Software
Requirements

Thomas Alspaugh
Informatics 221

2006 Sep 28



Overview of talk

Requirements forms

Requirements activities

Requirements contexts and appropriate practices
Active research areas in requirements

Some current research



Some requirements forms

Properties — the classic form (“The system shall ...”)

Narratives — the ubiquitous form (scenarios, use
cases, user stories, ...)

Goals (with tradeoffs, relationships)
Ontologies (describing domain and system)
Models,usually state models (MSC, SD, LTS, ...

Hybrid forms, often tabular (SCR, Problem Frames, ...)



Properties (“shalls”)

Contractual

Good for broadly-exhibited characteristics
Can be good for analysis of later models
Can be hard to analyze, infer from

Bad for describing dynamic behavior (except
temporal logics, which have their own drawbacks)

Can be problem for nontechnical stakeholders



Example properties

Common Design Systam

System

v.2 users will be able to transmit input to any Common Design System installation

at any locahon. It will be able to receive output files in the same way.

Lotus Notes

Each local PC with | System | v.2 and Lotus Motes installed can use the automatic message
transmittal featuras to sand email and order information to any other email address.

Microsoft Office Applications

Sysiam

v.2 will be able to save fransmittable documents and drawings in a specified

directory of the local PC in a file formats compatible with Microsoft Otfice Applications.



Narratives

Almost universal (scenarios, use cases, prose)

Sometimes the primary requirements

— especially in the US.

Other forms commonly accompanied by them
Evocative, partial, concrete, widely understood
Challenging to integrate, analyze, infer from

Individual narratives are easy, groups are hard



ATM Scenarios

Contents

Example
i :g:ﬁ—:cfﬁd Withdrawal” narrat ive

3. “Stand-in Fast Cash”

1. “Fast Cash”

EVENT CHAIN:

1. The ATM displays a "welcome" screen: "Insert card to begin".

2. A customer inserts an ATM card into the ATM .

3. The ATM displays "Please select your language preference", with choices
"English" and "Spanish".

4. The customer selects "English".

5. The ATM displays "Please enter PIN", with choices "Please press cancel
if error" and "Press if correct”.

6. The customer enters a PIN and chooses "Press if correct”.

7. The ATM displays "Please select a transaction. Please press cancel if error.
Transfer, Deposit, Payment, Cash Check, Fast Cash From Checking,
Withdrawal, Balance Inquiry."

8. The customer selects "Fast Cash From Checking".

9. The ATM sends a query "Checking - $160 OK?" to the credit union .

10. The credit union receives the query "Checking - $160 OK?" .

11. The credit union sends the response "Checking - $160 OK" to the ATM

12. The ATM receives the response "Checking - $100 OK" .
13. The ATM dispenses $160 .
14. The customer takes the $160 .

15. The ATM displays "Please take your card / Thank you", and ejects the
ATM card halfway.




(Goals

Explanatory power — why a requirement is there
Other kinds of requirements usually are means
More stable

Have relationships that can be worked with
Good for tradeoft analysis

Stakeholders often more certain of goals



Example goals and relations

Ambulance Intervention

Key

Ambulance
Maobidlized

..

Intervent

Mabilized Ambulance

‘.';c B

Ambulance
Fallure
Hecoverad

-

o
..

Goal A is
satisfied if both
subgoals B and
C arg sansnedg

Mabilized

Goal A is

Ambulance
Fallure

Incldent Farm
Encoded

frmbulance Mabilized
Based On Incident Form

satistiad it aither
subgoal B or C
C Is sansnag

Ambulance Allocatsd
Based On Incident Form

S

L Is an obstacie

Allgcated Ambulance
Mobidlized

ODSNLCTING
sansfacton of goal A;

B | goal B mitigates D

and contmbutas 1o A

fArmbulance Mabilization
Communicated On Radio

73

Ambulance Mobillizred
From MODT Mabilization

t?

Ambulance Mobilized
From Radio Mobdlization

Ambulance Mabilization
Communicated On MOT

(A0 T = Mdohuia
Hara I'avmanal)




Ontologies

* Entities, sets of entities, relationships
* Define terminology
* Define the shape of the world in question

* Not widely used in requirements
(except glossaries)

* Good ontologies are rare



_:r‘rﬁwspﬂrtﬂtif;w
device

Building

T EUsU eI JAN
shnft m 7 ‘

stops 1
1—‘»1 Elevator ﬁ- Floor

‘ Elevator

Elevator
cayr

door

A

Elevator Elevator
car door floor door

KEY
Concept 47 Sub-Concept
Instance —— Part
X =20 ¥ ARX Zs aY
> Y Awn X is associated with a'y

Example
ontology

(this example has
no glossary)



State models

Good for analysis; powerful techniques,
including model checking

Especially good for concurrent systems and
systems with high failure costs

Models can be complete
—completeness is problematic for all other forms

Often stray into design

Require training — stakeholders don’t understand



Example state model

Active ( Timeout ]

do/ play messageJ

dial digit(n)
[incomplete]

after (15 sec.)
after (15 sec.)

»| [ DialTone ] dial digit(n)
if | do/ play dial tone |

dial digit(n)[invalid]

receiver

dial digit(n)[valid]

/get dial tone r Invalid : /connect
e Ldo! play messageJ [Cannecting]
r Busy ] busy connected

callee Ldof play busyJ

callee hangs up tone

answers
Ringing ]

Talking callee answers  |do/ play ringingJ

\ lfenable speech tone

caller
hangs up
/disconnect

Y

’

\.

J




Hybrid forms

Most often tabular
Organize requirements for ease of reference
Often integrate two or more forms

May be analyzable (e.g. SCRTool)

Usually best for one kind of system
—e.g. SCR for embedded realtime

Problem Frames designed to be flexible



Example hybrid form

Condition Table 4.2-d: Azimuth Cursor Position

MODES CONDITIONS

*RadarUpd* 90" < BRG < -90° | -90° < BRG < -45% | -45% = BRG = 457 | 457 < BRG < 90°
*BOCFlyTol*
*BOCoffset®
*SBOCH
*SBOCFlyTo0*
*SBOCoffset®

CURSOK out of left edge BRG® from right edge
POSITION View center




Requirements activities

Elicitation

Analysis (inference; formal properties)
Presentation (esp. written)

Negotiation

Evolution (esp. throughout development process)

Integration into other phases (e.g. testing)



What requirements are

good for (or should be)

Communication among all parties involved
Stakeholder input, agreement, buy-in

Analysis, inference, tradeoffs at inexpensive time
Light showing where the end of the tunnel lies
Context for all subsequent refinements, choices

Criteria for testing, buyer satisfaction, sign-oft



Arguments against and for

Against: Requirements are hard!

Against: Requirements evolve, so why bother
Against: Requirements don't reflect implementation
For: If you don’t know where you're headed ...

For: The decisions you don’t realize you make ...
For: You can’t recapture the requirements later

For: Stakebolders understand requirements, only

For: Requirements are cheap and effective



The classical
requirements context

Big, expensive, one-oft system
—hundreds of developers working for years

Developed on contract: customers vs. developers
Waterfall model, Boehm statistics

Ineftective tool support

Lawyers, project managers, accountants

The development process is an ocean liner



Most systems aren't

developed like that



Dimensions of
requirements context

Novelty —domain, system, implementation

Total cost of system development
—Requirements effort usually proportional (r0-50%)

Cost of failing to meet requirements
—Not necessartly related to development cost

Stakeholder characteristics
—What form of requirements is effective for them?

System characteristics / Stakeholder goals
—How can what’s important be expressed?



Four contexts

Project expensive, system failures expensive

AT

System failures expensive

— fly-by-wire, medical systems, HIPAA

Project moderate, system failures cheap,
stakeholders nontechnical
—many business systems, most PC software

Small project, system failures inexpensive,
system domain complex, high novelty
—Embedded controllers, some business systems



Context #1: expensive,
high cost of failure

Goals for tradeofts, focus, rationale

Models for convincing analysis of consequences
Properties for contractual force

Narratives to explain contexts, give immediacy

Ontology (or at least glossary) for agreement



#2: high cost of failure

Similar, but different emphases

Models for convincing analysis of consequences
Properties and narratives for verification
Narratives to explain contexts, “same page”
Ontology for domain understanding

Goals for rationale, tradeoffs, focus



#3: limited failure cost,
nontechnical stakeholders

Narratives as primary form
Ontology for domain understanding
Goals for exploration, tradeofts, rationales

No properties (or few), no models



#4: small system, limited

failure cost, complex domain

® XP: 10 or fewer, bighly-skilled, a year or less

Domain expert sitting with developers
Requirements = the tests (specialized narratives)
Implementation is what’s analyzed

Evolution expected, welcomed (in implementation)

Requirements activities distributed throughout
development, in small chunks



Hot research areas (RE’06)

Natural language requirements of all types

Links with linguistics, psychology, sociology; logic
i* (organizational and goal modelling)

Goals

State models (solutions looking for problems)
Aspects (b/c no one understands them)

Feature diagrams (b/c they’re new)



Current research (mine)

Scenarios
Formalization — software tools, automated “stufft”
Integration with other development phases

Scenario-driven specification-based testing

(with Kristina Winbladh)

Scenarios and computed social worlds
(with Bill Tomlinson and Eric Baumer)



Scenarios
and
testing

AN
B C
A 4
DI||E plan | Program can
Z— S be structured Program.xml
Fl LG from the plans (goal and event
Goals and plans _ annotated
implementation)
L v
XML rule i
grammar
Goal pre- and (JESS, —>  Precompiler
post-conditions Drools, etc.)
are used to C
develop the v
oracle. Goals and
plans to _
JESS Program.java
translator
|
4 Run-time
architecture v
Rule-based
oracle = Events
\ * Program.class

Rule-based plan
recognizer

God_
w

Pass/Fail (and why)




Scenarios as data structure

* Computed social worlds
* Social interactions driven by, recalled as scenarios

* Implementation uses ScenarioML scenarios and
software for manipulating them

e Work with Bill Tomlinson and Eric Baumer

http://orchid.calit2.uci.edu/~ebaumer/aiide06/BaumerEtAlAIIDEOG6.mov

"feather” ‘ it
"Hey, nice fire" "Thank youl!”



Stakeholder visualizations

e Visualization created in real time, for almost-free
e Stakeholders understand better (dual-coding effect)

e Work with Bill Tomlinson and Eric Baumer

http://orchid.calit2.uci.edu/~wmt/movies/softvis.mov



More information

http://www.ics.uci.edu/-alspaugh/

http://www.ics.uci.edu/-alspaugh/requirementsReadingGroup.html
http://www.ics.uci.edu/-alspaugh/requirementsReadingList.html

http://www.ics.uci.edu/-alspaugh/ScenarioML.html



