
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 3, MARCH 1987

Maintaining Configurations of Evolving Software
Systems

K. NARAYANASWAMY AND WALT SCACCHI, MEMBER, IEEE

Abstract-Software configuration management (SCM) is an emerg-
ing discipline. An important aspect of realizing SCM is the task of
maintaining the configurations of evolving software systems. In this
paper, we provide an approach to resolving some of the conceptual and
technical problems in maintaining configurations of evolving software
systems. The approach provides a formal basis for existing notions of
system architecture. The formal properties of this view of configura-
tions provide the underpinnings for a rigorous notion of system integ-
rity, and mechanisms to control the evolution of configurations. This
approach is embodied in a language, NuMIL, to describe software sys-
tem configurations, and a prototype environment to maintain software
system configurations. We believe that the approach and the prototype
environment offer a firm base to maintain software system configura-
tions and, therefore, to implement SCM.

Index Terms-Configuration, module and subsystem families, mod-
ule and subsystem interfaces, software configuration maintenance sys-
tem, upward compatibility.

I. INTRODUCTION
A COMPLEX product such as a large-scale software

system is built through the interactions of numerous
components. An arrangement of such components which
constitutes the product is called a configuration. Config-
uration management (CM) is the discipline of developing
uniform descriptions of a complex product at discrete
points in its life cycle with a view to systematically con-
trolling the manner in which the product evolves. For
physical systems it is a well-understood discipline [7].
Software Configuration Management (SCM), the appli-
cation of the tenets of configuration management to soft-
ware systems, is an emerging discipline.

Software configuration management has four different
elements [1], [5]:

1) Software Configuration Identification: The defini-
tions of the different components, their baselines or mile-
stones, and the changes to the components.

2) Software Configuration Control: Controlling the
way components or configurations are altered with the
necessary technical and administrative support.

Manuscript received September 2, 1985; revised June 13, 1986. This
work was supported by AT&T Information Systems, TRW Defense Sys-
tems Group, IBM through Project Socrates at USC, and the Air Force Of-
fice of Scientific Research under Grant 810199.

K. Narayanaswamy was with the Department of Computer Science,
University of Southern California, Los Angeles, CA 90089. He is now
with the USC/Information Sciences Institute, Marina del Rey, CA 90292.

W. Scacchi is with the Department of Computer Science, University of
Southern California, Los Angeles, CA 90089.

IEEE Log Number 8612410.

3) Software Configuration Auditing: Making the cur-
rent status of the software system in its life-cycle visible
to management, to determine whether the baselines meet
their requirements.

4) Software Configuration Status Accounting: Provid-
ing an administrative history of how the software system
has been altered by recording the activities necessitated
by the other three SCM functions.
While the above definition accurately characterizes the

goals of software configuration management, several
technical problems remain with actually achieving those
ends. Specifically, the phenomenon of continuing change
in software systems [3] causes some conceptual and tech-
nical difficulties in the following areas:

* How should the components of a software system and
its different configurations be specified so that one can
maintain software configurations?

* What precisely is the state of an evolving software
system configuration? What are the necessary conceptual
mechanisms to understand how the state of a system may
be altered?

* Typically, a system evolves not monolithically, but
as a family of closely related entities [6], [27], [36]. How
can the configurations of such software system families
be represented?

* What mechanisms are needed to estimate the impact
of contemplated or partially incorporated alterations on a
software system configuration in orde-r to evaluate their
impact on the system?

* How can the answers to the above questions be used
in providing a well-integrated and automated environment
for the development and maintenance of software system
configurations?

In this paper, we provide some answers to the above
questions, and present an approach to maintaining config-
urations of large software systems. It is our belief that our
approach and our prototype Software Configuration
Maintenance System (SCMS) provides a firm conceptual
and technical base for the maintenance of evolving system
configurations and, therefore, for software configuration
management.

In Section II, we present the background for our work,
along with our particular view of what an evolving system
configuration represents. Section III contains the details
of a language, NuMIL, to describe evolving software
components and their configurations, viewed as we ad-
vocate in Section II. The important formal properties of

0098-5589/87/0300-0324$01.00 © 1987 IEEE

324

NARAYANASWAMY AND SCACCHI: CONFIGURATIONS OF EVOLVING SOFTWARE SYSTEMS

our view of system configurations are examined in Sec-
tion IV. Section V outlines the prototype SCMS we have
implemented. Section VI summarizes our conclusions and
outlines areas for further work.

II. TOWARDS A MODEL OF SYSTEM CONFIGURATIONS
Until recently, software configuration maintenance has

not been approached in a principled manner. Several of
the issues which we raised in Section I were handled by
the use of manual procedures and protocols. The task of
assuring continued system integrity as the system evolved
was accomplished by supervisory oversight. With the ad-
vent of more amicable software development environ-
ments such as UNIXT, which enabled the building of spe-
cialized computer tools, it became possible to automate
some aspects of software configuration maintenance. Sev-
eral currently existing UNIX tools provide some config-
uration maintenance facilities. For example, MAKE [91
accepts descriptions of system configurations, and can au-
tomatically construct the system from its descriptions.
Tools such as the Source Code Control System (SCCS)
[31] or the Revision Control System (RCS) [37] permit
one to keep track of all the textual alterations made to a
file.
The key problem, not addressed by any of the men-

tioned tools, is that of maintaining the integrity of the sys-
tem configuration. Indeed, what precisely is "system in-
tegrity," especially when the system is constantly
changing? What properties of a system configuration
should be preserved and what may be altered? Which al-
terations are easy to carry out-which are not? These
questions must be addressed in a fairly formal manner if
we are to go beyond the current level of support for soft-
ware configuration maintenance.

A. Module Interconnection Languages
Recent work in Module Interconnection Languages

(MIL's) has been directed toward the conceptual, rather
than the management aspect of maintaining software con-
figurations. The concept of a MIL was introduced by
deRemer and Kron [8] to permit the articulation of how
system configurations could be constructed from their
constituents (modules). The primary new idea of a MIL
was to formally describe the interdependencies between
the components of a system. This description was then to
be used to control how the system evolved.1 A MIL works
at the level of "programming-in-the-large," i.e., at the
level of interaction between modules, rather than "pro-
gramming-in-the-small," which involves other program-
ming activity like algorithm or data structure design, cod-
ing, etc. MIL's have also been incorporated into different
system design methodologies as a basis for developing (or
generating) the architectural structure of emerging soft-
ware systems [28], [22].
The first such language, MIL-75 [8] recorded inter-

module dependencies in a purely structural sense by list-

'TMUNIX is a trademark of AT&T Bell Laboratories.
'A comprehensive survey of existing MIL's appears in [29].

ing the resources provided by each module, and a list of
resources required by each module. A resource was re-
garded as something that had a representation in the im-
plementation language. The primary focus of this work
was to ensure that modules had access to the resources
which they required (i.e., resources provided by other
modules).

Tichy [36] and Cooprider [6] observed that if MIL's are
to be used to record the evolving structure of a software
system, one should recognize that most software systems
exist asfamilies of related systems. For instance, a Pascal
compiler may evolve into a family of systems, each in-
tended for a particular kind of target machine. The
schemes proposed by these works allow for module fam-
ilies, i.e., closely related source files, and subsystemfam-
ilies which result from the configurations involving the
different module families. Each member of a module
(subsystem) family is called an implementation or a ver-
sion of the module (subsystem) family. The problem of
supporting evolution is then seen as controlling the inter-
action between module interfaces (provide and require
resources, as in the conventional MIL's) and controlling
the proliferation of versions resulting from evolution.

B. Our View of System Configurations
Our work is best understood against the background of

the work discussed in the last section. We feel that the
most effective way of maintaining software configurations
is to focus on programming-in-the-large, describing the
individual component interfaces (provide and require re-
sources), describing how the components depend on each
other, and, finally, preserving those dependencies be-
tween the modules of a system as the system evolves. We
find it useful, as in [36], to view an evolving system as a
family of related systems. However, beyond the similar-
ities above, our framework differs in very substantial ways
from the work on MIL's.

C. Vocabulary and Definitions
In the traditional manner, we view a system as essen-

tially a directed acyclic graph where the leaf nodes are
modules, and the internal nodes are subsystems. Each
subsystem is realized by a configuration of its successor
nodes which may, in turn, be other subsystems or mod-
ules. A module is directly realized as a source file which
implements it. A subsystem is realized by putting together
its successors using some unspecified construction rules
(e.g., compile, link, and load). The successors of the sub-
system are said to participate in a configuration.2
The currency of exchange between modules is called a

resource. A resource is an entity that- can be given some
representation in the implementation language; for ex-
ample, functions, procedures, type definitions, variables,

2The distinction between subsystems and modules is not important to
our overall scheme, and is made for purely historical reasons. In object-
oriented implementation languages like SMALLTALK, for instance, the
distinction does not arise.

325

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 3, MARCH 1987

ALPHABETIZE CIRCULAR-SHIFT

Example of Module Family: DRIVER, Has 2 implementations or versions

Example of Subsystem Family: INDEXGEN, Has 4 configurations since each of its

components has 2 implementations
L MODULE FAMILY

L SUBSYSTEM FAMILY

Fig. 1. Hierarchical structure of KWIC index system.

etc., can be resources [36]. Every module provides some
resources to the other modules in the system, and in turn
may require some resources from the other modules in the
system in order to implement the resources it is supposed
to provide. It is useful to think of the modules and sub-
systems as having interfaces through which they interact
with other modules or subsystems. Thus, the interface of
a module or subsystem is characterized by 1) the set of
resources it provides, and 2) the set of resources it re-
quires.
Because of the existence of module and system fami-

lies, each node in the graph denotes not a single object,
but a set of objects which actually realize the module's
family. For example, each leaf denotes a module family,
and each internal node a subsystem family. Each member
of a module (subsystem) family is called either an imple-
mentation or version of that module (subsystem) family.3
An example of a configuration in this style is given in Fig.
1, which shows the hierarchical structure corresponding
to Parnas' KWIC-index system [26]. Note how the ex-
plicit existence of multiple versions is depicted.
The introduction of multiple versions requires that we

be precise about the relationship between the versions and
the module or subsystem of which they are members.
Clearly, the criterion for family membership should be
shared interface characteristics. What should these char-
acteristics be?

D. Relationship Between Families and Their Members
With the conventional MIL's, a module interface is de-

termined precisely by the syntax of the resources it pro-

3For conciseness, we will use module to mean a module family and a
subsystem to mean a subsystem family in the rest of this narrative.

vides and the syntax of the resources it requires [36]. All
the implementations share exactly this interface. They
cannot, for instance, require different resources, or have
some resources with different syntax in different imple-
mentations. This is a serious inadequacy. For instance,
the different implementations could embody completely
different methods of doing the same thing. Therefore, it
is conceivable that different implementations require dif-
ferent resources. Similarly, if a module M provided a re-
source "foo" as an integer, and module N provided
"foo" as a real number, the two would be considered as
belonging to different families regardless of whether the
difference in the type of "foo" in the two cases is signif-
icant from the point of view of what M or N actually do.
More importantly, syntactic assurances about module

interfaces are inadequate in addressing the more profound
concern about the functional properties of the resources
which are being used across module boundaries. For ex-
ample, the "Matrix_Invert" and "Matrix_Transpose"
operations in a particular library of mathematical routines
have identical syntactic attributes (i.e., parameters and
their types), and would therefore look identical in a con-
ventional MIL, but clearly compute different functions.
That two interfaces contain the same resources with the
identical syntactic attributes does not really tell us much.

Rather than use the syntax of the resources in the inter-
face as the unifying facet of all the members of a module
family, we use the more powerful notion that each mem-
ber of a module family satisfies the same abstract inter-
face specification. We call this abstract interface specifi-
cation the module family template for a family. This
abstract interface specification is intended to be similar to
the specification of a typical abstract data type [13]. In
particular, we use the abstract model style of specification

326

NARAYANASWAMY AND SCACCHI: CONFIGURATIONS OF EVOLVING SOFTWARE SYSTEMS

[16], [19], [25] to specify the module family template.
Examples follow in the next section.
No two members of the family need to share the same

syntax for the resources they provide and require, since
this is not the chief criterion for family membership. In
fact, the module family template is written in a manner
independent of implementation language. Using an ab-
stract module family template is appealing because, dur-
ing evolution, we can permit an individual module to
evolve in several concrete dimensions, so long as it still
embodies the abstract interface properties specified in the
module family template.
An additional important point is that there is no need to

have required resources in the family template because
required resources are those needed to implement the
module or subsystem, and are thus a characteristic of each
implementation rather than the family as a whole. Thus,
each implementation may be free to require any resources
in order to provide (at least) the resources in the family
template.

In turn, each implementation is specified in terms of the
implementation language as in the conventional MIL's,
i.e., in concrete terms. Each implementation provides
some resources, typically at least the resources in the fam-
ily template, and requires some resources to implement
the provided resources. Each resource is given syntactic
attributes in terms of the implementation language. This
description is called the concrete interface since it is spec-
ified using the syntax and semantics of the implementa-
tion language. The functional properties of the resources
in the concrete interface are specified using pre- and
postcondition assertations in a Hoare-like style. Examples
follow in the next section.

III. A LANGUAGE TO DESCRIBE SOFTWARE SYSTEM
CONFIGURATIONS

In this section, we present the features of a system con-
figuration description language called NuMIL which em-
bodies our view of large systems as an evolving ensemble
of software (sub)system configurations. We use NuMIL
to describe and identify software configurations in the
manner suggested in Section I. Hence, the structure of the
language closely resembles the concepts set forth in the
previous section.

A. Module Family Specifications in NuMIL
Module families are specified first by a description of

the family template which unites all the different versions
or members of the family, and second by the information
particular to each member (implementation) of the fam-
ily. The NuMIL description of a module family separates
the family template from the specification of the imple-
mentations. The template characterizes the properties of
the resources provided by the module family in an imple-
mentation-independent manner, whereas inspection of the
implementation specifications should reveal the structural
and functional details peculiar to each implementation.

Specifying the Templates of Module Families: The

module family LineStorage is
provides Line (MaxLine MaxWord,MaxChar,LineN,WordN,

CharN, Lines, PutChar, GetChar, DelLine, DelWord}
properties

word = string;
eline = sequence of word;
all_lines = sequence of eline;
states all_lines
type

PutChar: integer integer Integer character --->
GetChar: Integer integer Integer ---> character
DelLine: integer --->
DelWord: integer --->

pre.PutChar(n,w,c,ch) ==> 1<=n<=MaxLine and
1<=w<=MaxWord and c<=MaxChar

post. PutChar (n, w, c, ch) ==> all_lines' [n, w, c] =ch

pre.GetChar(n,w,c) ==> 1<=n<=MaxLine and
1<=w<=MaxWord and i<=c<=MaxChar

post.GetChar(n,w,c,r) ==> r=all lines[n,w,c]

pre.DelLine(n) = 1<=n<=MaxLines
post.DelLine(n) => all_lines 'o] = nullseq

pre.DelWord(n,w) ==> l<=n<=MaxLines and
1 <=w<=MaxWords

post.DelWord(n,w) ==> all_lines'[n,w] = nuilseq
implementations

< implementation specified in Figure 3. >
end LineStorage

Fig. 2. Template specification for LineStorage module family.

structural portion of a module family template is specified
by listing the (minimal) set of resources to be provided by
the family. This characterizes the structure of all the
members of the family which are constrained to provide
at least the resources prescribed in the module family tem-
plate.
The second part of the template specification lists the

functional properties of each resource provided by the
module family in a nonprocedural, implementation-inde-
pendent manner. The specifications of these properties of
the resources are essentially the same as those discussed
in the specification of abstract data types or system pro-
totypes described with operational specifications [2]. The
specific language which is used to specify these properties
depends on the method of specification selected. In par-
ticular, one could use algebraic techniques [13], [38],
state machine techniques [30], abstract model techniques
[16], [19], [25], or operational specification techniques
[2].
The specific syntax for the structural and functional

portions Qf the template specification are illustrated in the
example specification of the LineStorage module family
for the KWIC Index System in Fig. 2. For the purposes
of illustrating the ideas in this work, we choose to employ
the abstract model techniques of [16], [19], [25], and we
borrow their notation as well. However, our use of the
abstract model techniques is not to be construed as an ad-
vocacy of that technique alone.
The module family provides an abstract data type called

Line, whose behavior is modeled by viewing the lines as
a sequence of lines, with each line being a sequence of
words. The properties of sequences are assumed to be
specified already, perhaps in a standard library. The op-
erations defined are specified by giving their pre- and
postconditions,- which are assertions about the lines be-
fore and after the operation is invoked.

327

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 3, MARCH 1987

Specifying Implementations in NuMIL: There may be
several implementations of the same module family, each
of which we consider to be a distinct member or version
of the family. Therefore the implementation specification
is essentially a list of version descriptions, each specify-
ing one particular member of the family. The implemen-
tation specifications can be omitted completely in the ini-
tial phases of the architectural design description because
the concrete details of an implementation may not yet be
deternined.
Each version specification has three parts:
1) The realization specification of the implementation,

which merely provides the name of the source file which
realizes that implementation.

2) The concrete interface, i.e., a list of provided and
required resources, with the syntactic attributes of each
resource described in the declarative syntax of the imple-
mentation language.4

3) The functional properties of each operation, based
on the semantics of the underlying programming lan-
guage, given in the form of pre- and postcondition asser-
tions, in a Hoare-like notation.
An example of the specification of a particular version

of the LineStorage module family is shown in Fig. 3. The
example is based on Ada® [18] as the implementation lan-
guage. The resources specified in abstract fashion in the
template portion are given concrete syntactic attributes,
described in the declarative syntax of Ada. The concrete
pre- and postconditions of operations are also provided.

B. Subsystem Family Specifications in NuMIL
Like a module family, each subsystem has a template

specification to be satisfied by all its members. However,
unlike a module family, each member of the subsystem is
essentially a configuration. Each configuration is a list of
named components which participate in the configuration,
and any of the named components could, in tum, be a
configuration. This permits the language to be used to
specify the configurations of any software system. The
second portion of a subsystem specification lists the con-
figurations which realize the template for the subsystem
family. The configuration specifications may be omitted
entirely as shown above if only the subsystem template
has been finalized. This often happens in the early stages
of a software development project.
Each component in a configuration is a pnmitive mod-

ule family member (a source file), or another configura-
tion. Each individual component in the configuration is
specified by providing the name of the (module or sub-
system) family, and a selector which names a particular
member of the family to be used in the construction of the

4The implementation language is not specified by us. Any programming
language may be used, such as Fortran, C, or Ada [18]. However, we do
impose the restriction that there is only one programming language. This
eliminates the need to have a special language to specify the syntax of
resources, as in [36].

*Ada is a registered trademark of the U.S. Department of Defense (Ada
Joint Program Office).

module family LineStorage
< . . . Template specification from Figure 2. >

implementations
version corearray { realization corearry.ada;

provides
package Line is
constant MaxLine, MaxWord, MaxChar INTEGER;
type LineN Is range l..MaxLine;
type WordN is range 1. .MaxWord;
type CharN is range l..MaxChar;
readonly Lines: LineN;
procedure PutChar(L:LlneN,W:WordN,C:CharN,CH:CHARACTER);
function GetChar(L:LineN.,W:WordN,C:CharN)return CHARACTER;
procedure DelLine(L:LineN);
procedure DelWord(L:LineN,W:WordN);

end Line;
requires Storage_Error_Handler;

proPerties
private type lines is
array[l. .MaxLines,l. .MaxWord,. .MaxChar] of CHARACTER;
all_lines:lines;
states:: all_lines

pre. PutChar(n,w, c, ch, <all_lines>, <all_lines'>) ==>
1<=n<=MaxLine and 1<=w<=MaxWord and 1<=c<=MaxChar
post. PutChar (n, w, c, ch, <all lines>,<all_lines'>) ==>

all_lines'[n,w,c]=ch

pre. GetChar (n, w, c, <all_lines>,<all_lines'>) ==>
1<=n<=MaxLine and 1<=w<=MaxWord and 1<=c<=MaxChar

post. GetChar (n, w, c, <all_lines>,<all_lines'>) ==>

GetChar=all_lines [n, w, c]

pre. DelLine (n, <all lines>, <all_lines'>) ==>
1 <=n<=MaxLines

post.DelLine(n,<all_lines>,<all_lines'>) >
all_lines[n]=O

pre.DelWord(n,w,<all_lines>,<all_lines'>) >
1<=n<=MaxLines and 1<=w<=MaxWords

post.DelWord(n,w,<all_lines>,<all_lines'>) ==>

all_lines[n,w]=O
}

end LineStorage

Fig. 3. Implementation specification for LineStorage module family.

subsystem KWIC ls
provides Kwic;
configurations

KWICsmall = { Input:term, LineStorage:core,
Index_Gen:core, Output:file
provides procedure Kwic;}

KWICbig = { Input:file, LineStorage:isam,
Index_Gen:isam, Output:file
provides Kwic;}

end KWIC

subsystem Index_Gen Is
provides Alph, Ith, Shifted Lines;
requires Line, ISAMPackage, SAMPackage;

configurations
core = { Alphabetizer:core, Circular_Shifts:comp

provides
procedure Alph;
procedure Ith(i:ShiftN) return ShIftN;

requires Line;>
isam = { Alphabetizer:isam, Circular_Shifts:index;

provides Alph,Ith;
requires Line,ISAMPackage;}

end Index_Gen

module Alphabetizer is . . end
module Circular_Shifts is . end
module LineStorage is end
module Input is . . end
module Output is end

Fig. 4. Subsystem specifications for KWIC system.

configuration. For example, in Fig. 4, the configuration
"KWICsmall" of the subsystem KWIC is constructed by
using the "term" version of the "input" module, the
"core'' version of the "line-storage" module, etc. The
selector used in naming the component may be omitted if
it is not known which particular member of the family will
be used in the configuration. However, such unspecified

328

NARAYANASWAMY AND SCACCHI: CONFIGURATIONS OF EVOLVING SOFTWARE SYSTEMS

selectors have to be resolved before the configuration can

actually be constructed or checked for certain properties.
The default value for the selector is designated, in, case
situations arise where the particular member of the family
is unspecified. The syntax for specifying subsystems is
illustrated in Fig. 4, and formally defined elsewhere [23],
[24].

C. Guidelines to Developing NuMIL Specifications
NuMIL is a language to describe the architecture of

software system configurations, no matter how they were

designed. Several disciplines may be used in arriving at a

particular architecture. For example, one could use infor-
mation hiding [26], abstract data types [13], Hierarchical
Development Methodology (HDM) [34], or module cou-

pling and cohesion [21] in arriving at a particular mod-
ular structure for the system.
When one uses bottom-up design, one starts by speci-

fying the primitive modules, realizing, either from expe-

rience or through other means, that the module is needed
to implement the system. On the other hand, with top-
down design, one would start with the subsystem hier-
archy, until the primitive modules in the hierarchy are de-
termined. Whatever the situation, interfaces of primitive
modules must be specified. What sorts of resources should
they provide? What should the properties of the resources

be?
When answers to these questions are resolved, NuMIL

can be employed to specify the templates of the different
module families. These descriptions will include the list
of provided resources and an abstract characterization of
the properties of those resources. The abstract properties
can be specified in several ways as we have suggested.
Thus, one develops the different module family descrip-
tions in the system characterized by the resources which
they provide, and the functional properties of those re-

sources.

The details of the NuMIL specification, such as what
the particular concrete representations of resources ought
to be in a particular version of the module family, or the
concrete functional specifications are filled in gradually
as more is understood about how the system is supposed
to fit together. The syntactic representations chosen for

each resource symbolize a deeper commitment to a par-

ticular configuration.
If alternatives for implementations are needed, the syn-

tax of NuMIL can be used to gracefully accommodate the
fact that there exists more than one implementation of the
module family template. Recording this information in
NuMIL will also aid potential users of the resources to
determine whether they want to use the resources in the
first place (from the module family template), and then a

particular version, depending on the specific syntax of re-

sources in the version.

IV. FORMAL PROPERTIES OF SYSTEM CONFIGURATIONS

By viewing a module family and a system configuration
as we advocate, we can provide rigorous definitions for

several important configuration maintenance concepts.
These properties will be used in maintaining the integrity
of the system as it evolves.

A. Criteria for Module Family Membership
While presenting the basic framework for characteriz-

ing module families, we have intuitively introduced sev-
eral key properties of a module family template specifi-
cation, implementation specifications, and the relation-
ships between them. We can now introduce rigorous cri-
teria for an arbitrary source module to be a member of a
module family.
We require that a module conform to its module family

template in two broad ways:
1) The structural portion of the module interface should

conform to the module family template.
2) The functional properties of the resources from the

module interface conform to those specified in the module
family template.
We now explore these relationships in some detail.5
Structural Conformity: In the following definitions, let

Mf be a module family, and M be any particular version
or member of the family. In general, p (M) and p (M)
denote the set of resources provided by the module M and
the module family template for Mf, respectively. Simi-
larly, r (M) denotes the set of resources required by the
module M.
A module M is said to be in structural conformity with

respect to the template for Mf if and only if

p(M) D p(Mf)
p(M) n r(M) =

The first of the above assertions ensures that the module
M provides the resources specified in the template forMf
and the second assertion ensures that no module provides
and requires the same resource.

Conformity of Resource Properties: While the notion
of structural conformity relates merely, the names of the
resources from the module family template to the names
of the resources in the concrete interface, we now define
when we consider the properties of the resources in the
module to be in conformity with the abstract properties in
the module family template.

Every module is realized by a source file which is its
concrete embodiment. Consider the module M and the
template for the module family Mf. In order for such a
module to satisfy the module template, there are two cri-
teria:

* The source file for the module M satisfies the con-
crete interface for M.

* The concrete interface for M satisfies the abstract in-
terface specification for the template for the module fam-
ily Mf.
We will now show how each of these criteria can be

shown to hold for a particular source file. These notions

5The criteria for family membership as set forth in this section represent
natural extensions of Tichy's proposal in [36], molded to fit our specific
view of module families.

329

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 3, MARCH 1987

are well-understood and have been explored in the formal
specification literature [15], [161, [11], [4].
To show that a source file satisfies its concrete inter-

face, one has to show that the source file is correct with
respect to the concrete interface specification. This cor-
responds to the conventional notions of partial or total
correctness depending on whether or not one includes a
termination clause in an operation's postconditions. Since
we stipulated that the pre- and postcondition clauses in
the concrete interface must be consistent with the syntax
and semantics of the implementation language, one can
readily use the inductive assertion method of Floyd [10],
the deductive systems of Hoare [15], or different testing
techniques (e.g., see [12], [17]) to establish that the
source file satisfies the concrete- interface.
The concrete interface for any particular module must

model the properties described in abstract terms in the
module family template. This relationship is also well-
understood. The abstract specification of the resource
properties is written in implementation-independent
terms, (i.e., it is based on some arbitrary mathematical
model). We must now show that the concrete interface
embodies those properties in the implementation lan-
guage. The relationship is described in mathematical
terms through the definition of a homomorphism from the
concrete specification onto the abstract specification [19],
[4], [15]. This is discussed in more detail elsewhere [23].
For our purposes here, it suffices to note that the notion

of module family membership is readily related to the
conventional notions of the correctness of implementa-
tions with respect to their specifications.

of having two different resources with the same name
being exchanged between modules.
A configuration, C = { Cl, C2, C* *, C, }, where each

Ci may be a module or another configuration, is said to
be well-formed if and only if

1) Every resource provided by C is provided by some
Ci, i.e.,

n

p(C) C: U p(Ci)

2) C requires those resources required by all the C's
except for the resources already provided by some other
component in the configuration, i.e.,

n n

r(C)= U r(Ci)) - U p(Ci)).
i=l i=1

3) C does not provide and require the same resources

p(c) n r(C) =
4) The resources provided and required by each com-

ponent of C are disjoint.
p(Ci) n r(Ci) =

5) No resource is provided by more than one compo-
nent.

p(ci)' np(c) = IC forall Ci; CjeC, i j.

6) Uses of resources across module boundaries are syn-
tactically consistent with their definitions (i.e., intermod-
ule type checking).6

7) All the modules in the configuration C satisfy their
B. Well-Formed Configurations respective module family templates.

For a configuration to be actually constructed, it must The above definition characterizes those configurations
not violate any of the constraints implied by the interfaces in which the assumptions made by the participants about
of its components. The integrity of the assumptions that each other are preserved. This helps in enforcing the con-
modules in a configuration may make about each other tinued validity of these configurations as the system is al-
must be assured for a configuration to be meaningful. The tered Last, this definition of configuration is similar to
characteristics of meaningful configurations are embodied Tichy's in '[36], but the conditions are described in line
in the concept of well-formed configurations. Such a no- with our view of module and configuration families.
tion first appeared in [14], where the properties of well-a. ~~~~~~C.Th'e Upward Compatibility Relationsh'ipformed configurations are examined from a purely struc-
tural and syntactic viewpoint. However, we also need to The properties discussed earlier are properties of soft-
consider the complications caused by the functional prop- ware system configurations in a static sense. They provide
erties of the resources. us with useful characterizations of the integrity -of the

In purely structural terms, one can state that no config- software system configurations without regard to change.
uration can provide a resource which is not (eventually) However, both the descriptions and the software system
provided by a module in that configuration. Further, the which they describe are subject to alterations. This ne-
configuration requires (from other modules or configura- cessitates creating additional mechanisms to characterize
tions) those resources which its constituents require, but how the software system may be altered. Which altera-
which are not provided by other components in the con- tions are relatively easy to carry out in terms of not vio-
figuration itself. lating the assumptions that modules make about each
As with the implementations of module families, a con- other? The notion of upward compatibility between the

figuration cannot provide and require the same resource. members of a module family provides the means to an-
It is also important to ensure that no resource is provided swer these questions fairly efficiently.
in more than one component [14]. This constraint is nec-
essary to simplify the rules for configuration of modules, 6This is already provided in several modem programming languages such

and makes much intuitive sense by avoiding the confusion as Ada [18], CLU [20], etc.

330

NARAYANASWAMY AND SCACCHI: CONFIGURATIONS OF EVOLVING SOFTWARE SYSTEMS

Motivation for Upward Compatibility: Software sys-
tems are generally altered incrementally. As these alter-
ations are carried out, it is of vital importance to ensure

the continued validity of the system configurations. The
alterations should not inadvertently violate the integrity
of the intermodule dependencies. If the alterations were

intended to alter the intermodule dependencies, then cor-

responding alterations must be made in the dependent
modules so as to preserve consistency in the system con-

figuration. Each system configuration embodies a set of
design choices and some software system structuring
principles. Any alteration to the existing architecture
should be reviewed, and must therefore be detected and
analyzed.
The discussion above raises the question of when

changes to one module require corresponding changes in
the modules which depend on it. We call this effect prop-
agation of changes to ensure consistency in the configu-
ration. The alterations which do not require any propa-
gation to other modules are intuitively the easiest to effect
because each module can be changed in isolation from
other modules. Upward compatibility characterizes this
notion rigorously. Further, by noting which parts of the
upward compatibility criteria fail, we can better charac-
terize the nature of the required propagation.
An initial notion of upward compatibility was presented

by Tichy in [36] and [37]. He defined this compatibility
in terms of the structure and syntax of the interfaces of
the modules in question. In our case, we rigorously de-
scribe what the relationships between the resource prop-
erties in the two interfaces must be for the upward com-

patibility relationship to hold between members of a
module or configuration family. Therefore, our formal-
ization builds upon Tichy's initial foundation.
Upward Compatibility Relationship Between Versions:

A version M1 of a module family Mf is upward compatible
to version M2 (written M1 upc M2) if and only if

1) M1 provides at least all the resources provided by
M2.

P(MI) 2P(M2)*
2) M1 requires no resources which are not required by

M2*

r(MI C: r(M)

3) The syntactic properties of the resources common to
the two versions (provide and require clauses) are iden-
tical.

4) For each operation 0 in both M1 and M2, the follow-
ing relationship holds in the concrete properties:

pre(0, M2) pre(0, MI)

* post(Q, M1) post(0, M2).

Intuitively, the above definitions are devised to capture
those situations when the usage of any particular resource
R as provided in M1 will satisfy usages of the same re-

source as-provided in M2. Therefore, MI may replace M2
in any well-formed configuration, so long as the resources

provided by M1 are mutually disjoint with the resources
provided by other components in that configuration.7 In
particular, consider the situation when M1 is an altered
form of M2. So long as we ensure that the just discussed
condition holds, we assert upward compatible alterations
preserve well-formed configurations.

Upward Compatibility and Family Membership: Since
the upward compatibility relationship preserves the integ-
rity of intermodule dependencies, a relevant question is
whether or not it also preserves membership in the family.
In other words, we wish to discern whether or not if a
module M1 is upward compatible to M2, and M2 has al-
ready been shown to be a member of a particular family
of modules, then M1 also belongs to the same family.

Theorem: If M1 upc M2 and M2 E Mf - M1 E Mf.
The proof of this claim is detailed elsewhere [23]. For

this paper, we merely explore the implications of the re-
sult. From the result above, we can now assert that if Ml
is upward compatible to M2, and if M2 has already been
shown to satisfy the template for a particular module fam-
ily Mf, then M1 also belongs to the same family. Consider
the case when module M2 is modified to get module M1.
In this case, M2 is altered upward compatibly to get M1.
By the result, we know that not only can M1 be used in
all the configurations that M2 is currently being used in,
but if M2 was a version of the family M , then so is M1.
This is essentially the version control problem, and there-
fore so long as a particular module is altered upward com-
patibly, the resulting module belongs in the same family
as the original module. Thus, upward compatible altera-
tions preserve family membership.

D. Upward Compatibility in Software System Evolution
In the previous section, we have shown how the upward

compatibility relationship preserves intermodule depen-
dencies and family membership. Hence, alterations which
cause the concerned modules to change upward compati-
bly are the easiest to effect. If one considers the existing
configurations of a software system as being the concrete
embodiment of a particular set of assumptions between
the different modules, upward compatible alterations leave
the integrity of those assumptions, and hence the integrity
of the configurations, unaltered.
Given the very diverse universe of alterations that soft-

ware maintainers routinely carry out, it is fair to say that
many alterations will not be upward compatible. How-
ever, the idea is that in carrying out the tests for upward
compatibility, one will uncover those aspects of the tests
which fail, providing important information to the main-
tainer about what else needs to be altered to preserve con-
sistency. This would also ensure that a maintainer never
inadvertently violates the consistency of configurations.
Another important aspect of upward compatibility is

that it is geared towards incremental analysis of module

7Recall that a well-formed configuration is one where the sets of re-
sources provided by each component were mutually disjoint. Since Ml could
provide more resources than M2 by the above definition, one has to ensure
that this condition holds.

331

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 3, MARCH 1987

interface properties. Since software systems are generally
altered incrementally, upward compatibility is easier to
show than the full family membership test and well-
formed configuration tests discussed earlier in this sec-
tion. For example, whether one uses either rigorous proof
techniques or comprehensive testing strategies to estab-
lish family membership and well-formedness of configu-
rations, it is extremely expensive to repeat the procedures
each time a module is altered. If the alterations are indeed
small, upward compatibility can be shown (manually or
automatically) with much more facility than either family
membership or well-formedness of configurations.

It can be shown that proving upward compatibility be-
tween unrelated source modules is unsolvable [23]. How-
ever, speaking intuitively, if one of the modules can be
transformed into an incrementally modified form of the
other, upward compatibility should be easier to show.
Notwithstanding these difficulties, upward compatibility
still remains a useful paradigm to adopt in analyzing in-
cremental alterations to software systems. The prototype
system which we discuss in the next section of this paper,
uses upward compatibility as the primary analytical
mechanism to analyze all structural and syntactic altera-
tions.

V. PRACTICAL SUPPORT FOR CONFIGURATION
MAINTENANCE

The concepts discussed in this paper and the system de-
scription language NuMIL can be used to provide support
for the development and maintenance of software config-
urations. The most important contribution of this work is
the use of a fairly formal incremental analysis (i.e., up-
ward compatibility) of module interface properties as the
basis for controlling how a software system is altered and,
indeed, understanding what the system looks like at any
particular stage of its ongoing evolution.

Several major theoretical problems prevent the use of
the complete checking of all the properties of the last sec-
tion. The family membership criterion is akin to the no-
tion of program correctness, a computationally intractable
problem. Similarly, it cannot be automatically determined
whether an arbitrary module is upward compatible to an-
other [23]. Notwithstanding these computational barriers,
the paradigm of incremental analysis to support software
evolution remains a powerful notion. Thus, we decided
to forego automating the functional portion of the integ-
rity tests as a compromise to make the system imple-
mentable.
A prototype environment based on NuMIL was built to

see if it was possible to support the range of configuration
maintenance activities using upward compatibility wher-
ever possible to reduce the cost of the analysis [22]. A
secondary goal of the prototype environment is to exper-
iment with and understand what sort of architectures are
needed to support software configuration maintenance.
For instance, we have used a general purpose relational
database system, INGRES [35], to store, retrieve, and up-
date all the NuMIL descriptions, enabling the users and

iptio SYSTEM T

eralor DATABASE: Cl
Ingre Dewription'..
RCS:SourwCod.e

Fig. 5. Architecture of the NuMIL system.

tools alike to access the information in one canonical rep-
resentation. This also permits browsing by users of the
information in the database. Users can even tailor the user
interface to suit their tastes. This aids in promoting better
understanding of the system by its developers and main-
tainers. The architecture of the environment is shown in
Fig. 5.

A. Prototype System Architecture
The system consists of two central repositories of in-

formation. The first holds a processed form of the NuMIL
descriptions of the developing system. The second con-
sists of all the source files and their revisions. All the dif-
ferent tools that are needed in the environment operate on
one or the other of these databases.
The use of database technology to aid at least in the

information management portion of a software engineer-
ing environment has long been a popular idea in the lit-
erature. However, very little work has been done explor-
ing the structure and design of a central repository of
information for maintaining software system configura-
tions. The NuMIL environment features one possible de-
sign of the database capable of handling such informa-
tion, along with source code and revisions. The complete
details of the design of this most important component of
the environment are recorded elsewhere [22], [23], [24].
The source files and their revisions are stored using the

Revision Control System (RCS) [37], available with the
UNIX 4.2bsd system. RCS has mechanisms to store
source files and their revisions in a space-efficient man-
ner. Our basic idea in employing RCS was to use it to
manage the storage of source files and revisions, while
employing INGRES to store an intermediate form of the
NuMIL system configuration descriptions [23].

B. Tools and Facilities
The different tools shown in Fig. 5 are built around the

central database. The tools offered the user fall into sev-
eral major categories:

332

NARAYANASWAMY AND SCACCHI: CONFIGURATIONS OF EVOLVING SOFTWARE SYSTEMS

1) Tools which handle the interactive or batch submis-
sion of new NuMIL system descriptions. These descrip-
tions are translated into the appropriate relations in the
INGRES database.

2) Facilities to help the user to interactively retrieve or
update database information. A menu-based browse in-
terface greatly aids in this area. Reports can be generated
in any desired format regarding alterations to configura-
tions, or descriptions of particular objects, etc.

3) Tools for routine maintenance, such as the tools
which check-in and check-out source files. Concurrent
updates to the same source file by two users are prevented
by RCS. When the file is checked-in, its interface prop-
erties are checked by seeing if it is upward compatible to
the file that was checked-out.

4) Tools to check and maintain the integrity of system
configurations form the bulk of the system. All the no-
tions of integrity discussed in the conceptual portion of
this paper are included: family membership, well-formed
configurations, and upward compatibility. Wherever pos-
sible, upward compatibility is used for analysis instead of
the other tests, thereby greatly reducing the amount of
computation required to assure system integrity.
The tools mentioned above are all integrated into a sin-

gle system with a uniform menu-driven interface, ena-
bling us to offer some of the basic software configuration
management services outlined in [1], [5]. The first release
of the prototype system is now being used by graduate
students at USC in the development of large software sys-
tems as part of the System Factory Project [32], [33]. The
feedback from the students is being used as a means to
evaluate the validity of the ideas proposed in this work,
and to provide suggestions for the compromises necessary
to implement the complete framework.

VI. CONCLUSIONS
In this paper, we presented an approach to maintaining

the integrity of evolving software system configurations.
The contributions of this paper are:

* A view of software system configurations which uses
the abstract interface properties as the basis of structuring
a system into module families.

* Use of the formal properties of system configurations
viewed as above in devising rigorous notions of system
integrity.

* Proposal of the upward compatibility notion to ana-
lyze incremental alterations to system configurations.

* Discussion of the capabilities and operational of a
language, NuMIL, and an accompanying prototype en-
vironment to mai-ntain software system configurations.
The above aspects of our paper provide a sound tech-

nical basis to address the daunting problem of software
configuration management.
We envisage much more research in the future in sev-

eral areas which we have not fully explored in this paper.
At a conceptual level, one has to investigate the compro-
mises necessary to make the full NuMIL framework prac-
ticable. For instance, it is known that proofs of correct-

ness of a program can be immensely hard to construct.
The motivation to construct a proof virtually disappears
if one has to construct a new proof every time a program
changes. The notion of upward compatibility, based on
incremental change, might be extended to include notions
which guaTantee the validity of the proofs for certain
classes of changes. This is a fruitful area of investigation.
At a more practical level, one could consider coupling

the checking. of interface properties with a language-di-
rected editor so that these checks can be carried out as the
alterations are taking place. This will provide continuous
feedback to maintainers as they are changing the system.
While our work has focused primarily on source code
alterations and their descriptions, a second line of inves-
tigations could include a comprehensive characterization
of all the different structural and functional alterations that
maintainers carry out, and their effects on the integrity of
system configurations. This will enable us to reason more
effectively about system alterations.

REFERENCES
[1] W. Babich, Software Configuration Management. Reading, MA:

Addison-Wesley, 1986.
[2] R. Balzer, N. Goldman, and D. Wile, "Operational specifications as

a basis for rapid prototyping," Software Eng. Notes, vol. 7, no. 5,
pp. 3-16, 1982.

[3] L. A. Belady and M. M. Lehman, "The characteristics of large sys-
tems," in Research Directions in Software Technology. Cambridge,
MA: M.I.T. Press, 1979, pp. 108-138.

[4] H. K. Berg, et al., Formal Methods of Program Verification and
Specification. Englewood Cliffs, NJ: Prentice-Hall, 1982.

[5] E. Bershoff, V. Henderson, and S. Siegel, Software Configuration
Management. Englewood Cliffs, NJ: Prentice-Hall, 1980.

[6] L. W. Cooprider, "The representation of families of software sys-
tems," Ph.D. dissertation, Carnegie-Mellon Univ., Apr. 1979.

[7] F. L. Czerwinski and T. T. Samaras, Fundamentals of Configuration
Management. New York: Wiley-Interscience, 1971.

[8] F. DeRemer and H. H. Kron, "Programming-in-the-large versus pro-
gramming-in-the-small, " IEEE Trans. Software Eng., vol. SE-2, pp.
80-86, June 1976.

[9] S. I. Feldman, "MAKE-A program for maintaining computer pro-
grams," Software-Practice and Experience, vol. 9, pp. 255-265,
1979.

[10] R. W. Floyd, "Assigning meanings to programs," in Proc. Symp.
Appl. Math., Amer. Math. Soc., 1967.

[11] J. A. Goguen, J. W. Thatcher, and E. G. Wagner, "Initial algebra
approach to specification, correctness, and implementation of abstract
data types," in Current Trends in Programming Methodology. En-
glewood Cliffs, NJ: Prentice-Hall, 1978.

[12] J. Goodenough and S. L. Gerhart, "Towards a theory of test data
selection," IEEE Trans. Software Eng., vol. SE-1, no. 3, pp. 179-
191, 1977.

[13] J. V. Guttag, "The specification and application to programming of
abstract data types," Ph.D. dissertation, Univ. Toronto, 1975.

[14] A. N. Habermann and D. E. Perry, "System composition and version
control for ADA," in Software Engineering Environments. Am-
sterdam, The Netherlands: North-Holland, 1981.

[15] C. A. R. Hoare, "An axiomatic basis for computer programming,"
Commun. ACM, vol. 12, pp. 576-580, Oct. 1969.

[16] -, "Proof of correctness of data representations," Acta Inform.,
vol. 1, no. 3, pp. 271-281, 1972.

[17] W. E. Howden, "Functional program testing," IEEE Trans. Soft-
ware Eng., vol. SE-6, pp. 162-169, 1980.

[18] J. D. Ichbiah, et al., "Preliminary ADA reference manual," SIG-
PLAN Notices, vol. 14, no. 6, 1979.

[19] C. B. Jones, Software Development-A Rigorous Approach. Engle-
wood Cliffs, NJ: Prentice-Hall, 1980.

[20] B. H. Liskov, et al., CLU Reference Manual (Lecture Notes in Com-
puter Science). New York: Springer-Verlag, 1981.

333

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 3, MARCH 1987

[21] G. Myers, Composite/Structured Design. New York: Van Nostrand
Reinhold, 1978.

[22] K. Narayanaswamy and W. Scacchi, "An environment for the de-
velopment and maintenance of large software systems," in Proc. 2nd
SOFTFAIR, IEEE Comput. Soc., 1985, pp. 11-23.

[23] K. Narayanaswamy, "A framework to support software system evo-
lution," Ph.D. dissertation, Univ. Southern California, May 1985.

[24] K. Narayanaswamy and W. Scacchi, "A database foundation to sup-
port software system evolution," J. Syst. Software, 1987, to be pub-
lished.

[25] J. R. Nestor, W. A. Wulf, and D. A. Lamb, "IDL-Interface de-
scription language: Formal description," Dep. Comput. Sci., Car-
negie Mellon Univ., Tech. Rep., 1981.

[26] D. L. Parnas, "On the criteria to be used in decomposing systems
into modules," Commun. ACM., vol. 15, pp. 1053-1058, Dec. 1972.

[27] -, "Designing software for ease of extension and contraction,"
IEEE Trans. Software Eng., vol. SE-5, pp. 128-137, Mar. 1979.

[28] M. H. Penedo and D. Berry, "The use of a module interconnection
language in the SARA system design methodology," in Proc. 4th Int.
Conf. Software Eng., 1979, pp. 294-307.

[29] R. Prieto-Diaz and J. Neighbors, "Module interconnection lan-
guages: A survey," Univ. California, Irvine, ICS Tech. Rep. 189,
1982.

[30] L. Robinson and 0. Roubine, "SPECIAL-A specification and as-
sertion language," Stanford Res. Inst., Rep. TR CSL-46, Jan. 1977.

[31] M. J. Rochkind, "The source code control system," IEEE Trans.
Software Eng., vol. SE-1, pp. 364-370, Dec. 1975.

[32] W. Scacchi, "The system factory approach to VLSI and software en-
gineering," in Proc. 2ndAFCET Software Eng. Conf., 1984, pp. 149-
157.

[33] -, "A software engineering environment for the system factory,"
in Proc. I9th Hawaii Int. Conf. Syst. Sci., Software, vol. 2, 1986,
pp. 822-829.

[34] B. Silverberg, "An overview of the SRI hierarchical development
methodology," SRI International, Tech. Rep. CSL-1 16.

[35] M. Stonebraker, P. Kreps, and G. D. Held, "The design and imple-
mentation of INGRES," ACM Trans. Database Syst., vol. 1, no. 3,
pp. 189-222, 1976.

[36] W. F. Tichy, "A data model for programming support environments
and its application," in Automated Tools for Information System De-
sign and Development, H.-J. Schneider and A. I. Wasserman, Eds.
Amsterdam, The Netherlands: North-Holland, 1982, pp. 31-48.

[37] W. F. Tichy, "RCS-A system for version control," Software-
Practice and Experience, vol. 15, no. 7, pp. 637-654, 1985.

[38] S. N. Zilles, "Data algebra: A specification technique for data struc-
tures," Ph.D. dissertation, Massachusetts Inst. Technol., 1975.

K. Narayanaswamy received the B.Tech. degree
in electrical engineering from the Indian Institute
of Technology, Madras', the M.S. degree in com-
puter science from the University of Nebraska-
Lincoln, and the Ph.D. degree in computer sci-
ence from the University of Southern California,
Los Angeles.

He is now a Research Computer Scientist with
the USC/Information Sciences Institute, Marina
del Rey, CA. His main research interests are in
formal software specification, software develop-,

ment environments, and the application of AI techniques to software en-
gineering.

Walt Scacchi (S'77-M'80), for a photograph and biography, see this is-
sue, p. 323.

334

