Repository Support for the Virtual Software

Enterprise

John Noll and Walt Scacchi
Information and Operations Management Dept.

University of Southern California
Los Angeles, CA 90089-1421

Abstract

Software development in the future will
conducted by “virtual enterprises,” consist-
ing of loosely-coupled, widely distributed,
autonomous development teams.

Due to geographic separation and the
loose cooperative structure of a virtual enter-
prise, each team will be highly autonomous,
managing its own computing environment
and tools. Thus, there will be no shared file-
system or database to serve as an integrating
resource. Similarly, we cannot assume that
all teams will agree to adopt and use any
one team’s object storage manager or data
model. Nonetheless, it will be necessary for
each team to be able to modify jointly devel-
oped documents or process models.

This papers presents a hypertext-based
solution called “DHT” that supports soft-
ware engineering data modeling and man-
agement, provides transparent access to het-
erogeneous, autonomous legacy repositories,
and enables an implementation strategy with
low cost and effort. In addition, we show how
DHT solves the practical problems of shar-
ing data in a virtual enterprise, integrating
existing tools and environments, and enact-
ing software processes.

1 Introduction

Contemporary software development
environments follow the architectural model
shown in Figure 1: software engineers em-

ploy a set of development tools to create
and evolve software artifacts! that are stored
in a central repository, which serves as the
medium for sharing artifacts among engi-
neers and programmers.

Software development in the future will
likely take place in an environment that is
much different from this model. Software
development teams will be highly decentral-
ized, both physically and organizationally.
Software will be produced by loosely cou-
pled, “virtual enterprises,” composed of de-
velopers from different companies who coop-
erate on specific projects, then disband to
form new alliances for other projects. Par-
ticipants in these virtual enterprises will re-
tain a high degree of autonomy over their
own activities, environments, and data. Nev-
ertheless, they will need to share artifacts
with other members, such as requirements,
project plans, source code, test results, de-
liverables, process models, and the relation-
ships among them.

Figure 2 depicts an example of a “typ-
ical” future development scenario. A loose
collaboration among a customer, consultant,
vendor, and software contractor is formed to
enhance a legacy system. Each has its own
internal tools and data, and each will require
access to at least part of the others’ data.
Additionally, each will need to update and

'The term “software artifact” refers to the doc-
uments, programs, executables, etc. that form the
results of the software engineering process

A Virtual Software Enterprise

23

3
¥

Customer

~7
)
M

i

Los Angeles .~

|Code|slm exe\
Sim	Code	sim.obj
Sim	Codelsim.c	
Sim	Codelsim.h	
Sim	Req	req

“p @ @/
Software Contractor ' ‘

"
Bombay

Sim-UI-Proj

glue.obj

“pepep

Consultant
Chicago

]

@@@

Vendor
Austin |

/
T~

Aiobj "

uic fih

Figure 2: A virtual software enterprise.

Developers

A’ TN C
Tools $‘ .: :"

Object Management Service
(LAN Based)

Storage Manager

Figure 1: Software development environment
architecture.

expand the set of artifacts that represents
the project’s output and deliverables.

Due to geographic separation and the
loose cooperative structure, each team will
be highly autonomous, managing its own
computing environment and tools. Thus,
there will be no shared file-system or
database to serve as an integrating re-
source. Similarly, we cannot assume that
all teams will agree to adopt and use any
one team’s object storage manager or data
model. Nonetheless, it will be necessary for
each team to be able to modify jointly devel-
oped documents or process models.

The virtual enterprise produces a set of
shared artifacts, but does not have a central
repository where they can be stored. With-
out a shared database, how can participants
retrieve and modify shared objects? This is
the problem addressed by this paper: how
to enable sharing of software artifacts among
autonomous, distributed development teams,
given the absence of a shared repository.

A solution must meet the following
goals:

1. Model software artifacts, versions, and
other relationships.

2. Provide transparent access to artifacts
and relationships in heterogeneous, au-
tonomous legacy repositories.

3. Preserve the local autonomy of inte-
grated repositories.

4. Integrate existing tools and environ-
ments.

5. Support software process modeling and
enactment in widely distributed envi-
ronments.

6. Enable a simple implementation strat-
egy. This goal stems from the purpose
of virtual enterprises as a way to re-
act to rapidly changing marketplaces.
The cost of a solution’s implementation
should not defeat this purpose.

We present an approach to software ar-
tifact sharing, called the Distributed Hyper-
text system (DHT), that employs a hypertext
data model as the common data model for
the integration layer. Hypertext is an infor-
mation management concept that organizes
data into content objects called nodes, con-
taining text, graphics, binary data, or pos-
sibly sound or video, that are connected by
links which establish relationships between
nodes or sub-parts of nodes. The resulting
graph, called a hypertext corpus, forms a se-
mantic net-like structure that can capture
rich data organization concepts while at the
same time providing intuitive user interac-
tion via browsing.

DHT provides logical integration by
representing artifacts using a hypertext data
model that augments the traditional node
and link model with aggregate constructs
(called contexts) that represent subgraphs of
the hypertext, and dynamic links that allow
the global hypertext to evolve automatically
as artifacts are created and modified. The
data model (described in Section 2) defines

the structure of objects in the global hyper-
text, and the operations (including updates)
that may be performed on them.

DHT achieves physical integration
with a client-server architecture (also de-
scribed in Section 2) that provides trans-
parent access to heterogeneous reposito-
ries through intermediary components called
Transformers. Clients are software tools that
developers use to access objects in the repos-
itories.

In previous work [15, 16] we have dis-
cussed how DHT addresses the first three
goals. In this paper, we will focus on tool
and environment integration, and software
process modeling and enactment within the
same straightforward integration and imple-
mentation strategy.

This paper is organized as follows: in
the next section we present an overview of
the DHT architecture and data model. Fol-
lowing, we discuss the DHT approach to tool
integration. Then, we present an approach to
software process modeling and enactment us-
ing DHT-based hypertext browsing. We con-
clude with a discussion of related research,
and our contributions.

2 DHT Architecture and Data Model

This section presents a brief overview
of the DHT architecture and data model; a
more detailed discussion can be found in [14].

The DHT architecture is
based on a client-server model.

Architecture.
Clients im-
plement all application functionality that is
not directly involved in storage management.
Thus, a client is typically an individual tool,
but may be a complete environment.

Software artifacts are exported from
their native repository through server com-
ponents called transformers. A transformer
exports local objects (artifacts and relation-
ships) as DHT nodes and links, and trans-
lates DHT messages into local operations

Content formatting

Anchor highlighting Presentation

-

Source predicate eval.
Resolution function eval. . . .
Anchor location Link manipulation

Client

Basic object ops.
(get, update, create, delete)
Cache management

Object Mgt.

Data serialization
Low level send/receive

Authentication/Encryption Cache

Protocol i/f

DHT Node

t

Protocol i/f

GetObject("oid:LA@module:Sim%Code%sim.c")

|

Transformer

Local Access
Functions

f

Record

S%ELECT * FROM Modules WHERE
Project="Sim’ AND Form="Code’
D Module="sim.c’

Figure 3: The DHT Architecture.

(see Figure 3). Note that from the reposi-
tory viewpoint, the transformer appears to
be just another application.

A request-response style communica-
tion protocol implements the operations
specified in the DHT data model (see below),
and includes provisions for locating servers
and authenticating and encrypting messages.
The protocol also provides a form of time-
stamp concurrency control [12, 16] to prevent
“lost updates”.

Data Model. The DHT Data Model con-
sists of four basic objects: nodes, that rep-
resent content objects such as modules; links
that model relationships among nodes; an-
chors, that specify the points within node
contents that anchor the endpoints of a link;
and contexts, that enumerate sets of links to
allow specification of object compositions as
sub-graphs. Nodes, links, and contexts have
types, attributes, and unique object identi-

fiers (oids).

A fixed set of operations can be applied
to DHT objects: create, delete, read, and up-
date an object. A given repository can elect
to provide any subset of these operations, as
appropriate for the level of access it intends
to provide. In addition, any operation can
be performed by a single repository on its
own objects; cooperation among repositories
is not required.

3 Tool Integration

In practice, clients are software en-
gineering tools and environments, most of
which will exist before integration by DHT.
It is impractical to expect users and organi-
zations to discard their favorite tools in favor
of new tools that understand DHT. There-
fore, DHT includes a strategy for migrating
existing tools to the DHT environment, and
a cache mechanism to ensure that the per-
formance of migrated tools, when accessing
remote nodes and links, approaches that of
local object access.

The migration strategy specifies four
levels of integration:

Level 0 At level 0, tools are not integrated
at all. They exist unmodified, and re-
quire auxiliary tools to interact with
DHT on their behalf. Auxiliary tools
simply perform node retrieval and up-
date, and link resolution, to and from a
tool’s standard input/output, or files in
the local file-system.

Level 1 Level 1 integration treats DHT
nodes as file-like objects. Tools use file-
system calls like open(), read(), write(),
etc. to access a node’s contents, passing
a string representation of the node’s oid
rather than a file pathname. Level 1 in-
tegration can be accomplished without
recompiling or modifying source code;
simply relinking the tool with a DHT
compatibility library (see Section 3) is
all that is required. Note, however, that
Level 1 tools do not have access to links.

| System call | Equivalent DHT operation |

open() DhtRead()

access() same as open()

read() read() from contents file
write() write() to contents file
close() DhtUpdate(); DhtSync()
stat() stat() on contents file

Figure 4: DHT file-system emulation func-
tions.

Level 2 At level 2, a tool is aware of links
as relationships among objects, and can
follow them. This awareness does not
appear at the user interface.

An example of a level 2 tool is a doc-
ument compiler, that resolves links of
type “Include” to incorporate text from
other nodes into a source node.

Level 3 At level 3, a tool integrates hyper-
text browsing and linking into its user-
interface, which may require extensive
modification to the tool’s source code.
Fortunately, many tools incorporate ex-
tension languages or escapes to exter-
nal programs that can be used to im-
plement linking without re-compilation;
this technique was used to implement
the DHT editor using GNU Emacs Lisp.

File system emulation. A vast legacy of
tools uses the file-system as its repository.
These applications read and write objects as
files through the file-system interface, typ-
ically by calling “standard 10” [18] library
routines supplied for the application’s imple-
mentation language. Our goal to provide
a reasonable-cost implementation strategy,
precludes requiring that all of these tools be
modified to use the DHT application inter-
face in place of the file-system library.

To solve this problem, the DHT archi-
tecture exploits the file-like nature of DHT
atomic nodes to provide a file-system em-
ulation library. This library intercepts the

Unix file-system calls and converts them to
DHT access operations when strings encod-
ing DHT object identifiers are passed as the
pathname argument. The entry points are
shown in Figure 4.

To enable a tool for DHT access, one
simply re-links it with the emulation library.
Thus, the tool will continue to function as
before when invoked with real file names, yet
will retrieve contents from the DHT object
cache (described below) when DHT object
identifiers are used.

Object Caching. Many DHT objects
change slowly; others see frequent access dur-
ing a short period of time. To improve ac-
cess latency and reduce transformer loads, it
is desirable to cache frequently used objects
that may be from repositories accessed over
the Internet.

A cache layer is built into the the basic
request interface to provide transparent node
and link caching. The cache is maintained
in the local file-system; node contents are
cached in separate files to support the file-
io emulation library discussed above, while
links and node attributes are cached in a
hash table. Clients call a set of object ac-
cess functions to retrieve objects through the
cache layer; these are listed in Figure 5.

Each DHT object has a “time-to-live”
attribute that specifies the length of time an
object in the cache is expected to be valid.
The cache layer uses this attribute, set by the
transformer when the object is retrieved, to
invalidate objects in the cache upon access.
An administrative function exists to sweep
through the entire cache and remove all ob-
jects whose time-to-live has expired.

The time-to-live attribute is not a guar-
antee of validity, however. Certain shared
objects may be updated frequently by mul-
tiple clients. To allow such clients to verify
that requested objects have not been modi-
fied by another client, the cache layer can be
configured with four cache policies to sup-

‘ Function ‘ Description
DhtRead() retrieve the specified objects.
DhtReadContents() | return the file containing the object’s contents.
DhtUpdate() update the cached copy of an object.
DhtSyne() update the specified object at the transformer.
DhtSource() evaluate a link’s source predicate on a node.
DhtResolve() resolve a link given a source node and anchor.

Figure 5: Cache layer interface.

port specific application needs:

1. Never use the cached copy; always re-
trieve an object from the repository.

2. Use the cached copy if its time-to-live
has not expired.

Local Workspace Model

3. Use the cached copy if it has not been
modified; verify this by retrieving the
object’s timestamp from the repository.

4. Always use the cached copy if present,
regardless of its time-to-live or time-

Sta'mp ‘ Shared Workspace Model
The cache interface layer does not automat- A » i .
ically write updates through to the reposi-

tory. Instead, a separate function DhtSync()
causes the cache to send an update request
to synchronize the cached copy with that in
the repository. This enables applications to
tailor access to the cache for different styles
of object access.

A RCS Model

For example, by delaying synchroniza-
tion and specifying the non-validation cache
policy, the cache can be used as a lo-
cal workspace, enabling a development style
similar to that provided by NSE [1]. Ob-
jects, once placed into the cache, are read
and updated locally, and thus are not af-
fected by updates from other developers.
A “sweep” application periodically synchro-
nizes the cached copies, possibly invoking
merging tools for objects that have changed
in the interim.

Figure 6: Software development workspace
models.

Alternately, updates can be written-
through immediately, by calling DhtSync()
after each update operation. This, coupled
with the verifying cache policy, can be used
to implement a “shared workspace” style of
development (Figure 6), in which each de-
veloper sees updates from other developers
upon object access.

To simulate an RCS-style of develop-
ment, in which developers obtain exclusive
write access to an object through locking,
a lock attribute must be added to objects,
which is set to the user-id of the developer
who seeks to lock the object. The DHT con-
currency mechanism ensures that only one
developer can set the lock, which is cleared
when the object is “released”. However, ap-
plications must cooperate by not modifying
objects unless they have successfully set the
lock attribute; there is no way to enforce the
lock by denying updates if someone insists
on updating an object. This style can be
coupled with the validating or non-validating
cache policy, depending on the preferences of
the developer.

4 Incorporating Process Enactment

A software process is a partially or-
dered set of tasks that must be performed to
develop software. A software process modelis
a description of a software process. If the de-
scription is sufficiently formalized, it is possi-
ble to execute process models for simulation,
analysis, and enactment.

Software process enactment uses a for-
mal description of a software process to
guide, monitor, and control the process by
having a process interpreter or engine exe-
cute a formal process description. The inter-
preter, embedded in a software development
environment, performs three functions: guid-
ance, monitoring, and control.

Guidance involves leading developers
through the process by issuing prompts

or notifications as to what tasks should

be performed at a given time.

Monitoring allows managers and engineers
to assess the current state and progress
of the process.

Control means ensuring the process is fol-
lowed by restricting developer actions to
those that conform to the process de-
scription.

A process describes what steps need to
be performed to develop products. At any
given time, several products may be under
development, so it is important for a pro-
cess enactment mechanism to be able to keep
track of multiple instances of a process simul-
taneously, and to be able to cope with the in-
teractions among multiple processes execut-
ing concurrently.

For example, a software system may
have several developers performing mainte-
nance on different modules at the same time.
This means that, for each module, an in-
stance of a software maintenance process
needs to be executed. Furthermore, different
modules developed in different organizations
that are part of a common system build may
be constrained by different software process
models as well.

A software process has a natural rep-
resentation as a hypertext graph: the nodes
represent tasks, node attributes can repre-
sent task pre- or post-condition values, while
links specify the sequence in which the tasks
should be performed; the resulting nodes and
links can be browsed and followed just like
other hypertext objects. Thus, processes can
be enacted by browsing the hypertext.

The links
product nodes (artifacts) change as tasks are
performed and products are created or mod-
ified. In addition, the state of progress for
a process instance must be maintained. Fi-
nally, enactment must take place using ex-
isting tools already familiar to users. Thus,
we desire to have enactment in DHT work

between task nodes and

with browsers already in place, rather than
introduce some new process-specific browser.

A DHT hypertext process model con-
tains three types of links:

1. Process decomposition links. These
model the decomposition of high level
tasks into lower level, smaller tasks, and
eventually into primitive actions. These
are static links that do not change unless
the model itself is modified to correct er-
rors or reflect changes in policy.

2. Task and action precedence links. These
specify the order in which tasks should
be performed. These are also static links
that evolve slowly.

3. Awailable task links. These model the
relationship between a particular prod-
uct node and the tasks which should be
performed on it at a given time, as spec-
ified by the process model. These are
dynamic links that change as the model
is enacted.

As an example, the following is an in-
formal description of the process for modify-
ing a module:

1. Retrieve module.
2. Edit module to implement changes.
3. Compile module.

4. Unit test module.

5. if the unit test is successful, create a new
version of the module; otherwise,

6. Debug the module and return to step 1.

This description is a model of a process. At
a given time, many instances of the process
may be active, on different modules by dif-
ferent developers. FEach instance has sepa-
rate process state including the module be-
gin modified, the developer doing the mod-
ification, the last step completed, etc. To

support process enactment, it is necessary to
keep track of this state for each process in-
stance [9], in order to guide the developer
through the process tasks in the appropriate
sequence. This is the function of “available-
task” links. Available-task links serve to no-
tify developers that a task should be per-
formed on an artifact by linking the product
to a task node.

Process state is reflected in the state
of the products (artifacts) that the process
instance affects: when the “edit” task above
is performed on a module, its state changes,
as reflected by the changes to its contents and
timestamp affected by the edit. A link source
predicate can examine this state to establish
a relationship between a product node and a
task node. When the link’s source predicate
is true when applied to the product node, the
link will resolve to a task node that should
be performed on the product.

Task nodes can either be narrative de-
scriptions of the task to be performed, or exe-
cutable scripts that perform the details of the
task. In the latter case, the link’s resolution
function passes the node to an interpreter to
execute the script.

Figure 4 shows link specifications for
the example module modification process.

The significance of this approach to
modeling process instances is that the mech-
anism for process enactment is embedded en-
tirely within the process representation, as
the source predicates and resolution func-
tions of available-task links.
other enactment systems which employ an
environment [13], process-aware tools [23],
or process state database [9] to execute pro-
cess specifications, DHT process models can
be enacted simply by browsing the process
hypertext using any DHT browser or tool.
This means that process enactment can be
introduced into an existing environment with
minimal disruption.

In contrast to

Process: programming

programm i

create_makef |

create_main

r@ Attributes

Task: create_mam ile debug debug_biral n in modify_mai

create_sub

provides: main.c

agent: mary
tool: emacs

modifyw_sub s ig_branch_end debug_loop_end

modifu_makefile

1

5r<<d

Figure 7: Example of a process model.

‘ Attribute ‘ Value ‘

source

{[type $node]==DHT:C}

source_anchor | Global

dest

{eval [get-contents process:edit-module]}

dest_anchor Global

type DHT:Available-task
Available-task link for “edit” task.
‘ Attribute ‘ Value ‘
source {[type $node]==DHT:C && [status $nodel=="edited"}

source_anchor | Global

dest {eval [get-contents process:compile]}
dest_anchor Global
type DHT:Available-task
Available-task link for “compile” task.
‘ Attribute ‘ Value
source {[type $node]==DHT:C && [status $node]=='"compiled"}

source_anchor

Global

dest

process:unit-test-spec

dest_anchor

Global

type

DHT:Available-task

Available-task link for “unit-test” task.

Figure 8: Available task links.

5 Related Work

We have approached integration by
providing the illusion of a central repository
through the introduction of a layer between
storage managers and users of data. Such a
layer provides a logically integrated universe
of data objects that conform to a hypertext
data model. It also provides the physical in-
tegration of participating repositories neces-
sary for users to access instances of data ob-
jects.

Other research uses the same general
approach we have taken, but with differ-
ent data models. For example, network file-
system solutions [11, 19, 20], implement a
common global file-system at the integra-
tion layer, where each repository exports
its objects as files in a single unified direc-
tory tree. However, network file-systems are
a lowest-common denominator solution [21]:
the file/directory model lacks explicit con-
structs to represent the numerous relation-
ships that exist among software artifacts [17].
As a result, ad-hoc techniques such as file
naming conventions, and numerous tool-
specific databases like Makefiles, tag files etc.
are required to augment the basic directory-
file model. Consequently, information shar-
ing is at a rudimentary level.

The multidatabase approach [3] occu-
pies the other extreme: here the integra-
tion layer provides a relational or object-
oriented data model with explicit relation-
ship types. This would seem to solve the rela-
tionship problem of the network file-system;
both of these models have been used in con-
ventional environments. However, the com-
plexity of constructing and maintaining a
single global schema that captures all of the
concepts present in each participating reposi-
tory, combined with the requirement that in-
tegrated repositories have database function-
ality, makes this approach costly and difficult
to implement [6].

A number of research projects have ap-
plied hypertext to software object manage-

10

ment, including the Hypertext Abstract Ma-
chine (HAM) [4], the Documents Integration
Facility (DIF) [7], and HyperCASE [5]; how-
ever, these are based on a single, centralized
repository architecture.

Notable exceptions are PROXHY [10]
and Chimera [2]. In contrast to DHT, these
systems focus on adding new links among ex-
isting artifacts; existing relationships are not
translated into links.

Finally, ISHYS [8] and sigmaTrellis [22]
explored process modeling and enactment
via hypertext, although in a centralized ar-
chitecture.

6 Conclusion

We began with the assertion that soft-
ware development in the future will be per-
formed by cooperating development teams.
These teams will be autonomous, widely dis-
tributed, and loosely associated in “virtual”
enterprises, yet will need to share data in the
form of software artifacts, and the relation-
ships among them, that form the products of
the development process.

We observed that the conventional
software environment architecture is inade-
quate to support virtual software enterprises,
because it relies on a central repository to
serve as the medium of data sharing among
users; thus, we proposed to address a re-
search problem: how do virtual enterprises
share data among their dispersed, loosely-
coupled and autonomous participants?

We proposed a solution based on pro-
viding an integration layer between au-
tonomous software repositories and their
users, that would provide the appearance of a
central repository while maintaining the dis-
tributed physical environment. The integra-
tion layer achieves two levels of integration:
logicalintegration by describing data and op-
erations on them in terms of a common hy-
pertext data model, and physical integration
via a distributed architecture for access to

autonomous repositories.

The DHT approach has the following
benefits:

Evolutionary approach to integration
It is possible to migrate a conventional
Unix toolbox oriented environment to
DHT without recompiling any of the in-
dividual tools. This is because DHT
offers several levels of tool integration,
depending on the degree of “hypertext
awareness” desired for a given tool.

This evolutionary approach to incorpo-
rating existing tools into a DHT en-
vironment enables tool integrators to
make tradeoffs between integration ef-
fort and hypertext functionality. This
gives administrators great flexibility to
preserve existing investment in tools and
training while simultaneously obtaining
the advantage of DHT s integration and
hypertext capabilities

Transparent Process Enactment

By representing software processes as
hypertext graphs, DHT achieves en-
actment without the need for an ex-
plicit process interpreter or environ-
ment. This is a significant advantage in
a virtual enterprise, where each partic-
ipant may already have a favorite de-
velopment environment in-place. The
DHT approach allows process enact-
ment to co-exist with existing tools and
environments.

Comprehensive solution The most sig-
nificant contribution of DHT is the
way it applies the features of hypertext
to data integration, combining intrinsic
support for user interaction with data
modeling and access. DHT combines
the advanced data modeling capabili-
ties of semantic nets with the natural
navigation-based access of file systems,
and the intuitive direct-manipulation
browsing features of hypertext. This
means that as soon as a transformer is

11

put in place to export data from a par-
ticular repository, the user interface and
access operations to those data are also
in place. Furthermore, both the user
and access interface conform to a sin-
gle common model, therefore maintain-
ing highly transparent access to hetero-
geneous data. The result is effective yet
low in implementation cost.

We set out to develop a solution to
the problem of sharing software engineering
data among distributed, autonomous devel-
opment teams, with data modeling and man-
agement appropriate for software artifacts
and relationships, transparent access to het-
erogeneous, autonomous legacy repositories,
tool integration, process modeling and enact-
ment, and low implementation cost. DHT
achieves these goals by applying hypertext
concepts to logical and physical integration.
In so doing, DHT solves the practical prob-
lem of sharing data in a virtual enterprise,
and establishes a basis for continuing re-
search in integrating heterogeneous software
object management repositories, data mod-
els, and implementation architectures using
easily navigated wide-area hypertexts. The
interested reader should consult [14] for fur-
ther details and examples.

References

[1] Evan W. Adams, Masahiro Honda, and
Terrence C. Miller. Object management
in a CASE environment. In Proceedings
of the 11th International Conference on
Software Fngineering. The Association
for Computing Machinery, 1989.

[2] Kenneth M. Anderson, Richard N. Tay-
lor, and E. James Whitehead, Jr,.
Chimera: Hypertext for heterogeneous
software environments. In Furopean
Conference on Hypermedia Technology,

Edinburgh, Scotland, September 1994.

and

M. W. Bright, A. R. Hurson,
Simin H. Pakzad. A taxonomy and

[11]

[12]

current issues in multidatabase systems.
IFEE Computer, March 1992.

Brad Campbell and Joseph M. Good-
man. HAM: A general purpose hyper-
text abstract machine. Communications

of the ACM, 31(7), July 1988.
Jacob L. Cybulski and Karl Reed. A hy-

pertext based software-engineering envi-
ronment. IFFFE Software, March 1992.

D. Fang, J. Hammer, D. McLeod, and
A. Si Remote-exchange:
proach to controlled sharing among au-
tonomous, heterogenous database sys-
tems. In Proceedings of the IEFE Spring
Compcon, San Francisco. IEEE, Febru-
ary 1991.

An ap-

Pankaj K. Garg and Walt Scacchi. A
hypertext system for software life cycle
documents. IFEFE Software, 7(3):90-99,
May 1990.

Pankaj K. Garg and Walt Scacchi. On
designing intelligent software hypertext
systems. IFFE Ezpert, 1990.

Dennis Heimbigner. The Process-
Wall: A process state server approach
to process programming. In Pro-
ceedings of the Fifth SIGSOFTSympo-
stum on Software Development Environ-
ments, Tyson’s Corner, Virginia, De-
cember 1992.

Charles J. Kacmar and John J. Leggett.
PROXHY: A process-oriented exten-
sible hypertext architecture. ACM

Transactions on Information Systems,
9(4):399-420, October 1991.

James Kistler and Mahadev Satya-
narayanan. Disconnected operation in
the coda file system. ACM Transac-
tions on Computer Systems, 10(1):3-20,
February 1992.

Henry F. Korth and Abraham Sil-
bershatz. Database System Concepts.
McGraw-Hill, 1986.

12

[13]

[14]

[15]

[16]

[17]

[21]

Pei-Wei Mi and Walt Scacchi. Pro-
cess integration in CASE environments.
IEFEFE Software, 9(2):45-54, March 1992.

John Noll. Software Object Management
in Heterogeneous, Autonomous FEnuvi-
ronments: A Hypertext Approach. PhD
thesis, University of Southern Califor-
nia, September 1995.

John Noll and Walt Scacchi. Inte-
grating diverse information reposito-
ries: A distributed hypertext approach.
IEEE Computer, 24(12):38-45, Decem-
ber 1991.

John Noll and Walt Scacchi. A hy-
pertext system for integrating hetero-
geneous, autonomous software reposito-
ries. In Proceedings of the Fourth Irvine
Software Symposium, pages 49-59,
Irvine, CA, April 1994. Irvine Research
Unit in Software and ACM/SIGSOFT.

Maria H. Penedo, Erhard Ploedereder,
and lan Thomas. Object management
issues for software engineering environ-
ments; workshop report. In SIGSOFT
’88: Proceedings of the Third ACM SIG-
SOFT/SIGPLAN Software Engineering
Symposium on Practical Software De-
velopment Environments, Boston. The

Association for Computing Machinery,
1988.

P. J. Plauger. The Standard C Library.
Prentice Hall, 1992.

Herman C. Rao and Larry L. Peterson.
Accessing files in an internet: the jade
file system. IFEF Transactions on Soft-
ware Engineering, 19(6):613-625, June
1993.

Mahadev Satyanarayanan. The influ-
ence of scale on distributed file system
design. IFEE Transactions on Software
FEngineering, 18(1):1-9, January 1992.

Peter Scheurmann, Clement Yu, Ahmed

Elmagarmid, Hector Garcia-Molina,

[22]

Frank Manola, Dennis McLeod, Arnon
Rosenthal, and Marjorie Templeton.
Report on the workshop on hetero-
geneous database systems. SIGMOD
Record, 19(4), December 1990.

P. David Stotts. sigmaTrellis: Pro-
cess models as multi-reader collabora-
tive hyperdocuments. In Proceedings of
the Ninth International Software Pro-
cess Workshop, Airlie, Virginia, Octo-
ber 1994.

Richard Taylor, Frank Belz, Lori Clarke,
Leon Osterweil, Richard Selby, Jack
Wileden, Alexander Wolf, and Mi-
cal Young. Foundations for the ar-
cadia environment architecture. In
SIGSOFT °88: Proceedings of the
Third ACM SIGSOFT/SIGPLAN Soft-
ware Fngineering Symposium on Prac-
tical Software Development FEnviron-
ments, Boston. SIGSOFT/SIGPLAN,
November 1988. Available in SIGSOFT
Software Engineering Notes 13(5) and
SIGPLAN Notices 24(2).

13

