

Reliable Variational Learning for Hierarchical Dirichlet Processes

Erik Sudderth
Brown University Computer Science

Joint work with
Michael Hughes \＆Dae II Kim

Bayesian Nonparametric Clustering

General model composition

BNP Mixture Models

Cluster Frequency Graph
Cluster Assignment Graph

Stick-breaking prior on cluster frequencies:

Dirichlet Process:
$v_{k} \sim \operatorname{Beta}(1, \alpha)$
Pitman-Yor Process:
$v_{k} \sim \operatorname{Beta}(1-\sigma, \alpha+k \sigma)$
Also finite Dirichlet, ...

BNP Admixture (Topic) Models

Cluster Frequency Graph

There are reasons to believe that the genetics of an organism are likely to shift due to the extreme changes in our climate. To protect them, our politicians must pass environmental legislation that can protect our future species from becoming extinct...

Cluster Assignment Graph

$$
z_{d n} \sim \operatorname{Cat}\left(\pi_{d}\right)
$$

Hierarchical DP (Teh et al., 2006) prior on group-specific cluster frequencies, or doc-specific topic frequencies:

$$
\begin{aligned}
& \pi_{0} \sim \operatorname{Stick}(\gamma) \\
& \pi_{d} \sim \operatorname{DP}\left(\alpha \pi_{0}\right)
\end{aligned}
$$

> Mean cluster frequencies:

$$
\mathbb{E}\left[\pi_{d}\right]=\pi_{0}
$$

> Sparse topic usage for

$$
\alpha<1
$$

BNP Hidden Markov Models

Cluster Frequency Graph

BNP Hidden Markov Trees

Cluster Frequency Graph

Cluster Assignment Graph

Natural Language Dependence
(Finkel et al., DT NN IN DT NN VBD PRP\$ NN TO VB NN EOS ACL 2007) The man in the corner taught his dachshund to play golf EOS

Learning Structured BNP Models

Genetics, Climate Change, Politics, ...
 There are reasons to believe that the genetics of an organism are likely to shift due to the extreme changes in our climate. To protect them, our politicians must pass environmental legislation that can protect our future species from becoming extinct...

> Nonparametric: Data-driven discovery of model structure: topics, behaviors, objects, communities...
> Reliable: Structure driven by data and modeling assumptions, not heuristic algorithm initializations
> Parsimonious: Want a single model structure with good predictive power, not full posterior uncertainty

Hierarchical Dirichlet Process (Teh et al., JASA 2006)

Variational Inference for Dirichlet Process Mixtures

Dirichlet Process Mixtures

GOAL.: Partition data into an a priori unknown number of discrete clusters.

$$
\phi_{k} \sim H\left(\lambda_{0}\right) \quad \pi \sim \operatorname{Stick}(\alpha)
$$

Each observation $n=1,2, \ldots, N$:
$>$ Cluster assignment: $z_{n} \sim \operatorname{Cat}(\pi)$
$>$ Observed value: $\quad x_{n} \sim \mathrm{~F}\left(\phi_{z_{n}}\right)$
Exponential family with conjugate prior: $f\left(x_{n} \mid \phi_{k}\right)=\exp \left(\phi_{k}^{T} t\left(x_{n}\right)-a\left(\phi_{k}\right)\right)$ $t\left(x_{n}\right) \in \mathbb{R}^{D}$ are sufficient statistics

Variational Bounds

Bayesian Learning: Maximize the marginal likelihood of our observed data
> For any variational distribution $q(z, v, \phi)$:
$\log p\left(x \mid \alpha, \lambda_{0}\right)=\log \sum_{z} \iint p\left(x, z, v, \phi \mid \alpha, \lambda_{0}\right) d v d \phi$
$\underset{\text { Inequality }}{\text { Jensen's }} \geq \mathbb{E}_{q}\left[\log p\left(x, z, v, \phi \mid \alpha, \lambda_{0}\right)\right]-\mathbb{E}_{q}[\log q(z, v, \phi)]=\mathcal{L}(q)$

Expected log-likelihood
(negative of "average energy")

Variational entropy
> Maximizing this bound recovers true posterior:

$$
\begin{aligned}
\mathcal{L}(q)= & \log p\left(x \mid \alpha, \lambda_{0}\right) \\
& -\operatorname{KL}\left(q(z, v, \phi) \| p\left(z, v, \phi \mid x, \alpha, \lambda_{0}\right)\right)
\end{aligned}
$$

> The simplest mean field variational methods create tractable algorithms via assumed independence:

$$
q(z, v, \phi)=q(z) q(v, \phi)
$$

Approximating Infinite Models

$$
\begin{gathered}
q\left(z_{n}=k\right)=r_{n k} \begin{array}{cc}
\text { Beta } & \begin{array}{c}
\text { Exponential Family } \\
\text { Distribution } \\
\text { from Conjugate Prid }
\end{array} \\
q(z, v, \phi)=q(z) q(v, \phi)=\left[\prod_{n=1}^{N} q\left(z_{n}\right)\right] \cdot\left[\prod_{k=1}^{\infty} q\left(v_{k}\right) q\left(\phi_{k}\right)\right]
\end{array}
\end{gathered}
$$

Categorical distribution with unbounded support, and infinitely many potential clusters!

Top-Down Model Truncation

Blei \& Jordan, 2006; Ishwaran \& James, 2001
$q\left(z_{n}\right)=\operatorname{Cat}\left(z_{n} \mid r_{n 1}, r_{n 2}, \ldots, r_{n K}\right)$
$q(v, \phi)=\left[\prod_{k=1}^{K} q\left(\phi_{k}\right)\right] \cdot\left[\prod_{k=1}^{K-1} q\left(v_{k}\right)\right], \quad v_{K}=\prod_{k=1}^{K-1}\left(1-v_{k}\right)$.

Bottom-Up Assignment Truncation $\alpha=4, K=10$
Bryant \& Sudderth, 2012; Teh, Kurihara, \& Welling, 2008 $q\left(z_{n}\right)=\operatorname{Cat}\left(z_{n} \mid r_{n 1}, r_{n 2}, \ldots, r_{n K}, 0,0,0, \ldots\right)$
$q(v, \phi)=\prod_{k=1}^{\infty} q\left(v_{k}\right) q\left(\phi_{k}\right)$ For any $k>K$, optimal variational distributions equal prior \& need not be explicitly represented

Batch Variational Updates

A Bayesian nonparametric analog of Expectation-Maximization (EM)

$$
q(z, v, \phi)=\left[\prod_{n=1}^{N} q\left(z_{n} \mid r_{n}\right)\right] \cdot\left[\prod_{k=1}^{\infty} \operatorname{Beta}\left(v_{k} \mid \alpha_{k 1}, \alpha_{k 0}\right) h\left(\phi_{k} \mid \lambda_{k}\right)\right]
$$

$$
q\left(z_{n}\right)=\operatorname{Cat}\left(z_{n} \mid r_{n 1}, r_{n 2}, \ldots, r_{n K}, 0,0,0, \ldots\right) \quad \text { for some } K>0
$$

Update Assignments (The Expectation Step): For all N data,

$$
r_{n k} \propto \exp \left(\mathbb{E}_{q}\left[\log \pi_{k}(v)\right]+\mathbb{E}_{q}\left[\log p\left(x_{n} \mid \phi_{k}\right)\right]\right) \quad \text { for } k \leq K
$$

Update Cluster Parameters

 (The Other Expectation Step):$$
\begin{aligned}
& s_{k}^{0} \leftarrow \sum_{n=1}^{N} r_{n k} t\left(x_{n}\right) \\
& \lambda_{k} \leftarrow \lambda_{0}+s_{k}^{0}
\end{aligned}
$$

Expected counts and sufficient statistics are only non-zero for first K clusters.

Variational EM: Convergence

1 iteration

10 iterations

2 iterations

50 iterations

+ Likelihood bound monotonically increases to mode
- Each iteration must examine all data (SLOW)

Bayesian Model Selection

Maximizing marginal likelihood enables Bayesian model selection

$$
\log p(x) \geq \mathbb{E}_{q}\left[\log p\left(x, z, v, \phi \mid \alpha, \lambda_{0}\right)\right]-\mathbb{E}_{q}[\log q(z, v, \phi)]=\mathcal{L}(q)
$$

+ Allows Bayesian comparison of hypotheses with varying complexity K. For BNP models, MAP estimation will cause severe overfitting!
- Truncation level K is fixed, must fit many different models (EXPENSIVE)

Variational EM: Local Optima

Final clusters can be (highly) sensitive to initialization!

Result from init A

Result from init B

Result from init C

Heuristics commonly used in practice:

- Run from many different random initializations
- Use application intuition to engineer reasonable initializations
- Repeat for each complexity hypotheses (number of clusters K)

Requires expertise, not-big datasets, and often compromises in model sophistication.

Mean Field versus Loopy BP

Toroidal 9x9 Grid with Attractive Binary Potentials (Weiss 2001)

Optimize mean field via coordinate ascent on node marginals.

Objective versus Algorithm

Variational Inference Objectives:

> Collapsed variational bounds

$>$ Bethe and Kikuchi variational expansions
> Loop series expansions and cycle polytopes
$>$ Fractional, reweighted, and convexified variational methods > ...

Variational Inference Algorithms:

$>$ Coordinate ascent: Pick one free parameter, fix others, take step towards improving objective
$>$ For non-convex objectives, we need improved algorithms!

Why not MCMC? It's asymptotically exact...

MCMC for DP Mixtures

Can we sample from the posterior distribution over data clusterings?

Given any fixed partition z:
$>$ Marginalize cluster frequencies via species sampling prediction rule (Chinese restaurant process)
$>$ Via conjugacy of base measure to exponential family likelihood, marginalize cluster shape parameters

Gilbbs Sampler: (Neal 1992, MacEachern 1994)
 Iteratively resample cluster assignment for one observation, fixing all others.

Mixing for DP Mixture Samplers

MNIST: 60,000 digits projected to 50 dimensions via PCA.
5047921386375809
4469456787609757
2927186423949216
2359176256799370

$>$ Five random initializations from $K=1, K=50, K=300$ clusters
$>$ Need good initialization for good results. Can we do better?

MCMC for HDP-HMM Diarization

GOAL: Recover unknown set of people, and when each one spoke, from audio data

N sequences

Blocked Gibbs sampler based on dynamic programming:

Fox, Sudderth, Jordan, \& Willsky, AOAS 2011

Reversible Jump MCMC?

Sequentially allocated split-merge RJ-MCMC for BP-HMM:

Correct MCMC proposals versus annealed acceptance ratio. Combinatorial factors overwhelming for big datasets!

Fox, Hughes, Sudderth, \& Jordan, AOAS 2014

Memoized Variational Inference for Dirichlet Process Mixture Models

Michael Hughes \& E. Sudderth
2013 Conference on Neural Information Processing Systems

	/	9	8	7	6			0	
4	8	9	5	9	8	4	5	0	8
3	8	5	5	2	9	7	6	O	7
6	6	8	0	2	\bigcirc	3	\bigcirc	3	8
pl	5	0	3	7	2	0	9	9	1
si	4	3	2	4	0	7	9	2	6
0	7	-	2.	9	5	3	6	3	2
4	3	3	7	6	2	8	2	\bigcirc	4
7	${ }^{2}$	2	3	3	3		4		

Stochastic Variational Inference

Hoffman, Blei, Paisley, \& Wang, JMLR 2013
Stochastically partition large dataset into B smaller batches:

Update: For each batch b
$\left.\begin{array}{l}r\left(\mathcal{B}_{b}\right) \leftarrow \operatorname{Estep}\left(x\left(\mathcal{B}_{b}\right), \alpha, \lambda\right) \\ \text { For cluster } \mathrm{k}=1,2, \ldots \mathrm{~K}: \\ s_{k}^{b} \leftarrow \sum_{n \in \mathcal{B}_{b}} r_{n k} t\left(x_{n}\right) \\ \lambda_{k}^{b} \leftarrow \lambda_{0}+\frac{N}{\left|\mathcal{B}_{b}\right|} s_{k}^{b} \\ \lambda_{k} \leftarrow \rho_{t} \lambda_{k}^{b}+\left(1-\rho_{t}\right) \lambda_{k} \\ \text { give stats noisy } \\ \text { estimate of } \\ \text { (natural) } \\ \text { gradient }\end{array}\right]$
Apply similar updates to stick weights.

Data

$x\left(\mathcal{B}_{1}\right)$
$x\left(\mathcal{B}_{2}\right)$
\vdots
$x\left(\mathcal{B}_{b}\right)$

$x\left(\mathcal{B}_{B}\right)$
Learning Rate

$$
\rho_{t} \triangleq\left(\rho_{0}+t\right)^{-\kappa}
$$

Robbins-Monro convergence condition:

$$
\sum_{t} \rho_{t} \rightarrow \infty \quad \kappa \in(.5,1]
$$

Properties of stochastic inference:

+ Per-iteration cost is low
+ Initial progress is rapid
- Objective is highly non-convex, so convergence guarantee is weak
- Sensitivity to batch size \& learning rate

Memoized Variational Inference

Hughes \& Sudderth, NIPS 2013; Neal \& Hinton 1999
Memoization: Storage (caching) of results of previous computations

Update: For each batch b
$r\left(\mathcal{B}_{b}\right) \leftarrow \operatorname{Estep}\left(x\left(\mathcal{B}_{b}\right), \alpha, \lambda\right)$
For cluster $\mathrm{k}=1,2, \ldots \mathrm{~K}$:

$$
\begin{array}{rrr}
s_{k}^{0} \leftarrow s_{k}^{0}-s_{k}^{b} & \text { batch stats } \\
s_{k}^{b} \leftarrow \sum_{n \in \mathcal{B}_{b}} r_{n k} t\left(x_{n}\right) & \text { allow exact } \\
s_{k}^{0} \leftarrow s_{k}^{0}+s_{k}^{b} & \text { from pationtial } \\
s_{k}^{0} \leftarrow \lambda_{0}+s_{k}^{0} & \text { E-steps } \\
\lambda_{k} \leftarrow \text { Aply }^{2} \text { apimilar updates to stick weights. } \\
\hline
\end{array}
$$

Properties of memoized inference:

+ Per-iteration cost is low
+ Initial progress is rapid
+ Insensitive to batch size, no learning rate
- Requires storage proportional to number of batches (NOT number of observations)

Data
$x\left(\mathcal{B}_{1}\right)$
$x\left(\mathcal{B}_{2}\right)$
\vdots
$x\left(\mathcal{B}_{b}\right)$
\vdots
$x\left(\mathcal{B}_{B}\right)$

Batch Summaries

$\left(\begin{array}{cccc}s_{1}^{1} & s_{2}^{1} & \cdots & s_{K}^{1} \\ s_{1}^{2} & s_{2}^{2} & \cdots & s_{K}^{2} \\ \vdots & \vdots & & \vdots \\ s_{1}^{B} & s_{2}^{B} & \cdots & s_{K}^{B}\end{array}\right.$

Global Summary

Memoized Variational Inference

Hughes \& Sudderth, NIPS 2013; Neal \& Hinton 1999
Memoization: Storage (caching) of results of previous computations

Update: For each batch b

$$
\begin{array}{lr}
r\left(\mathcal{B}_{b}\right) \leftarrow \operatorname{Estep}\left(x\left(\mathcal{B}_{b}\right), \alpha, \lambda\right) \\
\text { For cluster } \mathrm{k}=1,2, \ldots \mathrm{~K}: & \\
s_{k}^{0} \leftarrow s_{k}^{0}-s_{k}^{b} & \text { batch stats } \\
s_{k}^{b} \leftarrow \sum_{n \in \mathcal{B}_{b}} r_{n k} t\left(x_{n}\right) & \text { allow exact } \\
s_{k}^{0} \leftarrow s_{k}^{0}+s_{k}^{b} & \text { from pationtial } \\
\lambda_{k} \leftarrow \lambda_{0}+s_{k}^{0} & \text { E-steps } \\
\text { Apply similar updates to stick } & \text { weights. } \\
\hline
\end{array}
$$

An Inspiration:
A Stochastic Gradient Method with an
Exponential Convergence Rate for Strongly-Convex Optimization with Finite Training Sets. N. Le Roux, M. Schmidt, F. Bach, NIPS 2012.

Data
$x\left(\mathcal{B}_{1}\right)$
$x\left(\mathcal{B}_{2}\right)$
\vdots
$x\left(\mathcal{B}_{b}\right)$
\vdots
$x\left(\mathcal{B}_{B}\right)$

Batch Summaries

$\left(\begin{array}{cccc}s_{1}^{1} & s_{2}^{1} & \cdots & s_{K}^{1} \\ s_{1}^{2} & s_{2}^{2} & \cdots & s_{K}^{2} \\ \vdots & \vdots & & \vdots \\ s_{1}^{B} & s_{2}^{B} & \cdots & s_{K}^{B}\end{array}\right.$

Global Summary

Memoized Cluster Merges

Merge two clusters into one for parsimony, accuracy, efficiency.

$>$ New cluster takes over all responsibility for data assigned to old clusters:

$$
r_{n k_{m}} \leftarrow r_{n k_{a}}+r_{n k_{b}} \quad \square \quad s_{k_{m}}^{0} \leftarrow s_{k_{a}}^{0}+s_{k_{b}}^{0}
$$

$>$ No batch processing required, efficiently evaluate via memoized statistics
> Accept or reject via exact full-dataset likelihood bound: $\mathcal{L}\left(q_{\text {merge }}\right)>\mathcal{L}(q)$?

Requires memoized entropy sums for candidate pairs of clusters; efficient implementation limits overhead.

Memoized Cluster Births

GOAL: Effective \& efficiently verifiable cluster creation for general likelihoods.

Clustering Handwritten Digits

MNIST: 60,000 digits projected to 50 dimensions via PCA.

Batch, memoized, \& memoized birth-merge Stochastic variational: Rate a, Rate b, Rate c Kurihara: Accelerated variational, NIPS 2006

Memoized birth-merge from $\mathrm{K}=1$ has highest accuracy while using fewer clusters.

MNIST: Variational versus Gibbs

Five random initializations from $K=1, K=50, K=300$ clusters
$>$ Diagonal-covariance Gaussians (change from previous slides)

Clustering Image Patches

8x8 Image Patches (BSDS): $\quad N=1.88$ million

> Memoized birth-merge allows growth in model complexity
$>$ Effective performance as density model for image denoising

Memoized Variational Inference for Hierarchial DP Topic Models

Michael Hughes, Dae II Kim, \& E. Sudderth

power gate inputs data
processors
operation neural integrated
current shows ${ }^{\text {analog }}$

squared model quadratic vapni	
ws decision generalization probl	
large selection predictions bias	
data validation case tralnlng	
algorithm examples sults machines test error problem $\begin{gathered}\text { solution }\end{gathered}$ results machines vector confidence pruning statistical ${ }_{\text {committee }}$ vector confidence risk $\begin{aligned} & \text { machine }\end{aligned} \begin{aligned} & \text { statistical } \\ & \text { size based }\end{aligned}$ kernels	

psychological trials
light response trial
coded

Hierarchical DP Topic Model

Generalization of Latent Dirichlet Allocation (LDA, Blei 2003) by Teh et al. JMLR 2006. Dependent Dirichlet process (DDP, MacEachern 1999) with group-specific weights.
$>$ Global topic frequencies and parameters:
$\beta_{k}=u_{k} \prod_{\ell=1}^{k-1}\left(1-u_{\ell}\right) \quad u_{k} \sim \operatorname{Beta}(1, \gamma)$
$\phi_{k} \sim \operatorname{Dirichlet}\left(\lambda_{0}\right) \quad$ (sparse)
$>$ For each of D documents (groups):
$>$ Topic frequencies: $\quad \pi_{d} \sim \mathrm{DP}(\alpha \beta)$

$$
\mathbb{E}\left[\pi_{d k}\right]=\beta_{k}
$$

$>$ For each of N_{d} words in document d :
> Topic assignment: $z_{d n} \sim \operatorname{Cat}\left(\pi_{d}\right)$
$>$ Observed value: $\quad x_{d n} \sim \operatorname{Cat}\left(\phi_{z_{d n}}\right)$

Variational Learning of HDP Topics

Global Topic Frequencies: Beta posteriors

Document-Topic Distributions:
> A DP induces a finite Dirichlet distribution on any finite partition. We consider $K+1$ events:

$$
\begin{array}{r}
\left(\pi_{d 1}, \pi_{d 2}, \ldots, \pi_{d K}, \pi_{d+}\right) \sim \operatorname{Dir}(\alpha, \beta) \\
\pi_{d+}=1-\sum_{k=1}^{K} \pi_{d k}
\end{array}
$$

> Probabilities of K active topics, and infinite tail Truncate Assignments:
$>$ For some current number of active topics K :
$q\left(z_{d n}\right)=\operatorname{Cat}\left(z_{d n} \mid r_{d n 1}, r_{d n 2}, \ldots, r_{d n K}, 0,0, \ldots\right)$
$r_{d n k} \propto \exp \left(\mathbb{E}_{q}\left[\log \pi_{d k}\left(v_{d}\right)\right]+\mathbb{E}_{q}\left[\log p\left(x_{d n} \mid \phi_{k}\right)\right]\right)$

HDP Representations

HDP Direct Assignment

HDP Chinese
Restaurant Franchise

By introducing extra latent variables, the CRF:

+ Makes all conditionals conjugate, closed-form inference
- Additional variables have very strong dependencies
- For both Gibbs and variational: slower, more local optima

Toy Dataset: Bar Topics

10 Bar Topics:

900 vocabulary symbols arranged as 30x30 image, one pixel per word

	high
low	
probability	

Example Docs:

Can we recover 10 true topics from 1000 observed documents?

Toy Dataset: Bar Topics

Gibbs sampler
K=67 topics

Fixed-truncation variational
$\mathrm{K}=100$ topics

,	$\operatorname{tz+4}$			
		FTex	5	
8	junk	junk	$j \omega \mathrm{mk}$	junk

> Both methods produce far too many topics!
$>$ Need merge and delete moves to find a compact set.

Toy Dataset: Bar Topics

Memoized fixed-truncation Memoized + merges, deletes

K=100 topics initial $K=100 \rightarrow$ final $K=10$

$=$	Gibbs
-	memo rand
-	memoMD rand
memoMD fromGibbs	

Refining HDP Topic Hypotheses

Accepted Merge Correlation Score 0.54

1092.4	language
364.4	latin
345.5	letter
332.4	dialect
303.7	speak
296.1	speaker
290.7	sound
265.4	verb

154.7 linguistic
137.9 linguist
122.5 language
122.4 speech
103.1 linguistics
100.9 grammatical
75.1 pronunciation
71.7 suffix

Accepted Merge Correlation Score 0.79

674.2 series
629.5 song
573.5 release 519.8 star 489.1 television 388.1 york 385.0 award 371.4 friend
734.1 film
354.8 magazine
328.0 direct
313.2 production
296.1 actor
281.8 career
269.7 hollywood
268.2 appeared

Accepted Delete
Tokens from deleted topic reassigned to remaining topics, in document-specific fashion.
32682
math
function theorem define theory property

21165

58392

Net change in doc-topic count $N_{d k}$ after delete

Analysis of Document Corpora

$>$ On small-to-medium datasets, match or beat performance of MCMC with orders of magnitude less computation

Analysis of Document Corpora

$>$ Informative moment-based initialization useful (Arora et al. ICML13), but topics evolve in interesting ways.
$>$ On large datasets, continual model improvement over many passes through data. Memoized \& stochastic competitive.
$>$ On small-to-medium datasets, match or beat performance of MCMC with orders of magnitude less computation

Reliable Variational Learning for Hierarchical Dirichlet Processes

> Scalable: Large-scale learning via stochastic or memoized updates
> Reliable: Birth-merge recovers structure informed by model \& data, not inference algorithm limitations
> Flexible: Designed to be broadly applicable: space, time, networks, ...

BNPy: Bayesian Nonparametric Learning in Python
Erik Sudderth @ Brown CS:
http://cs.brown.edu/~sudderth/

