Some Open Problems in Graph Theory and Computational Geometry

David Eppstein

Univ. of California, Irvine
Dept. of Information and Computer Science

ICS 269, January 25, 2002

Two Models of Algorithms Research

I. Read lots of theory papers
II. Choose a problem with lots of previous work (evidence it's interesting)
III. (optional) Add extra complications to the problem so you can convince people your results are more difficult than previous work
III. Find an algorithm that's better than all the previous results
IV. Write it up and publish it in theory conferences and journals
I. Learn about areas outside of theoretical CS
II. Choose a problem in one of those application areas where faster or more accurate solutions can make a practical difference
III. Abstract essential features to get new clean theoretical problem
IV. Find an algorithm that's better than all the previous results
V. Write it up and publish it in theory conferences and journals
VI. Implement and communicate your results with the community your problem came from, discover related problems, repeat

Application: photograph enhancement

 e.g. lighten foreground of this picture without losing background detail

Top enhanced, bottom too dark

Bottom enhanced, top too light

Combination of top and bottom enhancements

Practical problem:

How to automatically find good split of picture into pieces to be enhanced separately?

Separation should have high contrast
to make different treatment of pieces less apparent
Pieces should be large
don't want separate pieces for each little shadow

Theoretical abstraction:

Given planar graph with weights on each vertex, and given a target weight W

Can the graph be split into two connected subgraphs each with total weight at least W ?

Graph vertices represent contiguous blocks of pixels connected by low-contrast adjacencies, weight is number of pixels

W represents requirement that pieces be large, could be set by user

Status:

No algorithm known, couldn't find prior work Might be NP-hard but approximating target weight would be ok

Application:

Building wiring design

Problem:

(from Naoki Katoh, Japanese architecture professor)

Given a rectangle partitioned into smaller rectangles

Find a tree touching each rectangle (including outer one)

Tree edges must lie along rectangle sides

Minimize total length

Status:

No algorithm known (maybe not even a guaranteed approximation ratio)

Seems likely to be NP-complete but no proof known

Application:

Communication network design

find spanning tree in a graph, optimizing nonlinear combination of two quantities e.g. cost and failure probability

Problem:

Given a formula representing a shape as unions and intersections of lower halfplanes

If formula has n terms, how many sides can final shape have?
Accurate bounds would improve network design algorithm analysis

Status:

Best lower bound: sides \geq const $\cdot \mathrm{n}$ alpha(n)
Best upper bound: sides \leq const • n4/3

Application:

Robust statistics

fit two-dimensional plane to higher-dimensional data points insensitive to large number of arbitrary outliers

Problem:

Given a set of n points in two-dimensional plane
Find three subsets s.t. any line passes outside at least one subset
Want each subset to contain as many points as possible

Status:

Can always guarantee each subset contains at least n/6 points

There exist point sets where some subset must have $\leq n / 4.622$ points
Can we narrow this gap?

Application:

Exact graph coloring algorithms

Applications of application:

Parallel scheduling
Compiler register allocation etc...

Problem:

How many maximal bipartite induced subgraphs can an n-vertex graph have?

Status:

No nontrivial upper bound

Application:

Provide theoretical justification for apparent difficulty of protein crystallography problems: given known protein sequence, 3d electron density map, find 3d positions of protein atoms

Problem:

Given: n by n matrix of 0 's and 1 's, sequence of $n^{2} 0$'s and 1 's
01101
10100
11010
0101110110100101111010110
01111
10110

Can we find a path through adjacent matrix entries, covering each matrix entry exactly once, with values matching the given sequence?

Status:

Should be NP-complete
No proof known

Application:

Finite element simulation

Problem:

Given: polygonal domain, mesh topology (planar graph, all faces triangles or squares, outer vertices matched up with domain vertices)

Can mesh be drawn in the plane with all faces convex?

Status:

No efficient algorithm known
Not known to be NP-hard Some practical success with ad-hoc heuristics

Application:

Finite element simulation

Problem:

It's known that the cube can be divided into tetrahedra s.t. all angles between adjacent faces are non-obtuse

But can we do it s.t. all angles are acute?

Status:

All-acute tetrahedralization of infinite slab (region between two parallel planes) is known [E. \& Ungor]

If possible, cube requires a large number of tetrahedra [Erickson]

Application:

None (purely of mathematical interest)

Problem:

Previous cube tetrahedralization used six tetrahedra, but an improvement to five tetrahedra is possible and optimal:

How many higher dimensional simplices are needed to triangulate a higher dimensional hypercube?

Status:

Best upper bound is slightly smaller than n ! Best lower bound is slightly larger than sqrt(n!)

Application:

Maybe someone can come up with one?

Problem:

Given n "centers" in the plane
Find n disjoint circles centered at those points
Maximizing total area

Status:

Seems likely to be NP-complete, but I have no proof Polynomial-time approximation scheme exists

Replacing area by perimeter allows polynomial solution

D. Eppstein, ICS 269, 01/25/02

