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ABSTRACT

Software architecture research has yielded a variety of
powerful techniques for assisting in the design,
implementation, and long-term evolution of complex,
heterogeneous, distributed, multi-user applications. Since
software  development environments are themselves
applications with these characteristics, it is natura to
examine the effectiveness of an architectural approach to
congtructing and changing them. We report on our
experience in creating a family of related environments in
this manner. The environments encompass a range of
services and include commercia off-the-shelf products as
well as custom-built tools. The particular architectural
approach adopted is fully reflexive: the environments are
used in their own construction and evolution. We also report
on some engineering experiences, in particular with our use
of XML as the vehicle for supporting a common and
extensible representation of architectural models, including
the model of the environment itself.

Keywords: Software architectures, software environments,
tool integration, off-the-shelf reuse, XML

1 INTRODUCTION

A comprehensive software development environment will
offer many services to help with the myriad activities
associated with application development. Environments are
multi-user applications; they are likely to be distributed and
concurrent. Building, maintaining, and evolving such an
environment is fraught with difficulties. As the scope of the
environment expands, the heterogeneity of the constituent
toolset is likely to expand as well: tools may come from
different vendors, have varying platform requirements, vary
in their size, complexity, degree of openness (from source
code to APIs to closed binaries), and potentially interact in
complex ways. Deciding whether or not a given tool should
be considered for inclusion in an environment requires
understanding complicated trade-offs. Actual integration of a
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tool may entail substantial effort. Inadequate understanding
of the multiple and various issues has often led to failed
environments or serious schedule or budget overruns.

The issues and challenges posed by environments are not
unique, of course. Many complex applications exhibit the
same properties. Over the past decade, an architecture-based
approach to the engineering of such applications has
emerged. Central to this approach is the use of architectural
models. Such models separate designers’ concerns between
components, as loci of computation and state, and
connectors, as the sole means of communication between
components. These models
» focus attention on component-based devel opment,

* ad us in reasoning about certain overall system proper-
ties, both rigorous and conceptual,

« ad in system implementation and/or generation,
* assist during system evolution, both before and during
runtime, and

« aid configuration management.

Architecture-based software engineering also emphasizes
architectural styles, both domain-specific abstractions and
effective domain-independent patterns and idioms. These
styles and the architectura models work to facilitate
understanding and communication among team members

and can be akey element in an effective reuse strategy.!

Our work has focused on examining the applicability and the
utility of applying an architecture-based software
engineering approach to the development of an extensible
software devel opment environment. We are thus treating the
development of an environment as “just another” application
development problem. Our approach involves:

* explicitly and formally representing the architecture of

the environment,

* employing adaptable connectors to model and implement
al the communication between tools, and

1. All architectures and architecture-based approaches are not equal,
however. Support for reuse, heterogeneity, and distribution are
not guaranteed. One-of-akind, homogeneous, monolithic
systems also have architectures, applications with rigid
connectors may have no appealing characteristics with regard to
evolution; and so on.



« using an architectural style to further aid understanding,
analysis, and evolution of the environment's architecture.

The explicit model employed provides a higher fidelity
representation of the environment's architecture than either
an architecture implicit in the environment's construction or
an ad-hoc, boxes-and-arrows diagram, such as has been
typical in the software environments world [13,32,34,45].
We do not simply use an architecture-based approach to
explicate our system, however, but also to play a concrete
technical role in the implementation and evolution of the
environment. For one, if the tools in the environment support
development of applications having the same architectural
concepts and style as that exhibited by the environment
itself, then areflexive development environment results. That
is the case with our work: the environment is used for
supporting its own development and evolution, a tradition
dating back at least as far as Interlisp [44]. The benefits of
doing this include avoiding the need for building special-
purpose tools for maintaining the environment.

Our approach is, of course, applicable on different levels of
abstraction. We can use the same set of architectura
principles to build custom tools within the environment as
well asto build the environment as a whole. Our results also
benefit the architecture community's ongoing effort to define
acanonical architectural toolkit [11].

This paper proceeds by briefly describing the architectural
principles underlying our approach. We then describe the
approach and report on our experiences with building a
family of related environments. We also consider some
interesting, but non-novel, engineering issues we
encountered and discuss how we addressed them. In
particular, we describe how we used the Extensible Markup
Language (XML) [4] to support the common internal/
external representation of the architectural models, and the
benefits that accrued from doing so.

2 OUR APPROACH

We have adopted an architecture-based approach to software
environment integration. The approach is intended to closely
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Figure 1. Overview of the adopted architecture-based approach.
The architectureis structured according to the rules of the C2 style:
the top (bottom) of a component attaches to the bottom (top) of a
single connector; there is no bound on the number of components
or connectors to which a connector attaches. Parts of the
architecture are elided, as represented by the jagged lines.

paralld that for devel oping applications [43], where the tools
in the environment correspond to components in an
application (see Figure 1). In principle, this permits us to
employ an environment in its own development (modeling,
analysis, implementation, and evolution). It also allows usto
leverage our extensive experience with architecture-based
application development.

Three key concepts underline our approach. We explicitly
represent the architecture of an environment. As with
components in an application architecture, a high-level
model of each tool’s behavior (internal object in Figure 2) is
provided in first-order logic [22], while tool interactions
(dialog in Figure 2) are modeled with asynchronous events
(also referred to as messages) [43]. This alows early
analysis of an environment to establish properties of interest.
Furthermore, an environment's architecture does not
prescribe its implementation. Instead, an architecture may be
implemented in multiple ways, allowing one to address
specific non-functional requirements (e.g., performance,
concurrency, distribution, and so on).

We employ explicit software connectors to model and
implement all interactions among tools. The connectors are
highly adaptable: they allow arbitrary addition, removal, and
replacement of their attached components. Each connector is
mapped into an explicit service (i.e, a module) in an
environment's implementation, alowing the modeled
environment to be modified both at design-time and run-time
[27]. Connector implementation issues are discussed further
in Section 3.

Finally, we exploit the properties of an architectural style, C2
[43]. A style specifies design rules and constraints to which a
system must adhere. In turn, awareness of style rules
facilitates understanding, analysis, and evolution of a
system. The C2 style was selected because of its support for
distribution, heterogeneity, and reuse. C2 is characterized by
minimal interdependencies among components. It supports
loose component integration via connectors, as depicted in
Figure 1. All communication in a system occurs by
exchanging asynchronous events, as depicted in Figure 2.
Mismatches among component interfaces are alowed in

Notification events

Request events

Figure 2. Internal architecture of a C2-style component (tool). The
internal object contains application-specific functionality and may
be a third-party tool accessible via an application programmable
interface (API). The dialog engages in event-based communication
with the rest of the architecture and makes invocations on the
internal object. Two types of events are exchanged: requests of
components above and notifications to components bel ow.



principle [23].2 The above properties are desirable when
composing large, heterogeneous, possibly third-party tools
into an environment.

3 IMPLEMENTATION ISSUES

To support implementation of C2-style architectures, we
have developed a light-weight, extensible framework of
abstract classes for concepts such as components,
connectors, and events (messages), shown in Figure 3. This
framework is the basis of development and OTSreusein C2.
It implements component interconnection and message
passing protocols. Components and connectors used in C2
applications are subclassed from the appropriate abstract
classes in the framework. This guarantees their
interoperability, eliminates many repetitive programming
tasks, and allows developers to focus on application-level
issues. The framework supports a variety of implementation
configurations for a given architecture: the entire resulting
system may execute in a single thread of control, or each
component may run in its own thread of control or operating
system (OS) process. The framework has been implemented

in Java and C++; its subset is also available in Ada.3

Table 1: OTS Component Reuse Heuristics

Problem with OT S Component Integration Method

Explicit Invocation Wrapper
Message I nterface Mismatch Adaptor
Different Thread of Control Inter-Thread Connector
Different Language and/or OS Process IPC Connector

Source Code Modification

Inadequate Functionality

The base framework has been extended to provide support
for reuse, distribution, and heterogeneity of applications.
Reuse and heterogeneity are accomplished via explicit,
flexible connectors and light-weight component adaptors

C20bject
C2Message
C2Request
C2Notification

C2Brick

C2Connector
C2Connector_ SameProcess
C2Connector_Thread
C2Connector_ IPC

C2Component
C2Architecture
C2Component_Threads

C2Architecture_Threads

Figure 3. C2 implementation framework.

2. The impact of a component interface mismatch on a system’'s
operation can range from negligible to serious[23]. Our approach
alows the system’s architecture to be analyzed to assess the
consequences of mismatches before the system is implemented
and deployed [22].

3. It has been argued by others [9,46] that this framework is similar
to commercial middleware platforms, such as CORBA [30] and
COM [39].

and wrappers. In general, in order to incorporate any OTS
component into a C2 architecture, the component can be
wrapped as an internal object inside a generic framework
component (recall Figure 2). An extensive series of exercises
conducted to study component reuse in the context of C2
[20,23] has resulted in several other heuristics for integrating
OTS components into C2-style architectures, summarized in
Table 1.

The framework supports distribution and heterogeneity
through addition of connectors that supply a variety of
interoperability mechanisms. To date, we have incorporated
four OTS interoperability technologies into the framework:
Q [17], Polylith [32], Java's RMI [42], and ILU [47]. Each
technology supports one or more of the following: muilti-
threaded and multi-process communication, multi-lingual
development, and distribution across a network [7].

We have devised two complementary strategies for
incorporating an OTS technology into a connector, shown in
Figure 4: asingle “virtual” connector is split horizontally or
vertically into two actual modules that interact using the
mechanisms provided by the OTS technology. These two
basic configurations can be combined to achieve any
application deployment profile. For example, the
architecture in Figure 4 may be configured so that each
component runs on a different machine. Once such a
“virtual” connector is implemented, it can be used like any
other connector; its internals are entirely transparent to the
developers and the interacting components.

Finally, we specified a shared data model to represent the
architecture of an environment during its construction and
execution. This model is used as the basis for evolution. Our
approach builds on that of the Field development
environment [34], which pioneered the use of shared abstract
syntax trees of control flow graphs, source text, and so on, as
well as event-based access to them. In particular, we applied
the technologies of XML [4] for capturing syntax and C2
component packaging for concurrent access to the
architecture repository.

There were several reasons to migrate from a textual
architecture description language (ADL) to an XML-based
one, caled XADL [18]. XML offered a simpler, standardized
parser and a richer, internationalized user interface in
conjunction with HTML. Using separate XML Namespaces,
we designed a generic vocabulary of tags and attributes

Figure 4. Connectors are a primary vehicle for distribution and
heterogeneity. A single conceptua connector can be “broken up”
(a) vertically or (b) horizontally for this purpose. Shaded ovals
represent language, process, and/or machine boundaries.



useful across a range of ADLs independently of ontologies
specific to particular ADLs. Furthermore, the principle of
ignoring unknown tags allowed individual tools within the
environment to annotate individual components and types, as
well as include entirely new subtrees without affecting other
tools. Conversely, XML extended the promise of adding
architectural knowledge to applications entirely outside the
environment, such as XML-format drawing tools.

Fundamentally, we view architectural description as a form
of hypertext. Rather than presenting a unified object-base for
aproject asin, say, the Montanaintegrated C++ environment
[14], hyperlinking explicitly articul ates separate evolution of
each component in the architecture. One component
interface might be extracted from a vendor's Web page,
while connectors may be annotations in an illustration
package; currently “external” documentation could be
included within the project Web as well.

4 A FAMILY OF SOFTWARE DEVELOPMENT
ENVIRONMENTSDEVELOPED USING OUR
APPROACH

During the course of the last four years, we have constructed
a family of software development environments using our
approach. Our first environment, ArchStudio, began as an
experiment in applying the C2-style and the principles of
architecture-based development to software environments.
Inspired by its success, we built more comprehensive
environments that integrated both commercial and research
off-the-shelf (OTS) tools. We describe each of these
environments in the following subsections.

ArchStudio 1.0

ArchStudio 1.0 was the first prototype environment that
embodied our approach. The initial version was constructed
in 1996 and incrementally improved and extended into
ArchStudio 1.0. This simple environment provided a
graphical design environment for interactively constructing
and analyzing software systems at the architectural level, and
a novel mechanism for interactively evolving the system
during runtime by changing its architectural model. The
environment’s own architecture is depicted in Figure 5 and
was constructed using the C2/Java class framework. The
integrated tools include:

Component
Repository

Component
Template
Generator

ArchADT

Component
Incorporation
Tool

Argo/C2 ArchShell

Figure5. ArchStudio 1.0's C2-style architecture.

» Argo/C2 [36], an interactive, graphical design environ-
ment for software architectures. Architects construct a
software system by dragging-and-dropping components
and connectors from a palette onto a design canvas.
Argo/C2s critics continuously examine the system under
design and non-intrusively suggest design alternatives
and identify errors.

ArchShell, a text-based, interactive interface for instanti-
ating implementations of components and connectors
into an architecture and executing it. ArchShell is novel
in that it enables architects to evolve a system’s running
implementation by changing its architectura model
[27,29].

ArchADT, a simple, in-memory, abstract data type com-
ponent that maintains a shared model of the architecture-
under-design. Since Argo/C2 and ArchShell wereinitially
designed as stand-alone tools, each used its own internal
representation of the architectural model. To create Arch-
Studio, we modified their source code to emit request
messages describing changes to their internal representa
tions as they happened. ArchADT would then record the
change in its shared repository, and notify other tools in
the environment of the change. This synchronized Arch-
Shell and Argo/C2’sinternal representations.

An integrated OTS Web browser, such as Netscape Com-
municator or Internet Explorer, alows architects to
browse the Web for new components. Clicking on a C2
component (identified by a unique MIME type and file
extension) causes the browser to execute an external pro-
gram to emit a C2 notification message announcing a
successful download of a new C2 component.

Component Incorporation Tool listens for notification
messages announcing new C2 components and reacts by
unarchiving the C2 component from the downloaded file,
passing its interface description file to the IDL Parser,
and installing the component for use in the environment.

IDL Parser parses a component’s interface description
and storesiit in the Component Repository.

Component Repository, a shared, file-based repository of
component interfaces, similar to CORBA's Interface
Repository, allows other tools to retrieve a list of avail-
able components and examine their interfaces. The Com-
ponent Repository uses an OTS persistent object
package, called JOP [38], asits internal object (see Fig-
ure 2).

Component Template Generator generates a Java class
template when given a C2 component name. It queries
the Component Repository for the component, examines
its interface, and generates a Java method signature and
body for every interface element. This capability helps to
reduce the effort required to implement new C2 compo-
nents.

While simplistic, ArchStudio 1.0 was constructed using the
same principles as the systems it was designed to construct.
In fact, the initial prototype of the environment was
constructed (and modified during runtime) using ArchShell.



DRADEL

The DRADEL environment, initially developed in 1998,
supports specification, analysis, design-time evolution, and
implementation of C2-style architectures. Its architecture is
shown in Figure 6. Like ArchStudio 1.0, DRADEL adheres to
C2 style rules and is thus applicable on itself. The
environment has been implemented in Java, using the
framework described in Section 3. An early prototype of
DRADEL was discussed in [22]. This section briefly
summarizes the environment’s key features and introduces a
recent addition that required integrating an OTS tool.

The User Palette, Type Mismatch Handler, and Graphics
Binding components from Figure 6 provide a graphical front
end for the environment; we will not focus on them in this

paper.* The Repository component stores architectures
modeled in C2's ADL, c2sADEL [22]. The Parser receives
via C2 messages a specification of an architecture, parses it,
and requests that the Internal Representation component
check its consistency and store it. Internal Representation is
an ADT that builds its own representation of the architecture
and ensures that components and connectors are properly
specified and instantiated.

Once an entire specification of an architecture is parsed and
its internal consistency ensured, the Topological Constraint
Checker, Type Checker, Code Generator, and UML
Generator components are notified of it. Topological
Constraint Checker ensures adherence to the topological
rules of C2 discussed in Section 2. Type Checker is
DRADEL’S centerpiece, enabling two key tasks: analysis of
architectures to establish (the degree of) behavioral
conformance among interacting components and evolution
of individual components. Both these tasks make use of the
components’ behavior models, provided in C2sADEL as first-
order logic expressions, and implement the idea of
heterogeneous typing for software architectures [18,19,22].
The Code Generator component is evolved from ArchStudio
1.0's Component Template Generator: it generates an
implementation skeleton for the modeled architecture on top
of the JavalC2 framework. For each component, Code
Generator automatically generates the dialog from the
component’'s C2sAaDEL specification. It also partialy
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Figure 6. Architecture of the DRADEL environment.

4. GraphicsBinding is an example of OTS reuse. It incorporates a
user interface toolkit, Java’'s AWT [20].
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Figure 7. Screenshot of DRADEL (bottom) and the UML model
produced by DRADEL’s UML Generator in Rational Rose (top).

generates the internal object, with stubs for each method.
The stubs must then be implemented manually or replaced
by an OTS component.

In order to provide developers with support for
implementing the internal objects, as well as for refining
architectures into implementations that are independent of
the C2 framework, we have introduced the UML Generator
component. UML Generator implements a set of rules we
have devised [21,35] for transforming an ADL specification
into UML [5]. Like other C2 components, UML Generator
internally consists of adialog that engages in message-based
communication and an internal object that implements the
component’s functionality. In this case, the internal object is
Rational Rose [33], an OTS environment for UML-based
software development (see Figure 6).

This example illustrates the flexibility of a C2 component’s
internal architecture. Typically, the interaction between the
dialog and the internal object is accomplished via procedure
calls. However, Rose provides an API that is accessible via
COM [39]. We, therefore, employed an OTS facility that
enables Java applications to interact with COM objects. This
facility acts as a connector internal to a component. A
screenshot of the resulting tool is shown in Figure 7.

ArchStudio 2.0

ArchStudio 2.0, our most recent development environment,
combines many of the tools in ArchStudio 1.0 and DRADEL
with other research OTS and COT S tools, including Rational
Rose and Metamata IDE. Its C2-style architecture is
depicted in Figure 8. The lightly shaded tools in the figure
represent individual integrations intended to assess the
feasibility of the approach; they have not yet been added to
the production environment. The more heavily shaded tools
are part of the current environment.

A significant difference between ArchStudio 2.0 and our
previous environments is our use of an extensible, persistent,
XML-based shared architectural model for the system under
design, XADL (see Section 3). This shared model is
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Figure 8. ArchStudio 2.0's architecture, in the C2 architectural style.

encapsulated as an abstract data type by the ArchADT.
Supported operations on the model include enumerating the
components and connectors in the architecture, and their
respective types; adding and removing architectural elements
like components and component types, and querying and
modifying the architecture’'s topology. Additionally, the
model may be extended by adding new attributes to existing
elements or by adding new sub-hierarchies of elements.

XADL isageneric language framework with five basic tags:

* <Architecture>: a list of directed links between
instances,

* <Component>: name and type(s) supported by each
component instance;

* <Connector>: hame and type(s) supported by each con-
nector instance;

¢ <ComponentType>. hame and method interfaces for
each component type, and input and output parameters;
and

®* <ConnectorTypes>:
each connector type

name and method interfaces for

Furthermore, composing xADL with additional C2-specific
definitions yielded a complete, verifiable xC2 Document
Type Definition (DTD). For example, we added the
xC2:Filter attribute and its five permissible settings [43]
t0 <xADL: ConnectorType>. AS discussed above, DRADEL
enforced the remaining properties of an architecture the
grammar alone could not, such as type conformance.

ArchStudio 2.0's tools query and modify the model by
sending C2 request messages to ArchADT. If atool’s request

changes the model (e.g., adds a new component), ArchADT
emits a C2 notification describing the change to the
connector below it, which, in turn, broadcasts it to the tools
attached below it. Each tool receives and reacts to the state
change independently; typical reactions include making a
corresponding change to itsinternal representation, updating
affected graphical views, or ignoring state changes that fall
outside its domain of interest.

In addition to ArchStudio 1.0 and DRADEL'S tool sets,
ArchStudio 2.0 adds:

« Architecture Evolution Manager. The Arch Evolution
Manager was originaly integrated with ArchShell, and
responsible for changing a system’s running implementa-
tion to correspond with the system’s changing architec-
turd model. In ArchStudio 2.0, we decoupled this
component from ArchShell and modified it to run as an
independent component.

Resource Partitioning: One of Argo/C2’'s graphical views
alows architects to assign system components and con-
nectors to operating system processes and machine hosts.
The Resource Partitioning tool retrieves these attributes
and generates initialization and startup code for execut-
ing the system in the specified configuration. For this, it
relies on available OTS connector technologies, such as
those described in Section 3.

Dependency Anayzer: The Dependency Analyzer tool
examines the interface of every component in the system
(consisting of the messages understood and potentially
emitted by the component) and the architectural topology
to reveal dependencies between components. This infor-



mation helps architects evaluate how components are
used and the consequences of adding, removing, replac-
ing and reconnecting components.

Armani: Armani [25], developed at Carnegie Mellon
University (CMU), is alanguage and tool set for specify-
ing and checking constraints over a system'’s architectural
topology. Our prototype integration enables architects to
specify constraints over how a system’s topology may
evolve during runtime. If any tool (e.g., Argo/C2) modi-
fies the system’s model in away that violates a topologi-
cal constraint, the Arch Evolution Manager will not
perform the corresponding change to the system’s run-
ning implementation.

Argo/UML: Argo/UML [36] is a UML design environ-
ment, much like Rational Rose, developed at UC Irvine.
Our prototype integration allows architects to diagram a
component’s internal design, initializing the diagram
with a component’s interface specification. Since Argo/
UML was developed independently of ArchStudio, it
stores its diagrams in individual files, not within
ArchADT. To relate the UML diagrams with the architec-
tural model, our integration stores the filename of each
component’s UML diagram as an annotation on the com-
ponent’s model within ArchADT.

Arabica: Arabica [26] provides interoperability between
Sun Microsystems' JavaBean components [41] and C2
components by automatically translating JavaBean
events into C2 messages, and visa versa. Additionally,
Arabica ensures C2's topological rules among connected
JavaBean components.

Metamata IDE: After generating template code for a
component’s interface using DRADEL’s Code Generator,
developers can edit the code using Metamata’s IDE [24].
Using Metamata’s style checking feature, our integration
detects source code changes that diverge from the com-
ponent’s interface and notifies the architect. This assures
a certain degree of fidelity between the architectura
model and its implementation.

Our research group is continuing to improve ArchStudio 2.0
by integrating new tools, improving its user interface, and
extending its XML schema.

An Avionics Development Environment

The preceding three environments have been built by the
members of our research team. This section briefly describes
an environment constructed by a third-party organization, a
major aerospace company, using the same principles and
tools. This organization used C2 to define and implement the
System Control and Configuration Manager subsystem of an
avionics development and simulation environment. A set of
the company’s instrumentation and operational components
was integrated with ArchStudio 1.0 and the toolset provided
with Stanford University’s Rapide system [16]. The resulting
environment included interactive support for defining a
configuration (i.e.,, an architecture) of a simulation, and
visualizing and analyzing its run-time properties.

ArchStudio 1.0 was used to control dynamic reconfiguration
of architectures of the simulated avionics systems. The C2

implementation framework provided access to the runtime
events emitted by the componentsin asimulated system. The
company defined an event visualization facility to support
the identification of specific event patterns occurring during
system execution. Rapide’s event analysis and animation
tools were notified of the observed event patternsin order to
analyze the actual behavior of the simulation. For example,
by capturing the run-time events, the company was able to
produce a three-dimensiona visualization of an in-flight
replanning algorithm, which operated on the run-time trace
of events associated with the algorithm's key data structures.

This environment was integrated without any reported
changes to the OTS tools (ArchStudio 1.0 and Rapide tools)
beyond providing adaptors and wrappers to enable their
interoperation in the manner discussed in the preceding
sections.

Environment I nteroper ability

Our work on building multiple software development
environments provided us with the opportunity to explore
environment interoperability—integrating multiple
environments, each with its own tools, into a single,
composite environment.

The problem is one of scade Getting two tools to
interoperate isa“1 x 1 problem”—either tool (or both) can
be adapted to suit the peculiarities of the other. Integrating a
tool with an environment is an “1 x n problem” since
adapting the single tool to the environment's established
framework is typically easier than adapting multiple toolsin
the environment. Environment interoperability posesan “n +
m problem” where two well-established integration
frameworks must be stitched together. In this case, even the
initial tasks of understanding how the disparate pieces
should fit together poses significant obstacles.

We confronted these issues when we considered integrating
DRADEL with a subset of ArchStudio 1.0 (specifically, Argo/
C2, ArchShel, and ArchADT). Our goa was to alow
architects to use DRADEL’s analysis tools in conjunction with
Argo/C2's critic-based analyses, and to allow architects the
option of wusing ArchStudio’'s interactive architecture
specification tools or DRADEL's file-based C2SADEL
specification language.

The most difficult interoperability issue concerned the
incongruent architecture models maintained by each
environment. DRADEL’S ADT (the Internal Representation
component from Figure 6) provided a rich type and
component interface model (e.g., pre- and post-conditions on
interface methods) that ArchStudio’s ADT (ArchADT from
Figure 5) lacked. On the other hand, ArchStudio’'s ADT
modeled implementation details that DRADEL’S ADT lacked,
such as file system paths to component and connector
binaries, and flags signaling whether or not components and
connectors are running.

One obvious approach involved unifying the two
architectura models and implementing a single ADT
component replacement. To avoid modifying the other tools,
this single ADT would have to simultaneously mimic the



message interfaces of both previous ADTs—feasible, but
cumbersome and error-prone.

The alternative approach involved retaining both ADTs. This
had the advantage of not requiring changes to existing tools,
but since the ADTs shared common elements, we would
need to implement a mechanism for assuring data coherence.
Our prototype implementation involved building a single
special-purpose connector to replace the connectors below
ArchStudio’s and bRADEL'S ADTSs. This new connector, part
adaptor and part consistency manager, dynamically
translated messages to and from ArchStudio’'s ADT into
corresponding messages understood by DRADEL’s ADT, and
visaversa. Since all messages intent on changing either ADT
travel through this single connector, a certain degree of data
coherence could be ensured. This prototype implementation
allowed us to experiment with using ArchStudio 1.0 and
DRADEL simultaneously, which benefited the design of
ArchStudio 2.0 and its XML -based, unified data repository.

Summary

In this section, we have discussed three environments
constructed internally, one built by athird party, and two tool
interoperability mechanisms. shared, flexible data
representation using XML and message routing and
adaptation using a software connector. The four
environments and the two interoperability mechanisms were
constructed to be in full compliance with the principles of
the C2 architectural style. This allows easy integration of
tools from the different environments and simultaneous
usage of the interoperability mechanisms in the same
environment, as demonstrated by ArchStudio 2.0.

5 RELATED WORK

This paper has been influenced by work in severa areas:
software architectures, reuse, component interoperability,
and software environments. Each is summarized bel ow.

Architectures: Environment integration did not become a
focus of the software architecture community until very
recently [11]. With the exception of CMU’'s Aesop
environment [10], there have been no published examples of
software toolkits that employ an architecture-centric
approach. Garlan et al. described in architectural terms the
many problems they encountered during Aesop's
construction. They coined the phrase architectural mismatch
to denote conflicting assumptions made by components and
produced a set of guidelines for avoiding architectural
mismatch. These guidelines largely focus on components:
their internal structure, adaptors to resolve conflicts, and
design guidance for selecting, reusing, and composing them.
We have previoudly discussed why C2 is well suited to
address these guidelines [20].

The work described in this paper indicates that an approach
centered on component configurations is a heeded
complement to the guidelines: by providing an explicit
architectural model, one can assess the assumptions made by
a component in the context of its “location” in the
architecture. Such an approach may have resulted in early
warnings of several problems Aesop’s developers faced. For

example, acomponent they used required all communication
to be channelled through it. An explicit architectural model
would have indicated that this assumption isin direct conflict
with the envisioned configuration, in which the four major
components needed to directly interact with one another. As
it was, this problem was not discovered until the integration
of the environment was well under way. Recently, Garlan et
a. have applied their forma architecture modeling and
analysis approach to the problem of tool integration [1].

Reuse: Two approaches to component reuse have influenced
our work: component packaging and domain-specific
software architectures (DSSA). Shaw has discussed a set of
mechanisms for (re)packaging components to facilitate their
use in new contexts [40]. This work has been embodied in a
recent approach by Deline that separates a component’s
essence from its packaging [8]. However, Del.ine's approach
does not support reuse of legacy components, but instead
requires their reengineering. On the other hand, C2 employs
several of Shaw’s mechanisms, such as import/export
converters, and adaptors/wrappers. Other mechanisms are
obviated by C2s rules. For example, multilingual
components are inherently supported by C2's use of implicit
invocation and explicit connectors.

Another relevant approach to reuse, DSSA, exploits the
shared characteristics of applications within a domain.
DSSA have proven successful at supporting reuse, but have
at times been overly restrictive in that support [20]. A
representative example is GenVoca [3], which requires that
all components be custom built for its style of interaction and
composition. We have tried to leverage the successes of
DSSA, while providing more flexible rules: C2 eliminates
assumptions of shared address spaces and threads of control;
it supports event-based communication through connectors;
and it separates an architecture from its implementation.

I nteroper ability: Component interoperability technologies
(e.g., Field/softBench [6,34], Q [17], ToolTak [12],
CORBA [30], COM [39], Enterprise JavaBeans [41])
provide a set of communication services and protocols to
enable component interactions. Though they provide
effective implementation-level support for environment
integration, these technologies often unduly influence the
properties of systems they are used to construct [9]. Thus,
they must be accompanied by a set of higher-level,
compositional guidelines (e.g., an architectural style) and
models (e.g., an architectural description) that clearly
specify structure, behavior, and other properties of a system
[28]. As discussed in Section 3, we have exploited several
interoperability technologies to provide support for multi-
lingual, multi-process, and multi-platform development of
C2-style architectures.

Environments: We have been strongly influenced by the
work on software environments. In particular, we have drawvn
a number of lessons from our involvement with the Arcadia
environment project [13]. These lessons included the need
for an environment’s explicit blueprint (i.e., architecture); the
necessity of tool reuse, heterogeneity, and minima tool
interdependencies; trade-offs between tight and loose tool
integration; and benefits of applying an environment on



itself. Although the environments discussed in Section 4 are
smaller in scope than Arcadia, the approach we adopted for
their integration has resulted in comparatively quicker
development, greater flexibility (e.g., “plug-and-play”),
increased support for incorporating OTS technologies, and
easier adaptation to changing requirements. Our approach
also has roots in DSSA environments (e.g., ADAGE [2)]).
DSSA environments exploit the properties of a given
application domain, while we exploit the (broader)
characteristics of a style. Finally, as discussed in [22],
DRADEL in particular has drawn inspiration from the Inscape
environment for software modeling and evolution [31].

6 CONCLUSIONS

We have been able to successfully construct a family of
software development environments using an architecture-
based approach. This lends credence to our hypothesis that
an architectural approach can be applied to software
environments—conglomerates of tools—in addition to
“traditional” software applications and individual tools.
Furthermore, since our environments have been designed to
support development of applications using the same
fundamental concepts as those used in the environments
own congtruction, we can apply the environments “on
themselves.” The environments have been constructed in the
C2 architectural style and integrate a variety of tools, both
reused off-the-shelf and devel oped in-house.

The key elements of our approach include:

« explicit and formal modeling of an environment'’s archi-
tecture. This provides a higher fidelity representation of
the environment’s architecture as compared to ad-hoc
boxes-and-arrows diagrams used in the past;

« using explicit, adaptable connectors to model and imple-
ment all the communication between tools. This reduces
tool coupling and facilitates the runtime evolution of the
environment’s architecture; and

« using an architectural style to further aid understanding,
analysis, and evolution of the environment’s architecture.

Another novel aspect of our approach is that we view a
model of an (environment’'s) architecture as a form of
hypertext, explicitly capturing the components and
connectors separate, and possibly distributed, descriptions
and evolution. To this end, we designed and incorporated
XADL, an extensible XML-based architecture-neutra
schema, as the shared data structure for the ArchStudio 2.0
environment. Using XML offered the added benefit of
reusing several OTS tools, such as XML parsers, IBM’s
Xeena to edit our xADL schema and validate our
architectural models against it, and Microsoft's Internet
Explorer 5 to visually navigate our architectural models.

Our approach reveals that some sources of architectural
mismatch may be prevented through architecture modeling
and analysis, and provides further proof that OTS reuse must
be planned. Architectural models are the necessary first step
as they provide a framework for understanding and
reasoning about the gross properties of systems, whether
applications or environments.
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