
1

1

Research in Program
Comprehension

Susan Elliott Sim
ses@ics.uci.edu

November 7, 2006

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 2

Overview

• Program Comprehension

• People Comprehending Programs
– Strategies
– Models
– Factors

• Tools to Help People Comprehend Programs
– Generic Pipeline

2

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 3

Program Comprehension

• Help programmers understand code more quickly
– Improve general understanding
– To complete a task

• Examples of program comprehension tools?

• Related fields: reverse engineering, source code
analysis, software visualization

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 4

People Comprehending Programs

• Models
• Strategies
• Factors

3

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 5

Studies of Program Comprehension

• Cognitive models
– A single programmer working alone to understand a

program
• Mental model is the representation created by a programmer

during the process of understanding

• Social and distributed cognition
– A programmer working as part of a team to develop or

maintain a software system
• Frameworks for designing program comprehension

tools

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 6

Cognitive Models

• Bottom-up
• Top-down
• Hybrid

– Systematic and As-Needed
– Knowledge-based
– Integrated

4

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 7

Bottom-Up Models

• Build larger abstractions from details
– Chunking is the process of building larger units

• Allows programmer to hold more information in short-
term memory
– Miller’s magic number: 7 ± 2

• Larger chunks corresponds to more meaningful
understanding of larger parts of the program

B. Shneiderman and R. Mayer, “Syntactic/semantic Interactions in Programmer Behavior: A
Model and Experimental Results,” International Journal of Computer and Information
Sciences, vol. 8, no. 3, pp. 219-238, 1979.

– Lexical -> Syntactic -> Semantic
N. Pennington, “Stimulus Structures and Mental Representations in Expert Comprehension of

Computer Programs,” Cognitive Psychology, vol. 19, pp. 295-341, 1987.

– Program model -> situation model

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 8

Top-Down Models

• Features in the program are mapped onto
expectations
– Hypotheses are formed at higher levels and direct

investigation of details
– Expectations are called schemas or plans

Ruven Brooks, “Towards a Theory of the Cognitive Processes in Computer Programming,”
Interntional Journlal of Man-Machine Studies, vol. 18, pp. 543-554, 1983.

– Programmers look for beacons in the code
E. Soloway and K. Ehrlich, “Empirical Studies of Programming Knowledge,” IEEE Transactions

on Software Engineering, vol. SE-10, no. 5, pp. 595-609, September, 1984.

– Two types of programming knowledge: programming plans
and rules of programming discourse

5

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 9

Hybrid Models

• Programmers don’t use just one approach all the
time.
– Can choose an appropriate one for the task
– Switch between them during a single task

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 10

Systematic and As-Needed Models

• Systematic = read the code methodically, tracing
control flow and data flow
– Provides static (structural) and causal information

• As-needed = focus only on the code relevant to
immediate task
– Also called Just In Time Comprehension
– Provides only static information (weaker mental model)

6

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 11

Merging Systematic and As-Needed

• The two strategies were later merged into a single
model

E. Soloway, J. Pinto, S. Letovsky, D. Littman, and R. Lampert, “Designing Documentation to
Compensate for Delocalized Plans,” Communications of the ACM, vol. 31, no. 11, pp. 1259-
1267, 1988.

– Micro-strategies
• Inquiry episodes: read, question, conjecture, search

– Macro-strategies
• Systematic
• As-Needed

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 12

Knowledge-Based Models

• Programmers are opportunistic processors; they use
what is available to get the job done.

J. Koenemann and S.P. Robertson, “Expert Problem Solving Strategies for Program
Comprehension,” presented at Human Factors in Computer Systems, Conference
Proceedings of CHI'91, New Orleans, LA, pp. 125-130, April.

– Comprehension is a goal-oriented, hypothesis-driven,
problem solving process

S. Letovsky, “Cognitive Processes in Program Comprehension,” presented at Empirical Studies
of Programmers, pp. 58-79.

– Inquiries = asking questions, conjecturing answers, verifying
answers

– Three Components in Model: Knowledge Base, Assimilation
Process, Mental Model

7

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 13

Integrated

• The Integrated Metamodel
A. von Mayrhauser and A.M. Vans, “Program Comprehension During Software Maintenance,”

IEEE Computer, pp. 44-55, August, 1995.

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 14

Sources of Variation

• Aside from the issue of how comprehension occurs,
researchers agree that programmer performance is
affected by a number of factors

• Maintainer Characteristics
• Program Characteristics
• Task Characteristics

8

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 15

Maintainer Characteristics

• Familiarity with code base
• Application domain knowledge
• Programming language knowledge
• Programming expertise
• Tool expertise
• Individual differences

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 16

Program Characteristics

• Application domain
• Programming domain
• Quality of problem to be understood
• Program size and complexity
• Availability of documentation

9

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 17

Task Characteristics

• Task type
– Experimental: recall, modification
– Perfective, corrective, adaptive, reuse, code leverage

• Task size and complexity
• Time constraints
• Environmental factors

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 18

Social and Distributed Cognition

• On typical industrial projects, software developers:
– Work in teams
– Have access to documentation
– Can ask people questions
– Can surf the web for answers
– Can go home and think about the problem
– Learn!

• Work on cognitive models don’t really address
program comprehension as a open system

10

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 19

Distributed Cognition

• Cognition is an interactive process between a person
and the environment
– Plans are incomplete
– External world is used to help cognitive process
– Examples: wayfinding, GUI desktops, to do lists
– See work in HCI by Hutchins and by Suchman

Andrew Walenstein, Cognitive Support in Software Engineering Tools: A Distributed Cognition
Framework. Ph.D. Thesis, School of Computing Science, Simon Fraser University, 2002.

– Developed a distributed cognition model for program
comprehension

– Created a framework for designing and evaluating tools

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 20

Teams
Susan Elliott Sim and Richard C. Holt, “The Ramp-Up Problem in Software Projects: A Case

Study of How Software Immigrants Naturalize,” presented at Twentieth International
Conference on Software Engineering, Kyoto, Japan, pp. 361-370, 19-25 April, 1998.

– On large software projects, it takes many months to become
a contributing team member

Audris Mockus and Jim D. Herbsleb, “Expertise Browser: A Quantitative Approach to Identifying
Expertise,” presented at Twenty-fourth International Conference on Software Engineering
(ICSE), Orlando, FL, pp. 503-512, 19-25 May 2002.

– A significant part of learning about the system is identifying
expertise and ownership

J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, “An Examination of Software Engineering
Work Practices,” presented at Centre for Advanced Studies Conference (CASCON'97),
Toronto, Canada, pp. 209-223.

– While comprehension is a critical part of programming,
software engineers actually spend a minority of their time
coding

11

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 21

Work Practices

• An approach more than a framework
• Study work practices in order to tailoring tools (or

methods) to local organization and environment
• Example: source code searching with grep

– Why do people use it?
– What does it do well? (Keep these features)
– What does it not do well? (Ideas for improvements)
– Result: SEE (Software Exploration Environment)
– Does the resulting tool fit with work practices?

Janice Singer and Timothy Lethbridge, “Studying Work Practices to Assist Tool Design in
Software Engineering,” presented at International Workshop on Program Comprehension
(IWPC'98), Ischia, Italy, pp. 173-179.

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 22

Research Opportunities

• New research is needed on larger systems, with
modern architectures, involving multiple
programmers
– Past research conducted on small programs

• A few hundred or thousands of lines of code
– Single programmer

• Past studies did not use right mix of psychology and
software engineering
– Example: use of recognition and recall as dependent

variable
– Example: Integrated metamodel

12

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 23

Recent Research

• Navigation through source code
– Information foraging

Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung, “An
Exploratory Study of How Developerrs Seek, Relate, and Collect Relevant
Information during Software Maintenance Tasks” IEEE Transactions on
Software Engineering, Vol. 32, No. 12, December, 2006.

• Developers spent on average 35% of their time performing the
mechanics of finding information

– Graph-based model of traversal
Susan Elliott Sim, Sukanya Ratanotayanon, and Leyna Cotran, “Using Graphs to

Characterize How Developers Navigate During Program Comprehension” in
submission to International Conference on Software Engineering, 2008.

• In a web application, the layered architecture graph is an
effective model for developer’s navigation behavior

• Developers who successfully completed a perfective
maintenance task made fewer traversals and were more likely
to make traversals of distance 1

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 24

Tools to Help People Comprehend

• Generic Pipeline
• Environments

13

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 25

Generic Pipeline

Extraction

Software

Work
Product

Source Code

Design Diagrams

Specifications

User Manuals

Revision Control Log s

Parser-analyser

Profiler

Data Import

Metrics

Dependency

Clone Detection

Clustering

Slicing

Re-factoring

Layout

Visual Editor

Text Editor

Code Browser

Web Browser

Diagrams

Re-formatting

Documentation

Reports

Analysis
Present-

ation

New
View(s) of

Product

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 26

Analyses in Reverse Engineering

• Assumption: Legacy code

• Redocumentation
• Design Recovery
• Restructuring
• Reengineering

14

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 27

Things to Notice

• Architecture influenced by UNIX and compilers

• Graph-based representation
– Take a graph theory course

• Tools, analyses, and representations that are useful
for other areas of software engineering

• Each element in the diagram (including the arrows) is
a research problem

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 28

Generic Pipeline

Extraction

Software

Work
Product

Source Code

Design Diagrams

Specifications

User Manuals

Revision Control Log s

Parser-analyser

Profiler

Data Import

Metrics

Dependency

Clone Detection

Clustering

Slicing

Re-factoring

Layout

Visual Editor

Text Editor

Code Browser

Web Browser

Diagrams

Re-formatting

Documentation

Reports

Analysis
Present-

ation

New
View(s) of

Product

15

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 29

Fact Extraction for C++
 1 template <class T, int Size>
 2 class Array
 3 {
 4 T arr[Size];
 5 public:
 6 virtual const T& get(int idx)
 7 {
 8 T& t = arr[idx];
 9 return t;
10 }
11 /* set()...*/
12 };

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 30

Decorated AST
1 : Generic

name : Array

Instance

2 : TemplParmType

name : T

3 :FormalFctParam

name : Size

4 : Object

name : arr

5 : Function

name : get

ArcSon(1) ArcSon(2) ArcSon(3) ArcSon(4)

6 : ArrayType

name : T []

Instance
ArcArrayDim

9 : FormalFctParam

name : idx

10 : Block

ArcSon(1)

ArcSon(2)

Instance

11 : Object

name : t

12 : Return

ArcSon(2)ArcSon(1)

13 : BinaryOperator

op : array-ref

14 : NameRef

name : t

ArcInitVal ArcSon(3)

15 : NameRef

name : arr

16 : NameRef

name : idx

ArcOpd (1)
ArcOpd (2)

RefersTo
RefersTo

RefersTo

8 : BuiltinType

name : int

7 : RefType

name : T&

Instance

Instance

Instance

Instance

16

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 31

Generic Pipeline

Extraction

Software

Work
Product

Source Code

Design Diagrams

Specifications

User Manuals

Revision Control Log s

Parser-analyser

Profiler

Data Import

Metrics

Dependency

Clone Detection

Clustering

Slicing

Re-factoring

Layout

Visual Editor

Text Editor

Code Browser

Web Browser

Diagrams

Re-formatting

Documentation

Reports

Analysis
Present-

ation

New
View(s) of

Product

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 32

Analysis Tools

• Clustering
• Program summaries, fingerprints
• Design pattern detection
• Slicing

17

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 33

Slicing

• Program analysis technique for reducing a program
– Eliminates all lines that are not currently of interest

• Choose a variable, choose a line of code, slice
forward (or backward)

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 34

Backward Slice
void main () {

int i = 1;

int sum = 0;

while (i<11) {

sum = add(sum, i);

i = add(i, 1);

}

printf("sum = %d\n", sum);

printf("i = %d\n", i);

}

static int add(int a, int b) {

return(a+b);

}

Backward slice from printf("i = %d\n", i);

18

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 35

Backward Slice
void main () {

int i = 1;

int sum = 0;

while (i<11) {

sum = add(sum, i);

i = add(i, 1);

}

printf("sum = %d\n", sum);

printf("i = %d\n", i);

}

static int add(int a, int b) {

return(a+b);

}

Backward slice from printf("i = %d\n", i);

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 36

Forward Slice
void main() {

int i = 1;

int sum = 0;

while (i<11) {

sum = add(sum, i);

i = add(i, 1);

}

printf("sum = %d\n",sum);

printf("i = %d\n", i);

}

static int add(int a, int b){

return(a+b);

}

Forward slice from sum = 0;

19

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 37

Forward Slice
void main() {

int i = 1;

int sum = 0;

while (i<11) {

sum = add(sum, i);

i = add(i, 1);

}

printf("sum = %d\n",sum);

printf("i = %d\n", i);

}

static int add(int a, int b){

return(a+b);

}

Forward slice from sum = 0;

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 38

Generic Pipeline

Extraction

Software

Work
Product

Source Code

Design Diagrams

Specifications

User Manuals

Revision Control Log s

Parser-analyser

Profiler

Data Import

Metrics

Dependency

Clone Detection

Clustering

Slicing

Re-factoring

Layout

Visual Editor

Text Editor

Code Browser

Web Browser

Diagrams

Re-formatting

Documentation

Reports

Analysis
Present-

ation

New
View(s) of

Product

20

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 39

Presentation Tools

• SNiFF+
• Seesoft™
• SHriMP/Creole
• PBS (Portable Bookshelf)

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 40

Seesoft™

21

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 41

Seesoft™

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 42

Seesoft™

22

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 43

PBS

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 44

Creole

23

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 45

Generic Pipeline

Extraction

Software

Work
Product

Source Code

Design Diagrams

Specifications

User Manuals

Revision Control Log s

Parser-analyser

Profiler

Data Import

Metrics

Dependency

Clone Detection

Clustering

Slicing

Re-factoring

Layout

Visual Editor

Text Editor

Code Browser

Web Browser

Diagrams

Re-formatting

Documentation

Reports

Analysis
Present-

ation

New
View(s) of

Product

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 46

Standard Exchange Format

• GXL (Graph eXchange Language)
– An XML sub-language for exchanging graphs

• Joint work by Sim, Andreas Winter, Ric Holt, Andy Schürr
– Mechanism for data interoperability between reverse

engineering, reengineering, and graph transformation tools
– In use by ~40 research groups around the world
– Similar to MDA currently promoted by OMG

24

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 47

GXL Features

• Labeled, typed graph model
– Nodes, (directed) edges,

hyperedges, attributes
– Unique identifiers on nodes,

optional identifiers on others
• Transmit schema along with

data
– Use single DTD for both

• Provides a common syntax
for data interchange, so
problem shifts to schema
interchange

<?xml version="1.0"?>
<!DOCTYPE gxl SYSTEM "gxl.dtd">
<gxl>

<graph id =“schema”>

...

</graph>

<graph id =“instance”>

...

</graph>

</gxl>

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 48

Schemas

• Converting from one syntax to another is relatively
easy

• Mapping between schemas is the most difficult
aspect of conversion
– GXL helps by making them explicit
– More tools are needed to support schema exchange

• Related to research into model management in
databases
– Idea: translating data is isomorphic to translating between

their respective schemas

25

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 49

Reference Schemas

• A canonical schema for a particular domain or task
– Examples: graph drawing, C++ fact extraction

• Contains an agreed-upon set of modeling entities and
relations
– Instead of writing mappings between every local schema,

write a mapping between local and reference schema

November 13, 2007 Susan Elliott Sim ses@ics.uci.edu 50

Research Opportunities

• Programming Environments
– UNIX pipelines vs. Eclipse
– New tools, new opportunities

• Languages
– Previous: COBOL, PL/I
– Current emphasis: Java
– Future? Scripting languages, JSP, Visual Basic, C#

• Systems
– Web applications, plug-ins, games

• Mining Software Repositories
• Applications of Reverse Engineering

