
Primacy of Place:
The Reorientation of Software

Engineering Demanded by
Software Architecture

Richard N. Taylor
University of California, Irvine

© 2006, Richard N. Taylor

2

http://www.isr.uci.edu/

Acknowledgments: My key collaborators

 Nenad Medvidovic
 University of Southern California (USC)

 Eric Dashofy
 University of California, Irvine (UCI)

3

http://www.isr.uci.edu/

Summary
 Software Architecture is a really powerful concept

 It provides the key intellectual lever for the whole of development
 It has enjoyed considerable success

 Whether in small projects or large, commercial or F/OSS
 BUT: it is frequently undervalued and misunderstood

 Widespread practice is in ignorance of a substantive understanding
 We don’t teach it well

 We have contributed to the problem
 By ignoring the legitimate claims of other key system stakeholders
 By pursuing limited research goals

 Architecture rightly belongs at the center of software engineering:
because it is the concept that can tie development & evolution together

 SE must change to give architecture its proper place
 An issue for academics and those who promulgate standards

4

http://www.isr.uci.edu/

Outline

 A few success stories: software architecture has
already had a big impact

 Why there’s still work to be done
 Expanding the agenda and the scope

 Software architecture and the development process
 Requirements, Design, Implementation, Evolution, Project

management
 Thinking about what’s going on, using a new

visualization
 A little summary of some of the tasks facing us

5

http://www.isr.uci.edu/

Example Success #1: REST

 REpresentational State Transfer
 An architectural style for decentralized network-based

applications

 The underlying and guiding style of the post-
1994 WWW

 Now finding impact in other applications
 Other levels of the network stack; multi-media; Subversion,

Web services

6

http://www.isr.uci.edu/

Google on “REST”: hits 2 through 7
Building Web Services the REST Way
Brief article on REST as an architectural style. (Roger L. Costello, xfront.com)
www.xfront.com/REST-Web-Services.html

Representational State Transfer - Wikipedia, the free encyclopedia
Representational State Transfer (REST) is a software architectural style for ... REST strictly refers to a collection of architectural
principles (described ...
en.wikipedia.org/wiki/Representational_State_Transfer

REST - Representational State Transfer
Roy Thomas Fielding's PhD dissertation "Architectural Styles and the Design of Network-based Software Architectures".
www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

RESTwiki
Site dedicated to all things related to the REST architectural style; includes a list of REST resources.
rest.blueoxen.net/

Second Generation Web Services
Comment on this article Does the REST model make sense, or is SOAP enabling ... Implementing REST Web Services: Best
Practices and Guidelines (122 tags) ...
www.xml.com/pub/a/2002/02/06/rest.html

REST and the Real World
Following on from his Next Generation Web Services article, Paul Prescod shows how the REST model for web services meets
real world demands such as security ...
www.xml.com/pub/a/2002/02/20/rest.html

7

http://www.isr.uci.edu/

An Informal Summary of REST

 The Web is a collection of resources, each of which has a unique name known as a uniform
resource locator, or “URL”.

 Each resource denotes, informally, some information. “Any information that can be named can be
a resource: a document or image, a temporal service (e.g., “today’s weather in Los Angeles”), a
collection of other resources, a nonvirtual object (e.g., a person), and so on.”

 URI’s can be used to determine the identity of a machine on the Internet, known as an origin
server, where the value of the resource may be ascertained.

 Communication is initiated by clients, known as user agents who make requests of servers. Web
browsers are common instances of user agents.

 Resources can be manipulated through their representations. For instance, a resource may be
updated by a user agent sending a new representation of that resource to the origin server that
holds that information. Similarly a resource may be viewed by a user agent obtaining a
representation from an origin server and displaying that representation on a monitor. HTML is a
very common representation language used on the Web.

 All communication between user agents and origin servers must be performed by a simple,
generic protocol (HTTP), which offers the command methods GET, POST, and a few others.

 All communication between user agents and origin servers must be fully self-contained. That is,
an origin server must be able to respond correctly to a user agent’s request based solely on
information contained in the request, and not require maintenance of a history of interactions
between the user agent and the origin server.

8

http://www.isr.uci.edu/

Example Success #2: Philips Consumer
Electronics
 Efficient exploitation of

product families
 Key is creation, use,

specialization, and
evolution of common
architectures

 Koala as the means of
representation

9

http://www.isr.uci.edu/

Other Successes

 Bosch: Wireless,
embedded, sensor
applications
 Architecture-focused

middleware
 Boeing: Software-

defined Radio
Architectures
 Modeling at multiple levels:

network, unit, board, software
 Hardware/software

combinations

10

http://www.isr.uci.edu/

Outline

 A few success stories: architecture has already had
a big impact

 Why there’s still work to be done
 Expanding the agenda and the scope

 Architecture and the development process
 Requirements, Design, Implementation,

Evolution, Project management
 Thinking about what’s going on, using a new

visualization
 A little summary of some of the tasks facing us

11

http://www.isr.uci.edu/

If the Idea is so Cool, what’s Wrong?

 “Most of the time” “architecture” is confined to a
development phase

 “Most of the time” “architecture” is equated with
“high-level design”

 “Most of the time” “architecture” follows
requirements

 “Most of the time” “architecture” and implementation
act like divorcees
 Still related somehow -- but mostly in legal terms
 Often at odds with each other
 Trying to live independent lives
 Both think they are the most important

12

http://www.isr.uci.edu/

Rather than…

 … confined to a development phase
 Is used, changed, and developed through most, if not all of a

development process
 … equated with “high-level design”

 Entails all principal design decisions
 From multiple stakeholder perspectives

 … following requirements
 Is used and developed throughout application conception

 … acting like divorcees
 Is a key partner throughout implementation (and evolution)

13

http://www.isr.uci.edu/

Primacy of Place

 Until architecture assumes the dominant
conceptual role in software development, it
cannot yield its potential benefits

 To assume that role, several things must
change

The very character of key software engineering activities,
such as requirements analysis and programming,
are altered and the technical approaches taken
during development activities are necessarily changed.

14

http://www.isr.uci.edu/

But What is “Architecture”?

 A software system’s architecture is the set of
principal design decisions about the system.

15

http://www.isr.uci.edu/

A Stakeholder-Centric Perspective on the
Sources of “Principal” Design Decisions

Domain Business

Technology
e.g.,
Product family strategy
Licensing constraints
Budget & Schedule

e.g.,
Critical abstractions &
Separations
Algorithms
Priorities among NFP’s

e.g., ADL,
Style, Configurations,
Frameworks, …

16

http://www.isr.uci.edu/

Outline

 A few success stories: architecture has already had
a big impact

 Why there’s still work to be done
 Expanding the agenda and the scope

 Architecture and the development process
 Requirements, Design, Implementation, Evolution, Project

management
 Thinking about what’s going on, using a new

visualization
 A little summary of some of the tasks facing us

17

http://www.isr.uci.edu/

Architecture and Development Processes

 Principal decision decisions may emerge at many
points in the development process
 E.g., choice of implementation framework (may effect whole

implementation, and approach thereto); choice of specific
algorithm, e.g. for signal processing applications; decision as to
whether application should be developed as part of a (new or
existing) product line; choice of security/trust model (what do you
believe about the user community?)

 The architecture should be an accurate
characterization of all representations of the
application… including the deployed object code
 It is the foundational characterization of the application

18

http://www.isr.uci.edu/

The Restructuring of “Requirements
Engineering”
 The conventional teaching of software

engineering is that RE precedes design.
 Typical practice shows that to be almost

never the case
 “The idea of completing requirements specification before

doing design work is nonsense.” -- Anonymous

 It is not because we are idiots or badly
trained engineers
 But why is it so?

19

http://www.isr.uci.edu/

Solution and structure are equal partners with
requirements in a conversation about needs (1)
 Existing designs and architectures provide

the vocabulary to talk about what might be;
 Our understanding of what works now, and

how it works, affects our wants and perceived
needs, typically in very solution-focused
terms;

20

http://www.isr.uci.edu/

Solution and structure are equal partners with
requirements in a conversation about needs (2)
 The insights from our experiences with existing

systems helps us imagine what might work and
enables us to assess, at a very early stage, how
long we must be willing to wait for it, and how much
we will need to pay for it.

 The simple conclusion then, is that analysis of
requirements and consideration of design –
concerning oneself with the decisions of architecture
– must be pursued cooperatively and
contemporaneously.

21

http://www.isr.uci.edu/

This is Not New in Engineering

 Henry Petroski: failure as a key engine of
design innovation

22

http://www.isr.uci.edu/

The Evolution of Zippers

23

http://www.isr.uci.edu/

This is Not New in Software Engineering

E.g.
 Twin Peaks (Nusibeh)
 Agile methods
 … but somehow we

have let developers
merrily carry along
under the fiction of
requirements
engineering as first

24

http://www.isr.uci.edu/

So Let’s Call this Activity “Conceptualization”

 It is the joint exploration of what to build and
how to build it.

 Use our full range of experience (i.e. existing
architecture), intuition, and analytical abilities
to make the key initial decisions about an
application.

 The principal design decisions resulting from
this activity are critical elements of the
application’s architecture

25

http://www.isr.uci.edu/

Design

 Architecture is naturally a centerpiece of the
design activity
 But designing proceeds throughout most of the lifetime of

an application -- it is not a one-shot deal

 Design is a rich activity -- much richer than
we usually teach it

26

http://www.isr.uci.edu/

Domain Knowledge, Scope, and Design
Techniques

27

http://www.isr.uci.edu/

Design, what’s different

 Teaching and using a fuller range of
techniques, experience, intuition, and
analytical abilities to make key choices

 Addressing design more holistically: all
stakeholder perspectives

 Recognizing that designing is a pervasive
activity

28

http://www.isr.uci.edu/

Implementation: What’s the Role of
Architecture Here?
 Goal: create, or co-create, an implementation faithful to the

architecture (as it exists at the time implementation begins)
 The principal design decisions must not be violated
 The structural architecture should provide prime guidance

 Architecture provides the basis for the use of:
 Generative techniques
 Reuse-based techniques, including F/OSS
 Implementation frameworks
 … and last of all, new source code

 The architecture is the context for evaluating implementation
alternatives
 E.g. what are the consequences of reusing a package that doesn’t quite

fit the existing architecture?

29

http://www.isr.uci.edu/

What We Need to Do is Help Bridge the Gap

Frameworks: technical
aids in implementing the
architectural styles of the
system’s architecture

30

http://www.isr.uci.edu/

Instead of Divorcees, We need a Happily
Married, Mature Couple
 The design provides useful, substantive,

invaluable guidance for the implementation.
 The implementation faithfully implements the

design.
 Changes to either one are reflected

accurately in the other.

31

http://www.isr.uci.edu/

Analysis and Testing: Better, Faster, and
Cheaper
 Explicit architecture implies opportunity for

analysis
 Consistency checking: with requirements and

with the implementation
 Or with a model derived from the implementation

 Prioritization of A&T activities: core elements
of product families, e.g.

 Carry-forward of prior A&T work: architecture
provides the context for determining what
needs to be done … or re-done

32

http://www.isr.uci.edu/

Evolution

33

http://www.isr.uci.edu/

Corporate Structure and Management

 Product line development requires investment in, and
management of, the product line, not just individual products

 Defeating Conway’s Law: Alignment of system architecture,
development organization, and user organizations

User
Organization

Developer
Organization

Software
OrganizationConway’s Law

34

http://www.isr.uci.edu/

The Interactions Between the Activities:
Principal Design Decisions Can be Made
in Many Contexts

For instance:
 Conceptualization: the concurrent activities

of design and requirements
 Design and Implementation
 Analysis, Re-design, Re-implementation
 User interface design, implementation, and

field trial

35

http://www.isr.uci.edu/

Outline

 A few success stories: architecture has already had
a big impact

 Why there’s still work to be done
 Expanding the agenda and the scope

 Architecture and the development process
 Requirements, Design, Implementation,

Evolution, Project management
 Thinking about what’s going on, using a new

visualization
 A little summary of some of the tasks facing us

36

http://www.isr.uci.edu/

A New Visualization/Illustration Model

 Goals of the visualization
 Provide an intuitive sense of

 Project activities at any given time
 Including concurrency of types of development activities

 The “information space” of the project
 Show centrality of the products

 (Hopefully) Growing body of artifacts
 Allow for the centrality of architecture

 But work equally well for other approaches, including
dysfunctional ones

 Effective for indicating time, gaps, duration of activities
 Investment (cost) indicators

37

http://www.isr.uci.edu/

Coding

Design

Requirements

Testing

Simplistic Waterfall,
Side perspective

time
The Turbine Model

“Core” of project
artifacts

Radius of rotor indicates
level of staffing at time t

Gap between rotors
indicates no project
activity for that Δt

ti

38

http://www.isr.uci.edu/

Cross-section at time ti
Design

(activity)

Requirements

Design
doc

39

http://www.isr.uci.edu/

The Turbine Model

Waterfall example,
Angled perspective

time

40

http://www.isr.uci.edu/

A Richer Example

S1

Design/Build/
Requirements

Test/Build/
Deploy

Assess/…

Requirements/Architecture
assessment/Planning

Build/Design/
Requirements/Test

time

41

http://www.isr.uci.edu/

A Sample Cross-Section

42

http://www.isr.uci.edu/

A Cross-Section at Project End

43

http://www.isr.uci.edu/

Volume Indicates Where Time was Spent

Design/Build/
Requirements

Test/Build/
Deploy

Assess/…

Requirements/Architecture
assessment/Planning

Build/Design/
Requirements/Test

44

http://www.isr.uci.edu/

45

http://www.isr.uci.edu/

Cool. But what does this have to do with
architecture-centric development?

An “Agile” Process

46

http://www.isr.uci.edu/

What happens during the follow-on
project?

50% architecture
recovery

50% RA and
assessment

The project artifacts produced
by the previous project

47

http://www.isr.uci.edu/

A Technically Strong Product Line Project

Assessment

ParameterizationCustomization

Deployment
Capture of new work
Other

48

http://www.isr.uci.edu/

Visualization Summary

 It is illustrative, not prescriptive
 It is an aid to thinking about what’s going on

in a project
 Can be automatically generated based on

input of monitored project data
 Can be extended to illustrate development of

the information space (artifacts)
 Presentation here focused primarily on the development

activities

49

http://www.isr.uci.edu/

Summary
 Software Architecture is a really powerful concept

 It provides the key intellectual lever for the whole of development
 It has enjoyed considerable success

 Whether in small projects or large, commercial or F/OSS
 BUT: it is largely undervalued and misunderstood

 Widespread practice is in ignorance of a substantive understanding
 We have contributed to the problem

 By ignoring the legitimate claims of other key system stakeholders
 By pursuing limited research goals

 Architecture rightly belongs at the center of software
engineering: because it is the concept that can tie it all together

 Development practice must change to give architecture its
proper place
 An issue for academics and those who promulgate standards

50

http://www.isr.uci.edu/

Lots of Opportunities for Architecture
Researchers
For instance:
 ADLs: extensible to capture stakeholder concerns

(technology, domain, business)
 In general, how can we capture all principal design decisions?

 Consistency: internal and between representations
 Allow inconsistency
 But always enable checking of same… between all representations

 Own up to the role of architecture in all other aspects of
development… and support them
 Especially implementation
 Traceability

51

http://www.isr.uci.edu/

Shameless Promotion

Software Architecture: Foundations,
Theory, and Practice
Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy

To appear: 2007
(I hope)

