
Repository Support for the Virtual Software

Enterprise

John Noll and Walt Scacchi

Information and Operations Management Dept�

University of Southern California

Los Angeles� CA ����������

Abstract

Software development in the future will
conducted by �virtual enterprises�� consist�
ing of loosely�coupled� widely distributed�
autonomous development teams�

Due to geographic separation and the
loose cooperative structure of a virtual enter�
prise� each team will be highly autonomous�
managing its own computing environment
and tools� Thus� there will be no shared �le�
system or database to serve as an integrating
resource� Similarly� we cannot assume that
all teams will agree to adopt and use any
one team�s object storage manager or data
model� Nonetheless� it will be necessary for
each team to be able to modify jointly devel�
oped documents or process models�

This papers presents a hypertext�based
solution called �DHT� that supports soft�
ware engineering data modeling and man�
agement� provides transparent access to het�
erogeneous� autonomous legacy repositories�
and enables an implementation strategy with
low cost and e�ort� In addition� we show how
DHT solves the practical problems of shar�
ing data in a virtual enterprise� integrating
existing tools and environments� and enact�
ing software processes�

� Introduction

Contemporary software development
environments follow the architectural model
shown in Figure �	 software engineers em�

ploy a set of development tools to create
and evolve software artifacts� that are stored
in a central repository� which serves as the
medium for sharing artifacts among engi�
neers and programmers�

Software development in the future will
likely take place in an environment that is
much di�erent from this model� Software
development teams will be highly decentral�
ized� both physically and organizationally�
Software will be produced by loosely cou�
pled� �virtual enterprises�� composed of de�
velopers from di�erent companies who coop�
erate on speci�c projects� then disband to
form new alliances for other projects� Par�
ticipants in these virtual enterprises will re�
tain a high degree of autonomy over their
own activities� environments� and data� Nev�
ertheless� they will need to share artifacts
with other members� such as requirements�
project plans� source code� test results� de�
liverables� process models� and the relation�
ships among them�

Figure 
 depicts an example of a �typ�
ical� future development scenario� A loose
collaboration among a customer� consultant�
vendor� and software contractor is formed to
enhance a legacy system� Each has its own
internal tools and data� and each will require
access to at least part of the others� data�
Additionally� each will need to update and

�The term �software artifact� refers to the doc�

uments� programs� executables� etc� that form the

results of the software engineering process

�



RCS

glue.c,v

glue.obj

Sim−UI−Proj

Bombay

Software Contractor

Consultant
Chicago

Customer

Los Angeles

|Project|Form|Module |
+−−−−−−−+−−−−+−−−−−−−+
|Sim    |Code|sim.exe|
|Sim    |Code|sim.obj|
|Sim    |Code|sim.c  |
|Sim    |Code|sim.h  |
|Sim    |Req |req    |

Vendor
Austin

UI

ui.c ui.h ui.obj

/

(IN−PACKAGE ’CRL−USER)
;; −−−−−−− Level 0 −−−−−−−−
(DEFSCHEMAD ANALYZE

(INSTANCE TASK−CHAIN))
;; −−−−−−− Level 1 −−−−−−−−
(DEFSCHEMAD UNDERSTAND−REQUIREMENTS

(INSTANCE ACTIVITY))
(ADD−VALUE ’UNDERSTAND−REQUIREMENTS

’TASK−FORCE−COMPONENT−OF
’ANALYZE))

?

A Virtual Software Enterprise

Figure 
	 A virtual software enterprise�

Object Management Service

(LAN Based)

Storage Manager

A B C

Tools

Developers

Figure �	 Software development environment
architecture�

expand the set of artifacts that represents
the project�s output and deliverables�

Due to geographic separation and the
loose cooperative structure� each team will
be highly autonomous� managing its own
computing environment and tools� Thus�
there will be no shared �le�system or
database to serve as an integrating re�
source� Similarly� we cannot assume that
all teams will agree to adopt and use any
one team�s object storage manager or data
model� Nonetheless� it will be necessary for
each team to be able to modify jointly devel�
oped documents or process models�

The virtual enterprise produces a set of
shared artifacts� but does not have a central
repository where they can be stored� With�
out a shared database� how can participants
retrieve and modify shared objects� This is
the problem addressed by this paper	 how
to enable sharing of software artifacts among
autonomous� distributed development teams�
given the absence of a shared repository�

A solution must meet the following
goals	






�� Model software artifacts� versions� and
other relationships�


� Provide transparent access to artifacts
and relationships in heterogeneous� au�
tonomous legacy repositories�

�� Preserve the local autonomy of inte�
grated repositories�


� Integrate existing tools and environ�
ments�

�� Support software process modeling and
enactment in widely distributed envi�
ronments�

�� Enable a simple implementation strat�
egy� This goal stems from the purpose
of virtual enterprises as a way to re�
act to rapidly changing marketplaces�
The cost of a solution�s implementation
should not defeat this purpose�

We present an approach to software ar�
tifact sharing� called the Distributed Hyper�
text system �DHT�� that employs a hypertext
data model as the common data model for
the integration layer� Hypertext is an infor�
mation management concept that organizes
data into content objects called nodes� con�
taining text� graphics� binary data� or pos�
sibly sound or video� that are connected by
links which establish relationships between
nodes or sub�parts of nodes� The resulting
graph� called a hypertext corpus� forms a se�
mantic net�like structure that can capture
rich data organization concepts while at the
same time providing intuitive user interac�
tion via browsing�

DHT provides logical integration by
representing artifacts using a hypertext data
model that augments the traditional node
and link model with aggregate constructs
�called contexts� that represent subgraphs of
the hypertext� and dynamic links that allow
the global hypertext to evolve automatically
as artifacts are created and modi�ed� The
data model �described in Section 
� de�nes

the structure of objects in the global hyper�
text� and the operations �including updates�
that may be performed on them�

DHT achieves physical integration
with a client�server architecture �also de�
scribed in Section 
� that provides trans�
parent access to heterogeneous reposito�
ries through intermediary components called
Transformers� Clients are software tools that
developers use to access objects in the repos�
itories�

In previous work ���� ��� we have dis�
cussed how DHT addresses the �rst three
goals� In this paper� we will focus on tool
and environment integration� and software
process modeling and enactment within the
same straightforward integration and imple�
mentation strategy�

This paper is organized as follows	 in
the next section we present an overview of
the DHT architecture and data model� Fol�
lowing� we discuss the DHT approach to tool
integration� Then� we present an approach to
software process modeling and enactment us�
ing DHT�based hypertext browsing� We con�
clude with a discussion of related research�
and our contributions�

� DHT Architecture and Data Model

This section presents a brief overview
of the DHT architecture and data model� a
more detailed discussion can be found in ��
��

Architecture� The DHT architecture is
based on a client�server model� Clients im�
plement all application functionality that is
not directly involved in storage management�
Thus� a client is typically an individual tool�
but may be a complete environment�

Software artifacts are exported from
their native repository through server com�
ponents called transformers� A transformer
exports local objects �artifacts and relation�
ships� as DHT nodes and links� and trans�
lates DHT messages into local operations

�



Protocol i/f

Local Access
Functions

Record

DHT Node GetObject("oid:LA@module:Sim%Code%sim.c")

Transformer

Content formatting
Anchor highlighting

Source predicate eval.
Resolution function eval.
Anchor location

Data serialization
Low level send/receive
Authentication/Encryption

Basic object ops.

Cache management
(get, update, create, delete)

Presentation

Protocol i/f

Object Mgt.

Link manipulation

Cache

Client

SELECT * FROM Modules WHERE 
Project=’Sim’ AND Form=’Code’
AND Module=’sim.c’

Figure �	 The DHT Architecture�

�see Figure ��� Note that from the reposi�
tory viewpoint� the transformer appears to
be just another application�

A request�response style communica�
tion protocol implements the operations
speci�ed in the DHT data model �see below��
and includes provisions for locating servers
and authenticating and encrypting messages�
The protocol also provides a form of time�
stamp concurrency control ��
� ��� to prevent
�lost updates��

Data Model� The DHT Data Model con�
sists of four basic objects	 nodes� that rep�
resent content objects such as modules� links
that model relationships among nodes� an�
chors� that specify the points within node
contents that anchor the endpoints of a link�
and contexts� that enumerate sets of links to
allow speci�cation of object compositions as
sub�graphs� Nodes� links� and contexts have
types� attributes� and unique object identi�
�ers �oids��

A �xed set of operations can be applied
to DHT objects	 create� delete� read� and up�
date an object� A given repository can elect
to provide any subset of these operations� as
appropriate for the level of access it intends
to provide� In addition� any operation can
be performed by a single repository on its
own objects� cooperation among repositories
is not required�

� Tool Integration

In practice� clients are software en�
gineering tools and environments� most of
which will exist before integration by DHT�
It is impractical to expect users and organi�
zations to discard their favorite tools in favor
of new tools that understand DHT� There�
fore� DHT includes a strategy for migrating
existing tools to the DHT environment� and
a cache mechanism to ensure that the per�
formance of migrated tools� when accessing
remote nodes and links� approaches that of
local object access�

The migration strategy speci�es four
levels of integration	

Level � At level �� tools are not integrated
at all� They exist unmodi�ed� and re�
quire auxiliary tools to interact with
DHT on their behalf� Auxiliary tools
simply perform node retrieval and up�
date� and link resolution� to and from a
tool�s standard input�output� or �les in
the local �le�system�

Level � Level � integration treats DHT
nodes as �le�like objects� Tools use �le�
system calls like open��� read��� write���
etc� to access a node�s contents� passing
a string representation of the node�s oid
rather than a �le pathname� Level � in�
tegration can be accomplished without
recompiling or modifying source code�
simply relinking the tool with a DHT
compatibility library �see Section �� is
all that is required� Note� however� that
Level � tools do not have access to links�






System call Equivalent DHT operation

open�� DhtRead��
access�� same as open��
read�� read�� from contents �le
write�� write�� to contents �le
close�� DhtUpdate��� DhtSync��
stat�� stat�� on contents �le

Figure 
	 DHT �le�system emulation func�
tions�

Level � At level 
� a tool is aware of links
as relationships among objects� and can
follow them� This awareness does not
appear at the user interface�

An example of a level 
 tool is a doc�
ument compiler� that resolves links of
type �Include� to incorporate text from
other nodes into a source node�

Level � At level �� a tool integrates hyper�
text browsing and linking into its user�
interface� which may require extensive
modi�cation to the tool�s source code�
Fortunately� many tools incorporate ex�
tension languages or escapes to exter�
nal programs that can be used to im�
plement linking without re�compilation�
this technique was used to implement
the DHT editor using GNU Emacs Lisp�

File system emulation� A vast legacy of
tools uses the �le�system as its repository�
These applications read and write objects as
�les through the �le�system interface� typ�
ically by calling �standard IO� ���� library
routines supplied for the application�s imple�
mentation language� Our goal to provide
a reasonable�cost implementation strategy�
precludes requiring that all of these tools be
modi�ed to use the DHT application inter�
face in place of the �le�system library�

To solve this problem� the DHT archi�
tecture exploits the �le�like nature of DHT
atomic nodes to provide a �le�system em�
ulation library� This library intercepts the

Unix �le�system calls and converts them to
DHT access operations when strings encod�
ing DHT object identi�ers are passed as the
pathname argument� The entry points are
shown in Figure 
�

To enable a tool for DHT access� one
simply re�links it with the emulation library�
Thus� the tool will continue to function as
before when invoked with real �le names� yet
will retrieve contents from the DHT object
cache �described below� when DHT object
identi�ers are used�

Object Caching� Many DHT objects
change slowly� others see frequent access dur�
ing a short period of time� To improve ac�
cess latency and reduce transformer loads� it
is desirable to cache frequently used objects
that may be from repositories accessed over
the Internet�

A cache layer is built into the the basic
request interface to provide transparent node
and link caching� The cache is maintained
in the local �le�system� node contents are
cached in separate �les to support the �le�
io emulation library discussed above� while
links and node attributes are cached in a
hash table� Clients call a set of object ac�
cess functions to retrieve objects through the
cache layer� these are listed in Figure ��

Each DHT object has a �time�to�live�
attribute that speci�es the length of time an
object in the cache is expected to be valid�
The cache layer uses this attribute� set by the
transformer when the object is retrieved� to
invalidate objects in the cache upon access�
An administrative function exists to sweep
through the entire cache and remove all ob�
jects whose time�to�live has expired�

The time�to�live attribute is not a guar�
antee of validity� however� Certain shared
objects may be updated frequently by mul�
tiple clients� To allow such clients to verify
that requested objects have not been modi�
�ed by another client� the cache layer can be
con�gured with four cache policies to sup�

�



Function Description

DhtRead�� retrieve the speci�ed objects�

DhtReadContents�� return the �le containing the object�s contents�

DhtUpdate�� update the cached copy of an object�

DhtSync�� update the speci�ed object at the transformer�

DhtSource�� evaluate a link�s source predicate on a node�

DhtResolve�� resolve a link given a source node and anchor�

Figure �	 Cache layer interface�

port speci�c application needs	

�� Never use the cached copy� always re�
trieve an object from the repository�


� Use the cached copy if its time�to�live
has not expired�

�� Use the cached copy if it has not been
modi�ed� verify this by retrieving the
object�s timestamp from the repository�


� Always use the cached copy if present�
regardless of its time�to�live or time�
stamp�

The cache interface layer does not automat�
ically write updates through to the reposi�
tory� Instead� a separate function DhtSync��
causes the cache to send an update request
to synchronize the cached copy with that in
the repository� This enables applications to
tailor access to the cache for di�erent styles
of object access�

For example� by delaying synchroniza�
tion and specifying the non�validation cache
policy� the cache can be used as a lo�
cal workspace� enabling a development style
similar to that provided by NSE ���� Ob�
jects� once placed into the cache� are read
and updated locally� and thus are not af�
fected by updates from other developers�
A �sweep� application periodically synchro�
nizes the cached copies� possibly invoking
merging tools for objects that have changed
in the interim�

dht.c

dht.c

dht.c

copy

merge

copy

merge

check-out

check-in
(unlock)

(lock)
check-in

(unlock)

check-out
(lock)

A

A
B

B

BA

edit

edit
edit

editedit

edit

1 1

2 2

3 3

1

2

3 4

5

6

Local Workspace Model

Shared Workspace Model

RCS Model

Figure �	 Software development workspace
models�

�



Alternately� updates can be written�
through immediately� by calling DhtSync��
after each update operation� This� coupled
with the verifying cache policy� can be used
to implement a �shared workspace� style of
development �Figure ��� in which each de�
veloper sees updates from other developers
upon object access�

To simulate an RCS�style of develop�
ment� in which developers obtain exclusive
write access to an object through locking�
a lock attribute must be added to objects�
which is set to the user�id of the developer
who seeks to lock the object� The DHT con�
currency mechanism ensures that only one
developer can set the lock� which is cleared
when the object is �released�� However� ap�
plications must cooperate by not modifying
objects unless they have successfully set the
lock attribute� there is no way to enforce the
lock by denying updates if someone insists
on updating an object� This style can be
coupled with the validating or non�validating
cache policy� depending on the preferences of
the developer�

� Incorporating Process Enactment

A software process is a partially or�
dered set of tasks that must be performed to
develop software� A software processmodel is
a description of a software process� If the de�
scription is su�ciently formalized� it is possi�
ble to execute process models for simulation�
analysis� and enactment�

Software process enactment uses a for�
mal description of a software process to
guide� monitor� and control the process by
having a process interpreter or engine exe�
cute a formal process description� The inter�
preter� embedded in a software development
environment� performs three functions	 guid�
ance� monitoring� and control�

Guidance involves leading developers
through the process by issuing prompts
or noti�cations as to what tasks should

be performed at a given time�

Monitoring allows managers and engineers
to assess the current state and progress
of the process�

Control means ensuring the process is fol�
lowed by restricting developer actions to
those that conform to the process de�
scription�

A process describes what steps need to
be performed to develop products� At any
given time� several products may be under
development� so it is important for a pro�
cess enactment mechanism to be able to keep
track of multiple instances of a process simul�
taneously� and to be able to cope with the in�
teractions among multiple processes execut�
ing concurrently�

For example� a software system may
have several developers performing mainte�
nance on di�erent modules at the same time�
This means that� for each module� an in�
stance of a software maintenance process
needs to be executed� Furthermore� di�erent
modules developed in di�erent organizations
that are part of a common system build may
be constrained by di�erent software process
models as well�

A software process has a natural rep�
resentation as a hypertext graph	 the nodes
represent tasks� node attributes can repre�
sent task pre� or post�condition values� while
links specify the sequence in which the tasks
should be performed� the resulting nodes and
links can be browsed and followed just like
other hypertext objects� Thus� processes can
be enacted by browsing the hypertext�

The links between task nodes and
product nodes �artifacts� change as tasks are
performed and products are created or mod�
i�ed� In addition� the state of progress for
a process instance must be maintained� Fi�
nally� enactment must take place using ex�
isting tools already familiar to users� Thus�
we desire to have enactment in DHT work

�



with browsers already in place� rather than
introduce some new process�speci�c browser�

A DHT hypertext process model con�
tains three types of links	

�� Process decomposition links� These
model the decomposition of high level
tasks into lower level� smaller tasks� and
eventually into primitive actions� These
are static links that do not change unless
the model itself is modi�ed to correct er�
rors or re�ect changes in policy�


� Task and action precedence links� These
specify the order in which tasks should
be performed� These are also static links
that evolve slowly�

�� Available task links� These model the
relationship between a particular prod�
uct node and the tasks which should be
performed on it at a given time� as spec�
i�ed by the process model� These are
dynamic links that change as the model
is enacted�

As an example� the following is an in�
formal description of the process for modify�
ing a module	

�� Retrieve module�


� Edit module to implement changes�

�� Compile module�


� Unit test module�

�� if the unit test is successful� create a new
version of the module� otherwise�

�� Debug the module and return to step ��

This description is a model of a process� At
a given time� many instances of the process
may be active� on di�erent modules by dif�
ferent developers� Each instance has sepa�
rate process state including the module be�
gin modi�ed� the developer doing the mod�
i�cation� the last step completed� etc� To

support process enactment� it is necessary to
keep track of this state for each process in�
stance ���� in order to guide the developer
through the process tasks in the appropriate
sequence� This is the function of �available�
task� links� Available�task links serve to no�
tify developers that a task should be per�
formed on an artifact by linking the product
to a task node�

Process state is re�ected in the state
of the products �artifacts� that the process
instance a�ects	 when the �edit� task above
is performed on a module� its state changes�
as re�ected by the changes to its contents and
timestamp a�ected by the edit� A link source
predicate can examine this state to establish
a relationship between a product node and a
task node� When the link�s source predicate
is true when applied to the product node� the
link will resolve to a task node that should
be performed on the product�

Task nodes can either be narrative de�
scriptions of the task to be performed� or exe�
cutable scripts that perform the details of the
task� In the latter case� the link�s resolution
function passes the node to an interpreter to
execute the script�

Figure 
 shows link speci�cations for
the example module modi�cation process�

The signi�cance of this approach to
modeling process instances is that the mech�
anism for process enactment is embedded en�
tirely within the process representation� as
the source predicates and resolution func�
tions of available�task links� In contrast to
other enactment systems which employ an
environment ����� process�aware tools �
���
or process state database ��� to execute pro�
cess speci�cations� DHT process models can
be enacted simply by browsing the process
hypertext using any DHT browser or tool�
This means that process enactment can be
introduced into an existing environment with
minimal disruption�

�



Figure �	 Example of a process model�

Attribute Value

source ��type �node���DHT�C�

source anchor Global

dest �eval �get�contents process�edit�module��

dest anchor Global

type DHT	Available�task

Available�task link for �edit� task�

Attribute Value

source ��type �node���DHT�C �� �status �node���	edited	�

source anchor Global

dest �eval �get�contents process�compile��

dest anchor Global

type DHT	Available�task

Available�task link for �compile� task�

Attribute Value

source ��type �node���DHT�C �� �status �node���	compiled	�

source anchor Global

dest process	unit�test�spec

dest anchor Global

type DHT	Available�task

Available�task link for �unit�test� task�

Figure �	 Available task links�

�



� Related Work

We have approached integration by
providing the illusion of a central repository
through the introduction of a layer between
storage managers and users of data� Such a
layer provides a logically integrated universe
of data objects that conform to a hypertext
data model� It also provides the physical in�
tegration of participating repositories neces�
sary for users to access instances of data ob�
jects�

Other research uses the same general
approach we have taken� but with di�er�
ent data models� For example� network �le�
system solutions ���� ��� 
��� implement a
common global �le�system at the integra�
tion layer� where each repository exports
its objects as �les in a single uni�ed direc�
tory tree� However� network �le�systems are
a lowest�common denominator solution �
��	
the �le�directory model lacks explicit con�
structs to represent the numerous relation�
ships that exist among software artifacts �����
As a result� ad�hoc techniques such as �le
naming conventions� and numerous tool�
speci�c databases like Make�les� tag �les etc�
are required to augment the basic directory�
�le model� Consequently� information shar�
ing is at a rudimentary level�

The multidatabase approach ��� occu�
pies the other extreme	 here the integra�
tion layer provides a relational or object�
oriented data model with explicit relation�
ship types� This would seem to solve the rela�
tionship problem of the network �le�system�
both of these models have been used in con�
ventional environments� However� the com�
plexity of constructing and maintaining a
single global schema that captures all of the
concepts present in each participating reposi�
tory� combined with the requirement that in�
tegrated repositories have database function�
ality� makes this approach costly and di�cult
to implement ����

A number of research projects have ap�
plied hypertext to software object manage�

ment� including the Hypertext Abstract Ma�
chine �HAM� �
�� the Documents Integration
Facility �DIF� ���� and HyperCASE ���� how�
ever� these are based on a single� centralized
repository architecture�

Notable exceptions are PROXHY ����
and Chimera �
�� In contrast to DHT� these
systems focus on adding new links among ex�
isting artifacts� existing relationships are not
translated into links�

Finally� ISHYS ��� and sigmaTrellis �

�
explored process modeling and enactment
via hypertext� although in a centralized ar�
chitecture�

� Conclusion

We began with the assertion that soft�
ware development in the future will be per�
formed by cooperating development teams�
These teams will be autonomous� widely dis�
tributed� and loosely associated in �virtual�
enterprises� yet will need to share data in the
form of software artifacts� and the relation�
ships among them� that form the products of
the development process�

We observed that the conventional
software environment architecture is inade�
quate to support virtual software enterprises�
because it relies on a central repository to
serve as the medium of data sharing among
users� thus� we proposed to address a re�
search problem	 how do virtual enterprises
share data among their dispersed� loosely�
coupled and autonomous participants�

We proposed a solution based on pro�
viding an integration layer between au�
tonomous software repositories and their
users� that would provide the appearance of a
central repository while maintaining the dis�
tributed physical environment� The integra�
tion layer achieves two levels of integration	
logical integration by describing data and op�
erations on them in terms of a common hy�
pertext data model� and physical integration
via a distributed architecture for access to

��



autonomous repositories�

The DHT approach has the following
bene�ts	

Evolutionary approach to integration

It is possible to migrate a conventional
Unix toolbox oriented environment to
DHT without recompiling any of the in�
dividual tools� This is because DHT
o�ers several levels of tool integration�
depending on the degree of �hypertext
awareness� desired for a given tool�

This evolutionary approach to incorpo�
rating existing tools into a DHT en�
vironment enables tool integrators to
make tradeo�s between integration ef�
fort and hypertext functionality� This
gives administrators great �exibility to
preserve existing investment in tools and
training while simultaneously obtaining
the advantage of DHT�s integration and
hypertext capabilities

Transparent Process Enactment

By representing software processes as
hypertext graphs� DHT achieves en�
actment without the need for an ex�
plicit process interpreter or environ�
ment� This is a signi�cant advantage in
a virtual enterprise� where each partic�
ipant may already have a favorite de�
velopment environment in�place� The
DHT approach allows process enact�
ment to co�exist with existing tools and
environments�

Comprehensive solution The most sig�
ni�cant contribution of DHT is the
way it applies the features of hypertext
to data integration� combining intrinsic
support for user interaction with data
modeling and access� DHT combines
the advanced data modeling capabili�
ties of semantic nets with the natural
navigation�based access of �le systems�
and the intuitive direct�manipulation
browsing features of hypertext� This
means that as soon as a transformer is

put in place to export data from a par�
ticular repository� the user interface and
access operations to those data are also
in place� Furthermore� both the user
and access interface conform to a sin�
gle common model� therefore maintain�
ing highly transparent access to hetero�
geneous data� The result is e�ective yet
low in implementation cost�

We set out to develop a solution to
the problem of sharing software engineering
data among distributed� autonomous devel�
opment teams� with data modeling and man�
agement appropriate for software artifacts
and relationships� transparent access to het�
erogeneous� autonomous legacy repositories�
tool integration� process modeling and enact�
ment� and low implementation cost� DHT
achieves these goals by applying hypertext
concepts to logical and physical integration�
In so doing� DHT solves the practical prob�
lem of sharing data in a virtual enterprise�
and establishes a basis for continuing re�
search in integrating heterogeneous software
object management repositories� data mod�
els� and implementation architectures using
easily navigated wide�area hypertexts� The
interested reader should consult ��
� for fur�
ther details and examples�

References

��� Evan W� Adams� Masahiro Honda� and
Terrence C� Miller� Object management
in a CASE environment� In Proceedings
of the ��th International Conference on
Software Engineering� The Association
for Computing Machinery� �����

�
� Kenneth M� Anderson� Richard N� Tay�
lor� and E� James Whitehead� Jr��
Chimera	 Hypertext for heterogeneous
software environments� In European
Conference on Hypermedia Technology�
Edinburgh� Scotland� September ���
�

��� M� W� Bright� A� R� Hurson� and
Simin H� Pakzad� A taxonomy and

��



current issues in multidatabase systems�
IEEE Computer� March ���
�

�
� Brad Campbell and Joseph M� Good�
man� HAM	 A general purpose hyper�
text abstract machine� Communications
of the ACM� ������ July �����

��� Jacob L� Cybulski and Karl Reed� A hy�
pertext based software�engineering envi�
ronment� IEEE Software� March ���
�

��� D� Fang� J� Hammer� D� McLeod� and
A� Si� Remote�exchange	 An ap�
proach to controlled sharing among au�
tonomous� heterogenous database sys�
tems� In Proceedings of the IEEE Spring
Compcon� San Francisco� IEEE� Febru�
ary �����

��� Pankaj K� Garg and Walt Scacchi� A
hypertext system for software life cycle
documents� IEEE Software� ����	������
May �����

��� Pankaj K� Garg and Walt Scacchi� On
designing intelligent software hypertext
systems� IEEE Expert� �����

��� Dennis Heimbigner� The Process�
Wall	 A process state server approach
to process programming� In Pro�
ceedings of the Fifth SIGSOFTSympo�
sium on Software Development Environ�
ments� Tyson�s Corner� Virginia� De�
cember ���
�

���� Charles J� Kacmar and John J� Leggett�
PROXHY	 A process�oriented exten�
sible hypertext architecture� ACM
Transactions on Information Systems�
��
�	����

�� October �����

���� James Kistler and Mahadev Satya�
narayanan� Disconnected operation in
the coda �le system� ACM Transac�
tions on Computer Systems� �����	��
��
February ���
�

��
� Henry F� Korth and Abraham Sil�
bershatz� Database System Concepts�
McGraw�Hill� �����

���� Pei�Wei Mi and Walt Scacchi� Pro�
cess integration in CASE environments�
IEEE Software� ��
�	
���
�March ���
�

��
� John Noll� Software Object Management
in Heterogeneous� Autonomous Envi�
ronments� A Hypertext Approach� PhD
thesis� University of Southern Califor�
nia� September �����

���� John Noll and Walt Scacchi� Inte�
grating diverse information reposito�
ries	 A distributed hypertext approach�
IEEE Computer� 

��
�	���
�� Decem�
ber �����

���� John Noll and Walt Scacchi� A hy�
pertext system for integrating hetero�
geneous� autonomous software reposito�
ries� In Proceedings of the Fourth Irvine
Software Symposium� pages 
�����
Irvine� CA� April ���
� Irvine Research
Unit in Software and ACM�SIGSOFT�

���� Maria H� Penedo� Erhard Ploedereder�
and Ian Thomas� Object management
issues for software engineering environ�
ments� workshop report� In SIGSOFT
���� Proceedings of the Third ACM SIG�
SOFT	SIGPLAN Software Engineering
Symposium on Practical Software De�
velopment Environments� Boston� The
Association for Computing Machinery�
�����

���� P� J� Plauger� The Standard C Library�
Prentice Hall� ���
�

���� Herman C� Rao and Larry L� Peterson�
Accessing �les in an internet	 the jade
�le system� IEEE Transactions on Soft�
ware Engineering� �����	�����
�� June
�����

�
�� Mahadev Satyanarayanan� The in�u�
ence of scale on distributed �le system
design� IEEE Transactions on Software
Engineering� �����	���� January ���
�

�
�� Peter Scheurmann� Clement Yu� Ahmed
Elmagarmid� �Hector Garcia�Molina�

�




Frank Manola� Dennis McLeod� �Arnon
Rosenthal� and Marjorie Templeton�
Report on the workshop on hetero�
geneous database systems� SIGMOD
Record� ���
�� December �����

�

� P� David Stotts� sigmaTrellis	 Pro�
cess models as multi�reader collabora�
tive hyperdocuments� In Proceedings of
the Ninth International Software Pro�
cess Workshop� Airlie� Virginia� Octo�
ber ���
�

�
�� Richard Taylor� Frank Belz� Lori Clarke�
Leon Osterweil� Richard Selby� Jack
Wileden� Alexander Wolf� and Mi�
cal Young� Foundations for the ar�
cadia environment architecture� In
SIGSOFT ���� Proceedings of the
Third ACM SIGSOFT	SIGPLAN Soft�
ware Engineering Symposium on Prac�
tical Software Development Environ�
ments� Boston� SIGSOFT�SIGPLAN�
November ����� Available in SIGSOFT
Software Engineering Notes ����� and
SIGPLAN Notices 

�
��

��


