
Software
Requirements

Thomas Alspaugh
Informatics 221

2006 Sep 28

Overview of talk

• Requirements forms

• Requirements activities

• Requirements contexts and appropriate practices

• Active research areas in requirements

• Some current research

Some requirements forms

• Properties — the classic form (“The system shall ...”)

• Narratives — the ubiquitous form (scenarios, use
cases, user stories, ...)

• Goals (with tradeoffs, relationships)

• Ontologies (describing domain and system)

• Models,usually state models (MSC, SD, LTS, ...)

• Hybrid forms, often tabular (SCR, Problem Frames, ...)

Properties (“shalls”)

• Contractual

• Good for broadly-exhibited characteristics

• Can be good for analysis of later models

• Can be hard to analyze, infer from

• Bad for describing dynamic behavior (except
temporal logics, which have their own drawbacks)

• Can be problem for nontechnical stakeholders

Example properties

Narratives

• Almost universal (scenarios, use cases, prose)

• Sometimes the primary requirements
— especially in the U.S.

• Other forms commonly accompanied by them

• Evocative, partial, concrete, widely understood

• Challenging to integrate, analyze, infer from

• Individual narratives are easy, groups are hard

Example
narrative

Goals

• Explanatory power — why a requirement is there

• Other kinds of requirements usually are means

• More stable

• Have relationships that can be worked with

• Good for tradeoff analysis

• Stakeholders often more certain of goals

Example goals and relations

Ontologies

• Entities, sets of entities, relationships

• Define terminology

• Define the shape of the world in question

• Not widely used in requirements
(except glossaries)

• Good ontologies are rare

Example
ontology

(this example has
no glossary)

State models
• Good for analysis; powerful techniques,

including model checking

• Especially good for concurrent systems and
systems with high failure costs

• Models can be complete
—completeness is problematic for all other forms

• Often stray into design

• Require training — stakeholders don’t understand

Example state model

Hybrid forms

• Most often tabular

• Organize requirements for ease of reference

• Often integrate two or more forms

• May be analyzable (e.g. SCRTool)

• Usually best for one kind of system
—e.g. SCR for embedded realtime

• Problem Frames designed to be flexible

Example hybrid form

Requirements activities

• Elicitation

• Analysis (inference; formal properties)

• Presentation (esp. written)

• Negotiation

• Evolution (esp. throughout development process)

• Integration into other phases (e.g. testing)

What requirements are
good for (or should be)

• Communication among all parties involved

• Stakeholder input, agreement, buy-in

• Analysis, inference, tradeoffs at inexpensive time

• Light showing where the end of the tunnel lies

• Context for all subsequent refinements, choices

• Criteria for testing, buyer satisfaction, sign-off

Arguments against and for
• Against: Requirements are hard!

• Against: Requirements evolve, so why bother

• Against: Requirements don’t reflect implementation

• For: If you don’t know where you’re headed ...

• For: The decisions you don’t realize you make ...

• For: You can’t recapture the requirements later

• For: Stakeholders understand requirements, only

• For: Requirements are cheap and effective

The classical
requirements context

• Big, expensive, one-off system
—hundreds of developers working for years

• Developed on contract: customers vs. developers

• Waterfall model, Boehm statistics

• Ineffective tool support

• Lawyers, project managers, accountants

• The development process is an ocean liner

Most systems aren’t
developed like that

Dimensions of
requirements context

• Novelty —domain, system, implementation

• Total cost of system development
—Requirements effort usua"y proportional (10-50%)

• Cost of failing to meet requirements
—Not necessarily related to development cost

• Stakeholder characteristics
—What form of requirements is effective for them?

• System characteristics / Stakeholder goals
—How can whaťs important be expressed?

Four contexts
• Project expensive, system failures expensive
—ATC

• System failures expensive
— fly-by-wire, medical systems, HIPAA

• Project moderate, system failures cheap,
stakeholders nontechnical
—many business systems, most PC so(ware

• Small project, system failures inexpensive,
system domain complex, high novelty
—Embedded contro"ers, some business systems

Context #1: expensive,
high cost of failure

• Goals for tradeoffs, focus, rationale

• Models for convincing analysis of consequences

• Properties for contractual force

• Narratives to explain contexts, give immediacy

• Ontology (or at least glossary) for agreement

#2: high cost of failure

• Similar, but different emphases

• Models for convincing analysis of consequences

• Properties and narratives for verification

• Narratives to explain contexts, “same page”

• Ontology for domain understanding

• Goals for rationale, tradeoffs, focus

#3: limited failure cost,
nontechnical stakeholders

• Narratives as primary form

• Ontology for domain understanding

• Goals for exploration, tradeoffs, rationales

• No properties (or few), no models

#4: small system, limited
failure cost, complex domain
• XP: 10 or fewer, highly-ski"ed, a year or less

• Domain expert sitting with developers

• Requirements = the tests (specialized narratives)

• Implementation is whaťs analyzed

• Evolution expected, welcomed (in implementation)

• Requirements activities distributed throughout
development, in small chunks

Hot research areas (RE’06)
• Natural language requirements of all types

• Links with linguistics, psychology, sociology, logic

• i* (organizational and goal modelling)

• Goals

• State models (solutions looking for problems)

• Aspects (b/c no one understands them)

• Feature diagrams (b/c they’re new)

Current research (mine)

• Scenarios

• Formalization → software tools, automated “stuff”

• Integration with other development phases

• Scenario-driven specification-based testing
(with Kristina Winbladh)

• Scenarios and computed social worlds
(with Bill Tomlinson and Eric Baumer)

Scenarios
and

testing

Pass/Fail (and why)

Precompiler

Program.xml
(goal and event

annotated

implementation)

Program.class

Rule-based

oracle

Rule-based plan

recognizer

 XML rule

grammar

(JESS,

Drools, etc.)

Goals and plans

Goal pre- and

post-conditions

are used to

develop the

oracle.

Program can

be structured

from the plans

Program.java

Goals and

plans to

JESS

translator

Run-time
architecture

Events

Goal

intentions

plan

A

B

ED

C

GF

Scenarios as data structure

• Computed social worlds

• Social interactions driven by, recalled as scenarios

• Implementation uses ScenarioML scenarios and
software for manipulating them

• Work with Bill Tomlinson and Eric Baumer

http://orchid.calit2.uci.edu/~ebaumer/aiide06/BaumerEtAlAIIDE06.mov

“feather”
“Hey, nice fire” “Thank you!”

Stakeholder visualizations
• Visualization created in real time, for almost-free

• Stakeholders understand better (dual-coding effect)

• Work with Bill Tomlinson and Eric Baumer

http://orchid.calit2.uci.edu/~wmt/movies/softvis.mov

More information

http://www.ics.uci.edu/~alspaugh/

http://www.ics.uci.edu/~alspaugh/requirementsReadingList.html
http://www.ics.uci.edu/~alspaugh/requirementsReadingGroup.html

http://www.ics.uci.edu/~alspaugh/ScenarioML.html

