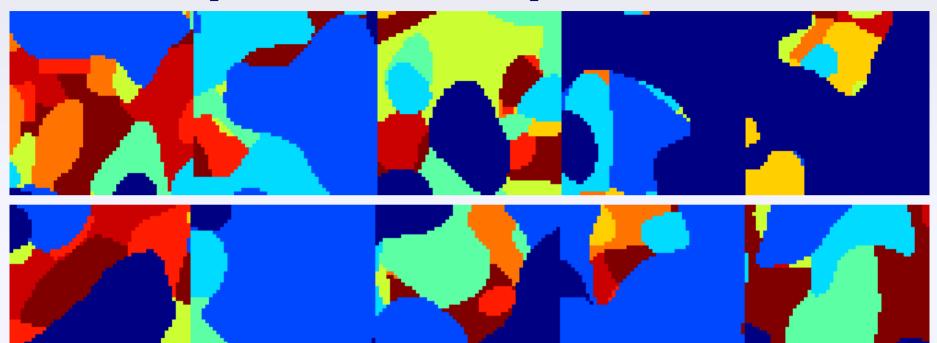
Spatially Dependent Pitman-Yor



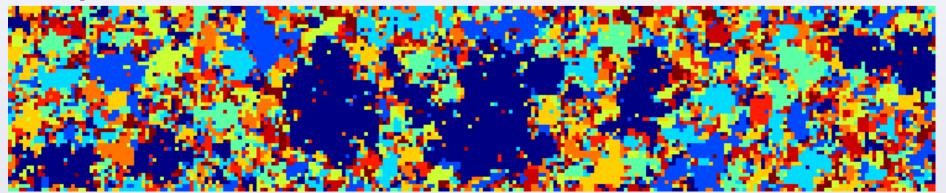
Preservation of PY Marginals



Samples from Spatial Prior



Comparison: Potts Markov Random Field



Learning & Inference

GP Covariance

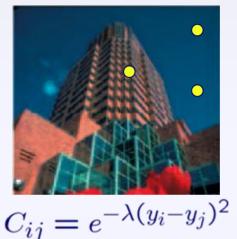
 $C_{ij} \iff$

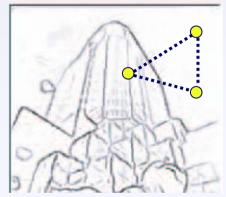
probability that features at locations (y_i, y_j) are in the same segment

Bag of features:

$$C_{ij} = \delta(y_i - y_j)$$

- Image distance
- Intervening countours





UC Berkeley Pb boundary detector

Mean Field Variational Inference

- Factorized Gaussian posteriors on thresholds & eigenvector expansion of dense covariance
- Jointly optimize surface & threshold via conjugate gradient
- Initialize by annealing to reduce local optima

Outline

Natural Scene Statistics

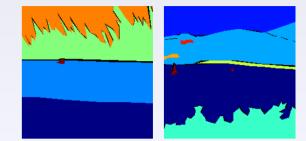
- Counts, partitions, and power laws
- Hierarchical *Pitman-Yor* processes

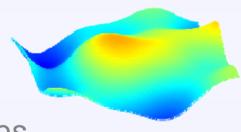
Spatial Priors for Image Partitions

- > What's wrong with Potts models?
- Spatial dependence via Gaussian processes

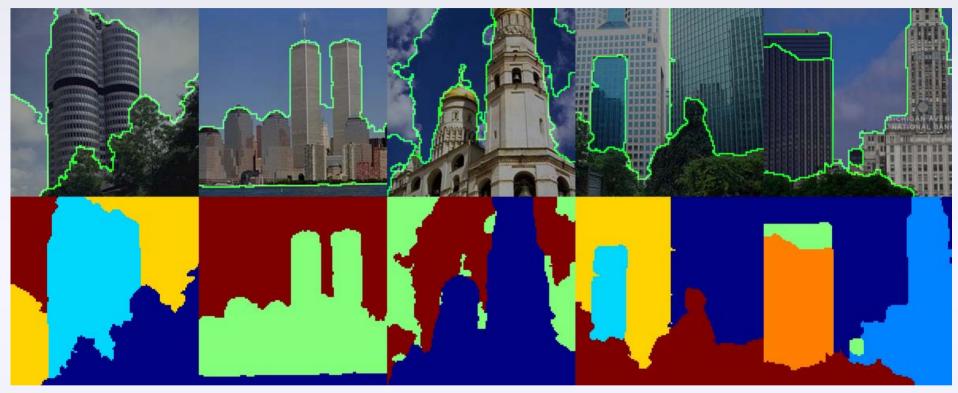
Unsupervised Image Analysis

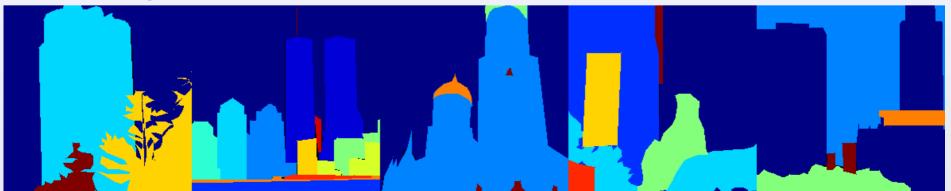
- Image segmentation
- Visual category discovery



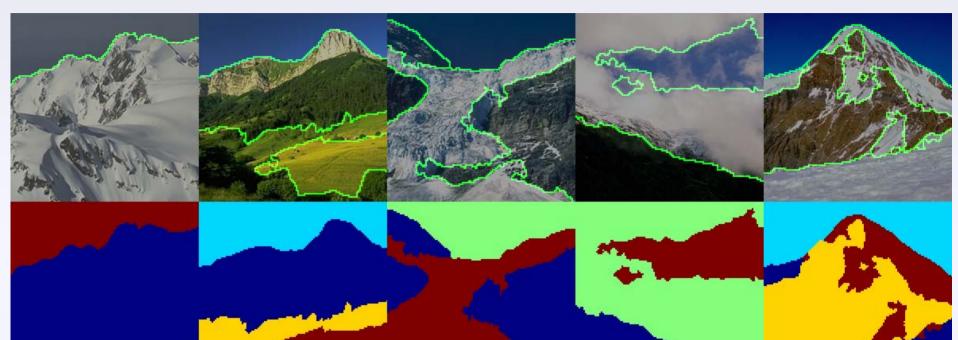


Tallbuilding Segments: PY-Edge

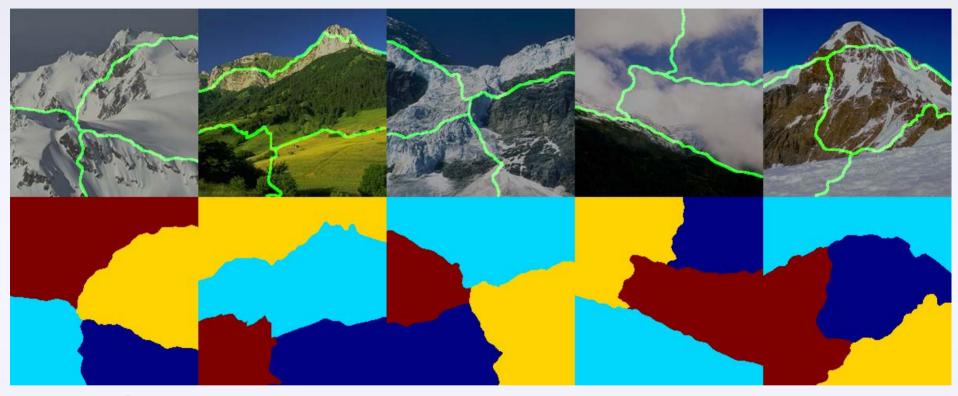


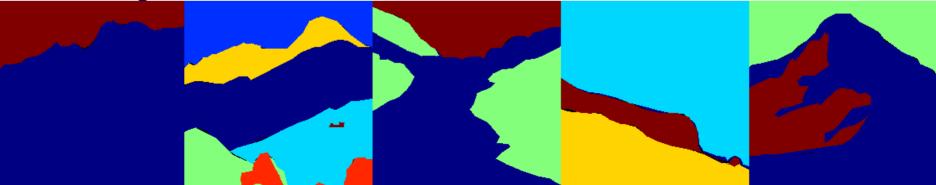


Mountain Segments: PY-Edge



Mountain Baseline: NCuts

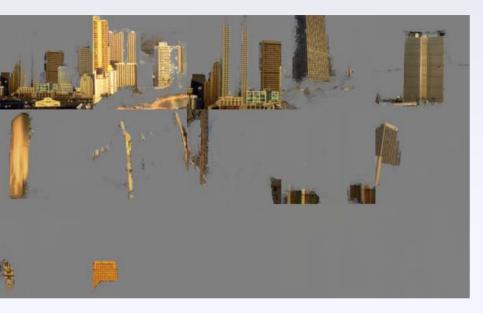


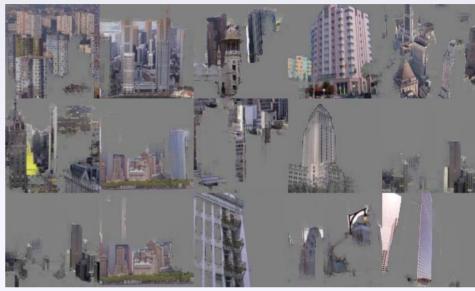


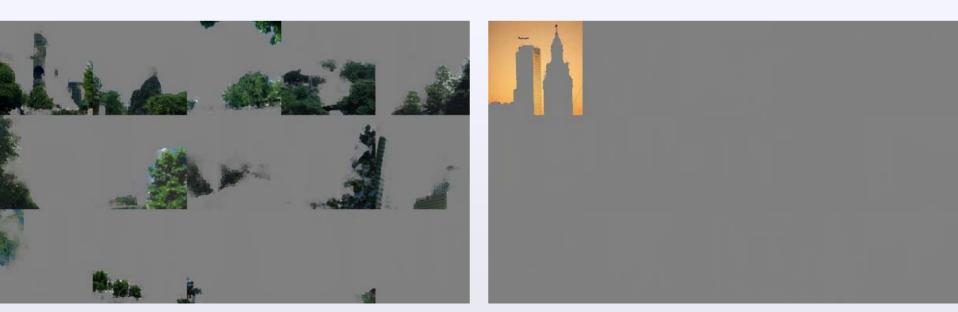
Visual Categories: Coast



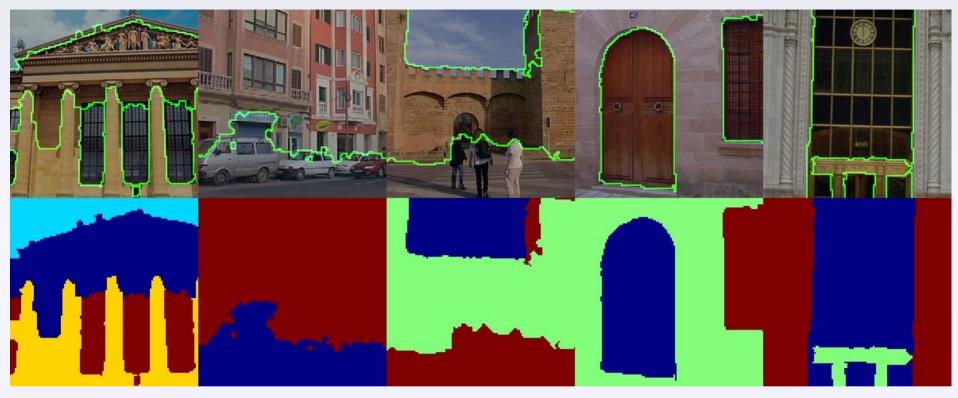
Visual Categories: Tallbuilding

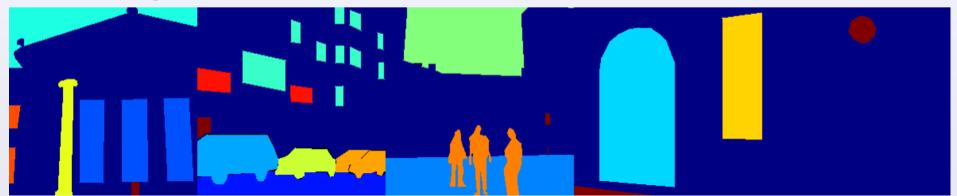






Challenge: Structured Objects





Conclusions

Dependent Pitman-Yor Processes allow...

- efficient variational *parsing* of scenes into unknown numbers of segments
- empirically justified power law priors
- Iearning of shared appearance models from related images & scenes

Future Directions

- parallelized, scalable learning from extremely large image databases
- nonparametric models of dependency in other application domains

