Decision Support
i3 B Systems

ELSEVIER

Decision Support Systems 17 (1996) 313-330

A meta-model for formulating knowledge-based models
of software development

Peiwei Mi ~, Walt Scacchi

Information and Operations Management Department, University of Southern California. Los Angeles. CA 90089-1421, USA

Abstract

In this paper, we introduce a knowledge-based meta-model which serves as a wunified resource model for integrating
characteristics of major types of objects appearing in software development models (SDMs). The URM consists of resource
classes and a web of relations that link different types of resources found in different kinds of models of software
development. The URM includes specialized models for software systems, documents, agents, tools, and development
processes. The URM has served as the basis for integrating and interoperating a number of process-centered CASE
environments. The major benefit of the URM is twofold: First, it forms a higher level of abstraction supporting SDM
formulation that subsumes many typical models of software development objects. Hence, it enables a higher level of
reusability for existing support mechanisms of these models. Second, it provides a basis to support complex reasoning
mechanisms that address issues across different types of software objects. To explore these features, we describe the URM
both formally and with a detailed example, followed by a characterization of the process of SDM composition, and then by a
characterization of the life cycle of activities involved in an overall model formulation process.

Keywords: Meta-modeling model composition; Software process modeling; Knowledge-based modelling; Knowledge-based models of
software development

1. Introduction

Our contribution in this paper is to describe a
knowledge-based meta-model representation formal-
ism for building composite models of software de-
velopment efforts. Our meta-model is based on a
resource-centered ontology. It accomodates the for-
mulation of large and complex models based on the
composition of five principal classes of models ap-
pearing in our problem domain. This is the domain
of large-scale software development. We have con-
structed and deployed a knowledge-based support

* Corresponding author. Tel.: 213 740 4782. Fax: 213 740
8494. E-mail: {pmi,scacchi)@gilligan.usc.edu

system which utilizes this representational formalism
in ways that support the articulation of models
throughout the formulation life cycle we describe. In
turn, our support system has been used to formulate,
analyze, refine, and redesign various models of
large-scale software development for our research
sponsors. Some of these models have addressed soft-
ware development projects where hundreds of soft-
ware developers were employed (e.g., AT&T Bell
Laboratories in Naiperville, IL, and Northrop-Grum-
man B-2 Division in Pico Rivera, CA) to build
multi-million line software systems. In settings such
as these, the (re)formulation of current/new models
of large-scale software development was often done
to identify new ways to systemically analyze the
consistency, completeness, cost, resource dependen-

0167-9236,/96/515.00 © 1996 Published by Elsevier Science B.V. All rights reserved

PIH SO167-9236(96)00007-3

314 P. Mi. W. Scacchi / Decision Support Systems 17 (1996) 313-330

cies and conflicts of local software development
efforts in order to make their organization and man-
agement more tractable and predictable. We have
also found that with little effort, our approach can be
adapted and applied to other decision-making and
business process domains cite [1].

In the remainder of this paper, we describe our
approach to the model formulation life cycle, meta-
modeling, model composition. In the next section,
we provide the background for our approach. This
includes a short characterization of our focal prob-
lem domain, as well as related approaches and stud-
ies. It also describes our view of the model formula-
tion life cycle, which positions meta-modeling as its
driving activity. We next describe our meta-model-
ing representation and how it serves as a foundation
for formulating models which are used to organize,
guide, and manage large software development pro-
jects. We then follow with an illustrative example
which highlights modeling details from the five com-
ponent models that are part of a large model now
used in a number of industrial firms. We also use
this example to explain some of the critical details
involved in model composition. Finally, we conclude
and add some additional remarks regarding our cur-
rent efforts.

2. Background

In the domain of large-scale software develop-
ment, many new product, process, and decision sup-
port models have been proposed [2-11]. These mod-
els are used to facilitate different aspects of software
development when employed within support systems
we call “‘process-centered software development
support environments”’ (PSDSEs). These models also
facilitate the archiving and reuse of product, process,
and decision-making artifacts [11,12] through sharing
the object classes among software developers, as
well as query and reasoning about relations between
modeled objects and their attributes [7,9]. For exam-
ple. Ramesh and Dhar [9] advocate the need for a
PSDSE that records and organizes for retrieval the
kinds of decisions made and rationales employed
when building large software systems. Since differ-
ent models and PSDSEs usually deal with only one
particular aspect of software development, it is hard

to compose and integrate them for use within a
comprehensive or project-wide PSDSE. Part of the
difficulty here arises from the adoption of different
modeling approaches which emphasize representa-
tion of different classes of objects and their interrela-
tionships. Another difficulty emerges when trying to
address the formulation of large development models
that must accomodate or be composed from indepen-
dently developed component models. Finally, it is
also difficult to put these various classes of objects
and models together so that they can be interpreted
or executed in one or more independently developed
PSDSEs.

In order to better understand these issues, let us
review some comparable research efforts, particu-
larly as related to structural modeling, process mod-
eling, meta-modeling, model construction and inte-
gration, and model management systems.

Geoffrion [13-15] is among those who can be
noted for their pioneering of the computational ren-
dering and use of structural modeling. His structures
model targetted problem domains using attributed
directed graphs, which in turn can be supported
using entity-relation-attribute (ERA) based model
management systems. However, it should be noted
that ERA models and support systems can lack the
representational flexibility and economy offered by
object-oriented models and support systems [7,16,17],
such as found in the use of inheritance mechanisms
and object-oriented data management systems.

In the area of process modeling Jarke [18], Dhar
[19] and their colleagues are among those that advo-
cate the need ro model the processes associated with
decision making and with the development of soft-
ware-based information systems. In particular, they
advocate the use of knowledge-based process repre-
sentation formalisms which enable process support
systems to support complex reasoning, inheritance,
and query-based computations. We concur with this
direction for process modeling as a necessity, and we
follow it in this paper and in related work elsewhere
[7.,20]. These knowledge-based formalisms provide
for the representation and use of interrelated classes
of attributed objects that are manipulated by rule-
based inference systems.

Other work in the area of process modeling in
support of the domain of software development has
brought attention to the need and utility of process

P. Mi, W. Scacchi / Decision Support Systems 17 (1996) 313-330 315

meta-models and meta-modeling [7,20-23]. The pur-
pose of meta-models is to provide a formal language
or representational system for specifying an interre-
lated family (or genus [14]) of process models, or
other models of software development objects. Our
approach described in this paper employs a knowl-
edge-based meta-modeling scheme.

Given that these modeling approaches are moving
toward ever more powerful model representations,
we next consider recent advances in model construc-
tion. Significant efforts in model construction, such
as [24-26], emphasize construction of mathematical
optimization models. In these efforts, attention is
focused at providing supports systems that facilitate
the composition of models, parameters, and algebraic
formulas. Dolk and Kottemann [26] then advocate
that model construction support systems must also
address the need fo execute, interpret, or enact the
model, and how this may influence model formula-
tion. We believe these concepts should therefore be
applicable to other model formalizations, integration
and formulation support, particularly those for soft-
ware development models [12,20,27].

In our view, we find that the concepts that we
have emphasized above can best be tied together
through an understanding of the overall set of mech-
anisms and activities that must be addressed to for-
mulate complex models of software development
projects. Over the past eight years, we have been
developing, using, and evolving a knowledge-based
PSDSE called the Articulator [7]. The Articulator’s
knowledge representation is an implementation of
the URM. In this way, the Articulator’s meta-model
serves as a formalism for the URM to represent a
software development model and its supporting re-
source infrastructure [7,28].

Based on our experience in using and refining the
Articulator in the formulation of a few dozen SDMs
for our research sponsors, we have developed a
characterization of the set of activities we perform in
constructing and manipulating software development
models. We refer to this set of activities as the model
formulation process life cycle. The set of activities
that entail this life cycle include the following:

meta-modeling: constructing and refining a con-

cept vocabulary and logic (an ontology) for repre-
senting classes of models and model instances in
terms of object classes, attributes, relations, con-

straints, control flow, rules, and computational
methods.

model definition: eliciting and capturing of infor-
mal descriptions of software development objects
and their conversion into formal development
models or model instances.

analysis: evaluating static and dynamic properties
of a model, including its consistency, complete-
ness, internal correctness, traceability, as well as
other semantic checks.

simulation: symbolically enacting modeled SDMs
in order to determine the path and flow of inter-
mediate state transitions in ways that can be made
persistent, replayed, queried, dynamically ana-
lyzed, and reconfigured into multiple alternative
scenarios.

visualization: providing users with graphic views
of SDM object classes and instances that can be
viewed, navigationally traversed, interactively
edited, and animated to convey modeled process
statics and dynamics.

prototyping: incrementally enacting partially
specified SDM instances in order to evaluate
presentation scenarios to end users, prior to per-
forming tool and document model integration.
administration: assigning and scheduling speci-
fied users, tools, and development data objects to
modeled user (agent) roles, product milestones,
and development schedule.

integration: encapsulating selected software tools,
repositories, and document objects that are to be
invoked or manipulated when enacting an SDM.
environment generation: automatically transform-
ing a process model or instance into an exe-
cutable SDM producing a PSDSE that selectively
presents prototyped or integrated tools /objects to
end-users for enactment.

enactment: executing a generated SDM program
and resulting environment by a process interpreter
that guides or enforces specified users or agent
roles to enact the SDM as planned and scheduled.
monitoring, recording, and auditing: collecting
and measuring SDM enactment data needed to
improve subsequent process enactment iterations,
as well as documenting what process steps actu-
ally occurred in what order.

replay: graphically simulating the re-enactment of
a previously executed SDM, in order to more

316 P.Mi. W. Scacchi / Decision Support Systems 17 (1996) 313330

readily observe process state transitions or to

intuitively detect possible process enactment

anomalies.

- articulation: diagnosing, repairing, and reschedul-
ing actual or simulated SDM enactments that
have unexpectedly broken down due to some
unmet resource requirement, contention, availabil-
ity, or other resource failure.

+ evolution: incrementally and iteratively enhanc-
ing, restructuring, tuning, migrating, or reengi-
neering an SDM or the preceding activities to
more effectively meet emerging user require-
ments, and to capitalize on opportunitistic bene-
fits associated with new tools and techniques.
While such a list might suggest that formulating a

SDM through its life cycle proceeds in a linear or

““waterfall-like’” manner, this is merely a conse-

quence of its narrative presentation.

The Articulator meta-model serves as a represen-
tation language that is capable of specifying a large
family of software engineering processes. So far, we
have specified more than twenty process models for
different kinds of applications ranging from small-
scale research-oriented models to large-scale com-
mercial development models [7,20,27,29-32]. The
Articulator meta-model has also served as the basis
for integrating " the Articulator environment [7] with
(i) the generic process engine in the AP5 environ-
ment at the Information Sciences Institute by Balzer
and Narayanaswamy [33], (ii) the Matisse team pro-
gramming environment from HP Laboratories [4],
(iii) the commercially available SynerVision process
enactment engine from HP [20], and (iv) other in-
house environments being researched by some of our
other corporate sponsors. Of these (i) and (ii) employ
automation rules for process support, while (iii) uti-
lizes a procedural process programming language, a
broadcast message server, and encapsulated off-the-
shelf CASE tools. As a number of other process-

' The primary technical effort encountered during integration

is the construction of a translator that maps a given process
notation into or out of the Articulator's meta-model notation. Our
experience has been that building a new translator takes a few
person weeks of effort. More complex translators for producing
natural language paraphrases of SDMs or enactment histories are
also being developed elsewhere [24].

centered environments or enactment engines utilize
one or more of these mechanisms, we therefore
believe our experience has begun to demonstrate the
plausibility and validity of the URM. However, the
focus of our contribution in this paper is on present-
ing the structure, organization, and selected details of
the URM meta-model, and how it supports the for-
mulation of models via composition.

Therefore, in the remaining sections, we will show
how these related concepts, particularly those em-
phasized, are brought to bear in describing (a) a
meta-model appropriate for the domain of software
development, and (b) the composition of models
from component models,

3. A unified resource model of software objects

In this section, we introduce a unified resource
model (URM) that represents a knowledge-based
foundation for modeling and interrelating the objects
associated with the development of large software
systems. The model seeks to organize and codify the
classes of objects, attributes, and values that denote
the entities associated with software development
processes, products, organizational roles, and devel-
opment tools, together with the relationships that
associate each to the other. In this way we can
formulate object-oriented models that characterize
which people (roles) perform what tasks (processes)
that consume or produce specific outcomes (docu-
ments, systems) using CASE environments (tools).
However, software development projects occur in
different settings, where different people may act in
one or more different roles, performing different
tasks or task sequences, building different intermedi-
ate and final products, using different tools. Thus,
any one model of software development can have
many distinct instantiations, and different organiza-
tions can subscribe to one or more different models.
As a result, we seek to avoid constructing a model of
each such software development instance from
scratch. and instead seek to employ a codified repre-
sentational framework that organizes, structures, and
simplifies model formulation, composition, and en-
actment. Thus, the URM we have developed serves
to broadly define the concepts and associations that
span a family (i.e., a related set) of software devel-

P.Mi. W. Scacchi / Decision Support Systems 17 (1996) 313330 317

opment models, where each such model then can
span a family of possible instantiations.

The URM unifies and integrates the principal
characteristics of the types of objects which typify
software development processes, systems, roles, doc-
uments, and tools and which represents them in
terms of a higher level of object class called re-
source. This URM consists of two subclasses of
resource: the simple result for individual resource
types, the aggregate resource set (AggRS) for het-
erogeneous collections of resources of different types.
[t also consists of a web of relations that link
different types of resources [7] % Through the use of
different software development object models, indi-
vidual software applications can be built, and PSD-
SEs which support their construction can be realized
in a more integrated manner. Furthermore, the URM
has the ability to abstract and specify classes of
relations across different kinds of software objects !

The URM for software development objects we
describe consists of a generic resource model and
five models of software resource classes. The generic
resource model represents a hierarchy of generic
resource classes and relations that describe the basic
characteristics for all kinds of software objects. Each
subclass of resource models is a specialization of the
generic resource model and represents a single class
of software resources. Currently, we have defined a
number of such specialized models for resources
such as software systems, documents, agents, tools,
and processes. Depending on an application domain,
more specialized models can be easily added or
customized. Accordingly, this URM is not a final
statement, but instead it is a coherent and founda-
tional representation that can combine many dis-
parate software object models in a way that can be
extended, specialized, instantiated or otherwise
evolved. In this section, we first discuss the generic
resource model and then five specialized object mod-
els.

* In carlier work, aggregated webs of related resources were
called computing packages [25,37].

* In this regard, we allow for relations to be defined as object
classes whose attributes can be single values or a set of values.
This is one departure that distinguishes traditional object-oriented
scheme (which generally lack relation class constructs) from
knowledge-based schemes.

3.1. The generic resource model

The generic resource model describes a basic set
of characteristics and uses for major kinds of soft-
ware development resources typically manipulated in
PSDSEs [34], which can be identified as follows:

3.1, Major kinds of software development re-
sources

- Software systems which are products of soft-
ware development. Normally, a software application
system, written in a programming language, consists
of a set of decomposible modules and non-decom-
posible functions. Software systems are produced by
software developers through software development
tasks that occur in different places at different times.
Therefore, they have different development states
indicating their status of development [27]. There
also exists an invocation relation between software
modules (e.g.. what module calls what other module).

» Software documents (e.g.. reports, deliverables,
manuals, design descriptions, modification requests)
which emerge as artifacts resulting from the execu-
tion of software development processes. These docu-
ments are composed aggregations of other develop-
ment artifacts (e.g.. design schemata) as products
that are created. used, or modified by developers and
their tools.

- Software tools which are executable programs
invoked by developers to create/modify software
systems and associated artifacts. PSDSEs can be
viewed as collections of programs that developers
progressively select for execution when performing
different software development processes or activi-
ties.

- Software developers who are agents organized
to perform software development. In a typical soft-
ware development project, teams of developers work
to produce a software system. There are many differ-
ent working relationships among developers within a
team, and individuals or work groups play different
roles at different times.

- Software development processes which are a set
of tasks linked by an execution plan. Software devel-
opers attempt to perform these tasks according to the
process enactment plan while responding to local
contingencies. These developers use software tools
during the tasks, consume some software objects,

318 P.Mi, W. Scacchi / Decivion Support Systems 17 (1996 313-330

and produce other software artitacts, documents, and
systems.

With these resources in mind, we can summarize
the basic characteristics they share in common. These
characteristics can then be abstracted into a generic
resource model.

3.1.2. Common characteristic of software resources

« There is an object decomposition hierarchy for
a software development resource. For the purpose of
modularity, we often view a software resource as a
composition of other component resources. This re-
duces the complexity of the software object. For a
given type of software resource, some are deconm-
posible. while others that represent atomic units of
computational processing are not. For example. a
software system can be made up of decomposible
modules and non-decomposible functions. A soft-
ware development process is made up of decomposi-
ble and non-decomposible subtask steps.

* There are associative links between components
of decomposible software resources. The component
resources of a decomposible resource are not iso-
lated. Relations (or links) between them identify
processing orders or directions for message passing.
For example, software modules may invoke each
other. Software tasks can be execured sequentially.
iteratively, conditionally, or concurrently.

- Software resources have states that signify their
processing status. Although different software re-

R2
LEGEND:
Object Classes:
01 -- Resource
02 -- Simple-Resource

03 -- Aggregate-Resource

sources have different sets of state values, their state
transitions can typically be described by a finite state
machine. For example, a software module may un-
dergo status changes such as created, reviewed, de-
bugged, tested, baselined and released.

The generic resource model formally represents
these characteristics through a set of object and
relation classes. Resource is the root class of the
generic resource model. It has two subclasses that
describe two generic objects: Simple-resource rep-
resents a class for resources that are non-decomposi-
ble. Aggregate-resouce-set (AggRS) represents a
package of member classes including Simple-re-
source and itself. It also represents an aggregate
collection of resource classes with a set of relation
classes across these resource classes. Fig. 1 shows
the object hierarchy of the generic resource model.

There are three pairs of resource relation classes
that represent the web of associative links between
resource. Each of the relation classes is bi-direc-
tional, so that relation pairs denote the relation in
each direction. The is-a-subclass / subclass-of char-
acterizes the classic class-subclass relationship com-
mon to object-oriented models. The has-components
/ component-of relation pair forms the decomposi-
tion hierarchy for a software resource. Has-neigbors
/ neighbors-of form a processing link among a set
of objects of a non-decomposible resource. Neighbor
relations can be used to denote a transformational
sequence of intermediate documents or persistent
artifacts [35]. All resource subclasses can have

R1

Relation Classes:

RO -- is-a-subclass

R1 -- has—-member-resources
R2 -- has-neighbors

Fig. 1. The object hierarchy of the generic resource model.

P. Mi. W. Scacchi / Decision Support Systems 17 (1996) 313-330

Resource Simple-resource | AggRS l has-members has-netghbors
Software-System | Function Module | has-functionalities
Document Paragraph Section | has-component-docs | realized-by-docs
Agent People Team has-Teammembers report-to-agents
Tool Program Toolkit | has-tool-calls has-next-calls
Process Action Task has-subtasks has-successors

Fig. 2. The five specialized resource model.

319

neighbors as long as they are the objects of the same
subclass. Has-member-resources / member-of-
AggRS form an aggregation link between a AggRS
and its member resources.

One additional pair of object relation classes (not
shown in the Figure), has-resource-specs /
resource-spec-of, describe links between resources
and the resource-spec class. It is this specification.
together with the resource-spec class that defines
relationships across different resource classes, which
is a central part of the definition of AggRS. Re-
source-spec is a specification of resources that serves
as a pointer to the desired resources for a particular
purpose. Its definition is shown in Fig. 4. Its at-
tributes include resource-type, resource-condition,
maximum-quality, minimum-quality, and
matched-resource-instances. When fully specified.
a resource-spec refers to a set of resources whose
class is a subclass of resource-type, and whose
attribute values match those in resource-condition.
When a resource-spec is linked to a resource through
has-resource-specs, it constitutes a conceptual bridge
from a resource to another set of resources that
match the description in the resource-spec, which is
determined dynamically. Accordingly, we give ex-
amples of this web of relations in later sections.

Resource has an attribute called state. Values of
state for a resource class describe stages of computa-
tional processing for the class. Among all subclasses
of resources, state values of simple-resource and the
definition of state transition are defined by users.
State values of AggRS are a collection of its member
resource classes.

Next, we discuss specializations of the generic
resource model.

3.2. Specialized object models

Software development object models can be de-
veloped through specialization of the generic re-
source model. They represent different software ob-
jects in software development. On the other hand,
these specialized object models inherit the character-
istics of the generic resource model. On the other
hand, other specifications are added to describe char-
acteristics that are specific to the kind of software
objects they describe. While we have defined a
number of specialized object models, we now focus
on five subclasses of resource, and a subclass of
AggRS.

3.2.1. Five specialized resource models

We can identify five specialized resource models
using the generic resource model. Each describes a
single class of software objects. They are defined
through multiple inheritance of attributes, subclasses,
and relations from the generic resource model
classes . They include models for software-system,
document, agent, tool, and development process.
Fig. 2 lists elements of these specialized models as
subclasses of objects and relations of the generic
resource model. For example, the document model

* In this paper, we do not provide a complete enumeration of
all of the attributes, relations, or default values for these classes,
but instead focus on an illustrative subset that we and some of our
research sponsors have employed in software development pro-
jects. Similarly, we do not describe the rules and computational
methods that manipulate these entities, as examples can be found
in our related work [31.28,33].

320

consists of paragraph as its simple-resource and
section as its AggRS. As such, a document consists
of sections and paragraphs to form a decomposition
hierarchy with a sequential order of the first section,
the second section, etc. As another example, a devel-
opment process model consists of decomposible tasks
and non-decomposible actions with has-successors
to specify its execution order. Fig. 3 shows the
generic resource model and its specialized individual
object models. Together they represent the URM. In
the figure, the classes of the individual models are
represented by the symbols labeled with the circles.
For example. Document is a subclass of resource,

02
RO .~
Pl R1
o1 el
S RO ——
o3
R2
R1
LEGEND:
Object Classes:
01 -- Resource
02 -- Simple-Resource

03 -- Aggregate-Resource

Fig. 3. The object hierarchy

P.Mi. W. Scacchi / Decision Support Systems 17 (1996) 313-330

therefore, its symbol in the circle is O1, which is the
label for resource.

3.2.2. A specialized AggRS model: software-develop-
ment-model

Software-development-model is a specialized
AggRS which, as before, consists of a collection of
resource classes connected through web relations.
These web relations enable the manipulation of dif-
ferent resource classes in different ways.

The Software-development-model describes the
resource infrastructure where a software system is

Function

k4
Software-System ,/,
-
~
N
~
N
N

Dcoument

-’
-
-,
~
~
~

Module

Paragraph

P

7

~ .
N Section

Pecple
Agent ,/'
-
.
(o
~
~
~
~ Team
Action
Process s
-
-
-
(oo
~
~
~
> Task
Tool - Program
.
P
.
(X
~
~
~
N Toolkit

Relation Classes:

RO -- is-a-subclass

R1 -- has-member-resources
R2 -- has-neighbors

of the unified resource model.

P.Mi, W. Scacchi / Decision Support Svstems 17 (1996) 313-330 321

produced. It consists of a development process model
as its enactment plan, a software model as the basis
for its product, an agent model for its performers, a
set of optional other resource models as its input, and
an optional tool model. Further, the software model
is a specialized AggRS that has a software system
model and a document model.

The web relations in software-development-
model describe relationships among the individual
models and are centered around the development
process. agent-role-spec specifies the roles of agents
assigned to perform the process tasks or actions.
tool-spec specifies resources that are used as tools in
the process. required-resource-spec specifies re-
sources that are input to the process. successful-pro-
vided-resource-spec specifies resources that are out-
put from the process when the process is successful;
failed-provided-resource-spec specifies resources

{{resource-spec
1s-a:
resource-type:
resource-condition:
minimum-quantity:
maximum-quantity:
selection-condition:
resource-possession:

{{agent-role-spec
1s-a:
agent-role-spec-in-process:

{{tool-spec
1s-a:
tool-spec-in-process:

{{required-resource-spec
is-a:
required-resource-spec-in-process:

{{successful-provided-resource-spec
Is-a:

successful-provided-resource-spec-in-process:

{{failed-provided-resource-spec
is-a:

failed-provided-resource-spec-in-process:

that are output from the process if its enactment
breaks down or fails [29,36,37]. Accordingly, each of
the five subclasses are defined according to the
schema for resource-spec highlighted in Fig. 4.

4. An example of a software-development-model

To provide a realistic illustration of the use of the
URM, we first present a subclass of the software-de-
velopment-model called DOD-STD-Model. This
model describes the development approach and prod-
ucts directed by MIL-STD-2167A [38], which is a
public standard that guides the development of large
software systems embedded in military applications

resource

[resource-classes]

[(attribute value)]

(integer]

[integer]

true
[allocated-resource-instances] }}

resource-spec
[attached-process] }}

resource-spec
[attached-process] }}

resource-spec
[attached-process] }}

resource-spec
[attached-process] }}

resource-spec
[attached-process] }}

Fig. 4. Definition of resource-spec.

322

[X) Knowieuge Qraft warkbench

@ =] [=] k5] B

Viewpart

[Foama]

P.Mi. W. Scacchi / Decision Support Systems 17 (1996) 313-330

&}

Cceats
Schema

w' RTTE -MHRURLT

i

//
/,-ms-st GN <\

~

T

DOD-STD-"POCESS

~~«UNIT-TEST

"\ ~CODE-CSC

—~*BHYSICAL=CONFIG=AUDIT
#FUNCYTICONAL -CONFIG-AUDTT

o
\ ,/%'-FDRMRL~DLHL~TE’ST

(Y ;g/éﬁ —— NG,

“PRELIMIMARY -DESIGN

S eDETAILED-DESTGN

- *BASELINE-DOC
//. *BASELINE~EXECUTABLE
7 *EVALUATE-EXECUTRBLE
¢~ ~COMFIRM-CODING-STO
~DETAIL -TEST-PROC
- «DETAIL -MANUAL
—— «WALKTHROUGH-UNIT -TEST -PROC

*EVALUATE-CSC-TESTABILITY

N «WALKTHROUGH ~C5C

Delete

#IDENT IFY-MODULES
Schema

— — WCHECK -REQS-FOR-CONST ~COMP~REUSE

T <IDENTIFY-SYS-TEST
w#ALLOCATE~COMPONENTS

«FORMUCATE-DESIGN

__—~#CRITICAL-DESIGH-REVIEW

2+~ wIDENTIFY-REUSE~CAND

— - 4PLAN-TEST-CSC

#WRITE-REQS-IN=FDL

- WAL KTHROUGH-DETAILED-DESIGH

»DECOMPDSE-SYS

= »IDENTIFY-CSCI-TESTS

Create
Link

Delete
i

Network

Grente
Relstion

Status

Exit

Bl

TN

R —
clation Keys:
(13 TRSK-FORCE-COMPOMENT -QF

Fﬂlm Command;

Fig. 5. The DOD-STD-process model: task decomposition.

purchased by the US government > DOD-STD-
Model includes (i) a software product model, DOD-
STD-SDF; (ii) a development team model, DOD-
STD-Agent; and (iii) a software development pro-
cess model, DOD-STD-Process. The development
staff or team model is an addition we provided to
MIL-STD-2167A for the completion of software-de-
velopment-model. Since MIL-STD-2167A does not
specify which types of software development tools to
use, we do not include a tool model here, although
such a tool model can be created. We now turn to
examine the individual resource models and then the

° The use of other public standards, such as those grouped

under the 1SO 9000 banner. serve similar purposes in guiding the
realization of high-quality software development products. There
are also other military standards for software development such as
MIL-STD-498, which is intended to supercede MIL-STD-2167A.
While new standards seek to rectify technical shortcomings in
MIL-STD-2167A, there nonetheless remains the problem of iden-
tifying, formulating, and codifying a software development model
which can demonstrate conformity to the standards, what ever
they may be.

web of relations that connect them °. Fig. 6 gives a
definition of Formulate-Design, which is one of the
DOD-STD-Process tasks that is a component subtask
of Preliminary-Design, as shown in Fig. 5.

In DOD-STD-Process, we use component-of to
define component (sub)tasks or actions. We also use
has-successors to specify the sequential or concur-
rent execution order among the tasks ’. When exe-

In this paper, we only identify a partial set of classes and
instance values, as our model of software development for MIL-
STD-2167A includes hundreds of object and relation classes,
dozens of (sub)processes, documents, and organizational roles. <
FN >.< H2 > The DOD-STD-Process model < /H2 > <P >
The DOD-STD-Process specifies component tasks such as System
Requirement Analysis, Design, Coding, Testing, and Integration.
Fig. 5 shows a view of the multi-level task decomposition of
DOD-STD-Process < FN > We use a commercially available
CASE 100!, KnowledgeCraft from The Carnegic Group, as a
knowledge-base /model management system and graph browser
within the Articulator environment. We use the graph browser to
visualize the decomposition structure of selected relationships
within the web of relationships that characterize a software devel-
opment model.

7 Process tasks that incorporate iteration or conditional choices
utilize atomic actions to denote the begin and end decision points.

P. Mi. W. Scacchi / Decision Support Systems 17 (1996) 313-330 323

{{Formulate-Design Fig. 7 shows the system product decomposition of
is-a: task DOD-STD-SDF. Fig. 8 provides a compositional
component-of: Preliminary-Design view of some of the DOD-STD-SDF documents.
has-predecessors: none This set of documents is designed around an object

has-successors: Allocate-Components

Identify-System-Test
Fig. 6. The DOD-STD-process model: a task definition.

cuted, a task can start only after its immediate prede-
cessors are complete. For example in Fig. 6, Formu-
late-Design has two successors: Allocate-Compo-
nents and Identify-System-Test. Thus, depending
how we specify the successors of a task and other
task constructors, we can achieve different task exe-
cution orders, including sequential, concurrent, itera-
tive, or conditional [27].

4.1. The DOD-STD-SDF model

The DOD-STD-SDF specifies the set of software
documents and software system executables required
by MIL-STD-2167A, as well as their relationships
[39,40). SDF represents the Software Development
Files that are the products of software development.

(5] KnuvAcdge Craft workbench

called a Computer Software Configuration Item
(CSCI), and includes a description of its require-
ments, design, coding, testing, and integration. As
such, Fig. 7 shows the kinds of the document for
each CSCI. When the model is instantiated, the set
of the documents should be instantiated for each of
the CSCI identified in the Requirements Specifica-
tion. Another property of DOD-STD-SDF is that it
defines the relation realized-by-doc among the doc-
uments. MIL-STD-2167A requires developers to
keep track of the realization of initial development
requirements among implemented CSCIs and their
unit modules. To satisfy this need, we use realized-
by-doc to link a single software requirement to its
design, coding, and testing in order to maintain its
consistency throughout software development. Then
this relation can be retrieved to identify the actual
allocation of all software system requirements. In
Fig. 8 Software-Top-Level-Design-Doc is realized
by Software-Detailed-Design-Doc, which in turn
realized by CSCI and Software-Test-Plan.

KNOWLEDGE CRAFT

Wiewport Crvate
lsnhana
«INITIAL-NDOC REAS-LIST]
| T -OF -WORK Ig't”‘
g "INTERFACE-REQGS-SPEC ==
T - S ——— wSOFTWARE - IMPLEMEHT AT I ON-REQS ICUGW
_— ——~ #SOF TWARE ~REQS - SPEC ~ e 2 " Link
+REQS-DOC %’-:;f_’_:_:: ~——— +50FTWARE-DETALLED-REQS-SPEL | o=
—— . P [cic
—t SYSTEM SEGMENT=DESIGh=DOL L1nk
~— «SOF TWARE ~DEVELOPME NT-PL AN i
Netwock
/ 3 g %S0F TWARE-DETRLLED-DESIGN-DOC : :
4o ——-*DETAILED -DESIGN~DO(C —meme = T
. e =Y TR III ———— *SYS/SEGMENT ~SPEC |
*DESIGN-NGC <=2 — i[create
/ ~ e T --eINTERFACE-DESIGN~DOC !|Relation
—— —roP— - - 4
PR IMINARY - DE S G- ~—ame s~ T~ *SOTTWARE TOP-L EVEL-DESTGN-D0d TS
| —+— — »PREL IMIHARY ~SYS,*SEGHMENT ~SPEC |
g *SOFTWARE -TEST -DESCRIPTION lr——‘:nt]
e
—~%TEST-DAOC —— - TWARE-TEST ~FLAN - + SCI-TEST-PLAN 4‘:—1
T i
L = - +SOFTLARE -TEST -PROC — et ————— %L 5C ~TEST -PROCEDURE |
~ *CODE ——————e————g—— — +CSCI-SOURCE 3
=SPEC-CHRNGE -NOTICE b
/»ENGINEEEING—cunN(,E—PRuFusaL |
/‘//:—vDEVELOPMENT—REVIEJJAREPCR' i
T4 ——-wSOFTWARE-TEST ~REFDRT I
~REPORT *CSU-TEST-RESULT |
Tt
N —-~»SOF TWARE -CHANGE -REQUEST t
T~ «SDF TWRRE -PROBLEM-REPORT H
\\\\-VERSIUN—DESCMPTION—DDC :
~®*S0F TWARE ~PRODUCT =SPE(i
*EXECUTABL E-PROGRAM ~——e——+—— +CSC~EXECUTRBLE !
!
.~ =COMPUTER-RESO-1HTEGRATED-SUPPORT ~DOC J
Felation Keye: 1
<1) SECTION=-0F-DOCUMENT
Pair Command: ,
3 s

g SRR S 2]

Fig. 7. The DOD-STD-SDF model: product decomposition.

324 P. Mi. W. Scacchi / Decision Support Systems 17 (1996) 313-330

{{Software-Top-Level-Design-Doc
is-a:
section-of-document:
functional-description:
realized-by-doc:

document

design-doc

STLDD for each CSCI
Software-Detailed-Design-Doc} }

Fig. 8. The DOD-STD-SDF model: a document definition.

4.2. The DOD-STD-Agent model

A development team that builds software in a
manner conforming to MIL-STD-2167A typifies
many situations where software systems are cur-
rently produced. The development team consists of
different agent roles that are involved in the DOD-
STD-Process model including Manager, Designer,
Quality Assurance (QA) people, Engineer and other
Roles. Fig. 9 shows the roles in DOD-STD-Agent
and the definition for a DOD-STD-Agent role Soft-
ware-Designer.

4.3. Web relations in the DOD-STD-model

In DOD-STD-Model, DOD-STD-Process, DOD-
STD-SDF, and DOD-STD-Agent are linked through

[XI Knowlesige Crart workoench

=] [=] ko 9]

the following web relations. Fig. 10 gives a defini-
tion of these web relations for the subtask Formu-
late-Design in DOD-STD-Process.
Has-successful-provided-resource-spec specifies
resources in DOD-STD-SDF that are output from the
subtasks in DOD-STD-Process. Ideally, every single
resource in DOD-STD-SDF must be produced by
some subtask in DOD-STD-Process. Otherwise, the
resource will not be created in a real software devel-
opment since it is not accounted for in DOD-STD-
Process. If problem situations arise, has-failed-pro-
vided-resource-spec is also defined to show, for
example, that a problem report is created.
Has-required-resource-spec specifies resources
that are input to each of the subtasks in DOD-STD-
Process. Since MIL-STD-2167A does not contain
information about other types of input resources, this

1]

[¥iewpore] [Gebems] [options] Crowce
Sihoma
Doleote
Schema
|CKEB?—!
L ink
eloce
Cink
[:Natvuxk
_wPROJECT =MANAGER Crowte |
‘/;:-SYSTEI-MQHRLYST IRelatznn |
~SOF T -REQ~DEVELOPE Status
cc SOFTUARE-DESIGNER =]
INSTANCE: PEOPLE
PR Exit
e "4 “PROCRAMMER INDIV10UAL= IN-COLLECTIVE-AGENT : DOD-STD-RGENT I '

DOD-STO-AGENT ~S0A b
~ =CSCI-INTEGRATOR

N3 *CSC-INTEGRATOR
\\\\\~SYSTD4—IIWEGRRTDR ype any character to contlinue
) “CHRNGE-CONTROLLER

~BASELINE-CONTROLLER

Pelation Keys:
(1) INDIVIDURL=IN=COLLECTIVE=AGENT

Fig. 9. The DOD-STD-Agent model: role decomposition.

P. Mi, W. Scacchi / Decision Support Systems 17 (1996) 313-330 325

web relation only has resources in DOD-STD-SDF
as its inputs. This means a resource in DOD-STD-
SDF, created earlier by a subtask in DOD-STD-Pro-
cess, can then used by later subtasks.
Has-agent-role-spec specifies the roles in DOD-
STD-Agent that are involved in each subtask in
DOD-STD-Process. Each subtask in DOD-STD-Pro-

{{Formulate-Design

is-a: task

role-for-formulate-design
required-for-formulate-design
succ-provided-for-formulate-design} }
failed-provided-for-formulate-design} }

has-agent-role-spec:
has-required-resource-spec:
has-successful-provided-resource-spec:
has-failed-provided-resource-spec:

{{role-for-formulate-design

cess has at least one role as its performer. Extra
qualification attributes such as skill requirements and
prior experiences can also be added.

4.4. Composition of software development models

In order to more rapidly build large and complex
software development models (SDMs), we would

is-a: agent-role-spec

agent-role-spec-in-process:
resource-type:
resource-condition:
maximum-quantity: 1

Formulate-Design
Software-Designer
(state ready)

resource-possession: none }}
{{required-for-formulate-design

is-a: required-resource-spec

required-resource-spec-in-process: Formulate-Design

resource-type:

System/Segment-Design-Doc, Software-Reqs-Spec

resource-condition: (state ready), (state reviewed)

maximum-quantity: 1,1

resource-possession: none }}
{{succ-provided-for-formulate-design

is-a: provided-resource-spec

provided-resource-spec-in-process: Formulate-Design

resource-type:

Software-Top-Level-Design-Doc

resource-condition: (state none)

maximum-quantity: 1

resource-possession: none }}
{{failed-provided-for-formulate-design

is-a: provided-resource-spec

provided-resource-spec-in-process:
resource-type:

resource-condition:
maximum-quantity: 1
resource-possession:

Formulate-Design
Problem-Report
(state none)

none }}

Fig. 10. The web relation for formulate-design.

326 P.Mi. W. Scacchi / Decision Support Systems 17 (1996) 313-330

like to draw upon SDMs that might exist elsewhere,
or be stored within shared wide-area SDM reposito-
ries [12,41]. Assuming that translators exist or can be
built for mapping SDM notations into the meta-model
notation described above, we must next face the
problem of how to compose independently devel-
oped SDMs into larger models. Thus, our interest
here is in moving toward viewing the composition of
models ® as a process, rather than simply as a “‘cut
and paste’” or ‘‘copy and edit’” task. However,
without loss of generality, we will limit our discus-
sion here to the composition of software develop-
ment process models in order to highlight the prob-
lems we address.

In our view, there are three central problems in
composing models of software development pro-
cesses within SDMs. The first is that of finding or
matching a candidate software process model for
composition (e.g., a model for an object-oriented
design (OOD) technique [42]) with its target soft-
ware development infrastructure. The second is
planning for how to construct a match, when the
matching activity fails to produce an acceptably
compatible match [29,37]. The third entails inserting
or integrating the candidate SDM into a compatible
process model representation. All three of these ac-
tivities entail complex representations and reasoning
processes. Thus, our effort here is aimed at outlining
the nature of these problems, as well as how the
URM can be utilized to formulate solutions.

In our view, new software development processes
and the software engineering tools that support them,
require that a web of compatible resources be in-place
or available to facilitate successful process model
composition. This resource web can be thought of as
a signature [43] or configuration of technological and
organizational resources, e.g., OOD support tools,
staff trained in OOD, and OOD artifacts or docu-
ments. Thus, the matching problem requires that the
resource web for each process model composition
candidate must be explicitly represented. It also re-
quires that the resource web for the software produc-
tion infrastructure in each organization seeking to
adopt the new development process also be explicitly

8 Alternatively. the "tailoring" and specialization of generic

SDMs citeusaf-stsc.

represented and described. Subsequently, if a match
between the resource web and the organizational
structures can be found, then it is possible for the
candidate software development process model to be
successfully composed with the target. If a match
cannot be found, it is very unlikely that the candidate
process model can be easily adopted and integrated.

Clearly, it is likely that an exact match will not
always be found (cf. [43]). Therefore, it is necessary
to establish some criteria or measure of acceptable
distance from an exact match, i.e., acceptable partial
match metrics. At this point, we have developed a
set of 35 heuristics for classifying the disparity be-
tween currently available resource webs and those
needed to satisfy planned and scheduled software
development processes [29,36,37]. In short, these
heuristics examine which classes of the necessary
resources are unavailable, available but already in
use elsewhere, available but broken, similar type
available, or available, as well as with multi-resource
combinations (e.g., process A subsumes process B
which requires a certain class of tool and certain
class of staff). This classification mechanism thus
serves to provide the basis for reasoning about how
to achieve the best partial match with respect to the
resources available.

The planning problem is of course related to the
matching problem. While the matching problem may
conform to a static pattern-matching and problem-
solving scenario, the planning problem represents the
dynamic scenario. That is, when matching results in
only a partial match, then what can be done to revise
or reconfigure the candidate or target SDM resource
webs to achieve a better or best match?

The task of evolving a candidate SDM resource
web into a configuration that better matches the one
bound to the target resource infrastructure is the
essence of the composition planning problem. This is
a generative process planning problem [5]. This
means that the plan must be generated to incremen-
tally transform the candidate SDM into the desired
target resource configuration, given available re-
sources. The transformations may include adding or
removing resources, restructuring resource configura-
tion (web) relations, revising resource attributes or
attribute values. In turn, the plan represents a partial
ordering of which transformations to apply. Thus,
there remains the problem of how to implement the

P. Mi. W. Scacchi / Decision Support Systems 17 (1996) 313-330

[Fiewpore |

‘w
b
~

M =] =] ko)

8
.
1
a
<

Schena Optaons

“IMP NT - —~FAND~-0] T et S
s LEMENT ~CLASS-AND-OBJECT —=§ % o e Teer

*ITERATE-END
-« IDENTIFY -RELATION ——e
OD-DESIGH
= “IDENTIFY -SEMANTICS — %+ wESTABLISH-MERANIHG

\’\41TERRTE—EEGIN
*IDENTIFY-CLASS-AND-OBJECT —=g Y

——~ @I NVENT =MECHANT SM

wo][m

oeila

gl
slie
eltr
Hig

HIEERE S

3
~“SYSTEM-TESY Rolation

— *MAKE -VISIBILITY-DECISION
—wDISCOVER-PATTERH

Relation Keys:
(1> TRSK-FORCE-COMPONENT -OF

Flm Command:

Fig. 11. The Booch’s ODD Process model: task decomposition.

{{Formulate-OOD-Design
is-a:
has-agent-role-spec:
has-required-resource-spec:

has-successful-provided-resource-spec:

has-failed-provided-resource-spec:

{{required-for-formulate-OOD-design
is-a:
required-resource-spec-in-process:
resource-type:
resource-condition:
maximum-quantity:
resource-possession:

task

role-for-Formulate-OOD-Design
required-for-formulate-OOD-design
succ-provided-for-formulate-OOD-design} }
failed-provided-for-Formulate-OOD-Design} }

required-resource-spec

Formulate-OOD-Design
System/Segment-Design-Doc, Software-Regs-Spec
(state ready), (state reviewed)

1,1

none }}

{{succ-provided-for-formulate-OOD-design

is-a:
provided-resource-spec-in-process:
resource-type:

resource-condition:
maximum-quantity:
resource-possession:

provided-resource-spec

Formulate-OOD-Design

Software-Top-Level-Design-Doc, Software-Object-Hierarchy
(state none), (state none)

1,1

none }}

Fig. 12. Some updated web relations for Formulate-ODD-Design.

328 P.Mi. W. Scacchi / Decision

Paln Netuork Editor

[¥iewport]

|!chﬁn| l

Support Systems 17 (1996) 313-330

I
I
L
i-nssmr«
i =
.

«BASELINE-DOC
/chﬁSELINE—mECUTﬁBLE
#*EWALURTE-EXECUTRBLE
(/& «CONFIRM-CODING-STD
*DETAIL-TEST-PI
Z £ST-PROC

«CODE-AND-UNTTTEST *DETAIL -MANUAL
‘ *JALKTHROUGH-UNIT -TEST -PROC

‘ \-ule—TEST
“EVALURTE-CSC-TESTABILITY

S #COMPILE-CSC
 #W ALK THROUGH -C ST
«CODE-CSC

/'Pfesummnwv—nesrung‘r’"
| e # THP T - -
i / \1\\ e *IMPLEMENT —CLASS-A

S~ «FORMULRTE-DESIGN — #ITERATE~END
\\ S #IDENTIFY=SEMANTIC|
N

T

|

)

i “\ -
| . e
\ "\ *DETAILED-DESIGN

] —_— Tt

Croate |
Schema
Celete
Schema
Creats
Link
Celete

L ink
IN'“QKk
Cronte |
Relation
|s:=m= |

-~ *TDENTIFY~RELATION
T

e
T~

T~

T~ #IDEMTIFY-CLASS—AN,

-~ #ITERATE-BEGTN

o *CRITICAW-DESIGN-REVIEW
*IDENT IFY-REUSE-CAND
=PLAN-TEST-CSC
#WRITE-REQS-TN-POL
#WALKTHROUGH-DETRILED-DESIGN
~ #DECOMPOSE-SYS
®IDENTIFY-CSCI-TESTS

Relation Kews:

€1} YASK-FORCE-COMPONENT -OF

Palm Command;

s
Q

plan that might be derived through a generative
planning process. At this point, our software support
environment for building and composing SDMs (de-
scribed later) does not support generative planning,
thus this task must still be performed manually.

Finally, there is the composition integration prob-
lem. Here we can describe our solution strategy with
an example. Our starting point assumes that we have
a candidate SDM whose web of resource require-
ments is satisfied with an upward-compatible devel-
opment process infrastructure . Let us consider the
problem of how to model the (static) integration of
an OOD process into the DOD-STD-Process. Fig. 11
displays a model of the OOD process derived from
Booch [42}. In order to integrate this process model
into the DOD-STD-Process, the matching problem
boils down to determining if and where to incorpo-
rate the OOD process with the current design task
hierarchy.

Since neither the MIL-STD-2167A nor the DOD-
STD-Process preclude an OOD process, then we

Recall, the resource infrastructure refers to the software
systems, documents, tools, and organization of agents that are
required to perform a software development process.

ig. 13. The updated DOD-

STD-Process: task decomposition.

make our choice for where to include it so that the
resources required during the OOD process match
those provided by its predecessor tasks, and whether
the resources required by the successor tasks of
OOD match in an upward-compatible manner.

In this case, we incorporate OOD as the process
for Formulate-Design as part of the activity for
Preliminary-Design 0, Fig. 12 shows how the ob-
ject schemas for these design tasks are updated so
that they match the resources provided by the prede-
cessor task (e.g., the Software-Reqs-Spec outlined
in Fig. 10), and those required by the succeeding
preliminary design tasks. With this done, we show
the updated DOD-STD-Process model task hierarchy
in Fig. 13 which indicates that the model of Booch’s
OOD process has been successfully integrated as
Formulate-OOD-Design and hence composed into
the DOD-STD-Process. What now remains is updat-

' MIL-STD-2167A does not specify the process of how to

Formulate-Design. Thus, any development effort that seeks to
conform to this standard must create or acquire such a design
process model, then integrate it into the overall development
process.

P.Mi. W. Scacchi / Decision Support Systems 17 (1996) 313-330 329

ing the DOD-STD-SDF model so that the outputs
from Booch’s OOD process match or encompass
those required by Formulate-Design. Thus, we have
shown through this simple example that we can use
the URM to help us begin to better understand and
support the composition of software process models.

5. Conclusion

The URM appears to be a powerful modeling
formalism for investigating interactions and impacts
among different classes of commonly seen software
objects and process models. Our strategy focused on
the representation and relationships among software
systems, processes, products, tools, and agents that
conform to the generic and specialized resource
models that constitute the URM we have described.
Our experience is using the URM in the Articulator
meta-model demonstrates that we and others can
successfully integrate and interoperate independently
developed PSDSEs. We believe the formulation of
SDMs via composition and the process life cycle
may lead to the rapid integration and interoperation
of SDMs in different notations through shared wide-
area SDM repositories. However, this is an area for
further research attention.

Our experience also indicates that a dynamic
team-based endeavor is required in order to achieve
mature SDMs that can be used in industrial settings.
Further, our team effort most likely succeeds as a
result of rapid SDM prototyping, incremental devel-
opment, iterative refinement, and the reengineering
of ad hoc SDMs or instances.

Looking into the future, we anticipate the Articu-
lator meta-model and the URM can be used in other
application fields, based on their ability to represent
a wide range of resources and an intricate web of
relationships among them. In this regard, our re-
search is now extending into other areas, such as
modeling of other aspects of development organiza-
tions as well as other organizational processes (e.g.,
workflow automation, order fulfillment, new product
development, financial book closings) and their re-
source infrastructures [1]. Subsequently, our goal is
to demonstrate the definition, integration, enactment,
and composition of process-directed environments
and applications for these process models.

Acknowledgements

Preparation of this report was supported in part by
contracts and grants from AT&T Bell Laboratories,
Andersen Consulting, Hewlett-Packard, IBM Canada
Ltd., McKesson Water Products Co., Northrop-
Grumman B-2 Division, Office of Naval Research
(contract number N00014-94-1-0889), and Holosofx
Inc., as well as the USC Center for Operations
Management, Education and Research (COMER).
However, no endorsements are implied. We also
acknowledge contributions from Garry Brannum,
Prasanta Bose, Mike Debellis, Ming-June Lee, Frank
Luo, John Noll and Larry Votta.

References

[1] W. Scacchi and P. Mi. Modeling, Integrating, and Enacting
Complex Organizational Processes, International Journal In-
telligent Systems for Finance, Accounting, and Management
(1993). Previous version presented at the Sth International
Conference on Intelligent Systems for Finance, Accounting,
and Management, Stanford University (December 1993).

[2] P. Devanbu, R.J. Brachman et al., LaSSIE: A Knowledge-
based Software Information System, in: Proceedings of the
12th International Conference on Software Engineering, Nice,
France March 1990 (1990) 249--269.

(3] W. Emmerich, G. Junkerman et al., Merlin: Knowledge-based
Process Modeling, in: Proceedings of st European Work-
shop on Software Process Modelling (1991) 181-186.

[4] PK. Garg, T. Pham ct al., Matisse: A Knowledge-Based

Team Programming Environment, Technical Report HPL-92-

104, Hewleu-Packard Laboratories, International Journal

Software Engineering and Know. Engineering (1992).

K.E. Huff and V.R. Lesser, A Plan-Based Intelligent Assis-

tant That Supports the Process of Programming, ACM SIG-

SOFT Software Engineering Notes 13 (1988) 97-106.

[6] G.E. Kaiser, Rule-Based Modeling of the Software Develop-
ment Process, in: The 4th International Software Process
Workshop, New York, NY (1988) 84-86.

[7] P. Mi and W. Scacchi, A Knowledge-based Environment for

Modeling and Simulating Software Engineering Processes,

IEEE Trans. on Knowledge and Data Engineering 2, No. 3

(1990) 283-294,

M.Oivo and V.Basili. Representing Software Engineering

Models — The TAME Goal Oriented Approach, IEEE Trans.

Software Engineering 18, No. 10 (1992) 886-893.

B. Ramesh and V. Dhar. Representation and Maintenance of

Process Knowledge for Large Scale Systems Development,

in: Proceedings of 6th Knowledge-based Software Engineer-

ing Conference (1991) 223-231.

[10] W. Schafer, B. Pueschel and S. Wolf, A Knowledge-based

Software Development Environment Supporting Cooperative

[5

(8

—_
=

330 P. Mi, W. Scucchi / Decision Support Systems 17 (1996) 313-330

Work, [nternatinoal Journal Software Engineering and Know.
Engineering 2, No. 1 (1992) 79-106.

[11] M. Wood and 1. Sommerville, A Knowledge-based Software
Components Catalogue, in: P. Brereton, Ed., Software Engi-
neering Environments (Ellis Horwood Limited, 1988) 116-
133.

[12] P. Mi, M. Lee and W. Scacchi, A Knowledge-based Soft-
ware Process Library for Process-driven Software Develop-
ment, in: Proceedings of the 7th Knowledge-Based Software
Engineering Conference, McLean, VA (1992).

{13] A.M. Geoffrion, An Introduction to Structured Modeling,
Management Science 33, No. 5 (1987) 547-589.

[14] A. Geoffrion, The formal aspects of structured modeling,
Operations Management 37, No. 1 (1989) 30-52.

[15] A. Geoffion, The SML language for structured modeling:
levels 1 and 2. and 3 and 4, Operations Rescarch 40, No. |
(1992) 38-76.

[16] B. Czejdo and M. Taylor, Integration of Information Systems
using an Object-Oriented Approach, Computer Journai 35,
No. 5 (1992) 501-513.

[17] M. Lenard, An Object-Oriented Approach to Model Manage-
ment, Decision Support Systems 9, Nos. 3-4 (1993) 67-74.

[18] M. Jarke, M. Jeusfeld and T. Rose, A Software Process Data
Model for Knowledge Engineering in Information Systems,
Information Systems 15, No. 1 (1990) 86-115.

[19] V. Dhar and M. Jarke, On Modeling Processes, Decision
Support Systems 9, No. | (1993) 39-49.

[20} P.K. Garg, P. Mi, T. Pham, W. Scacchi and G. Thunquest,
The SMART Approach to Software Process Engineering, in:
Proceedings of the 16th International Conference Software
Engineering, IEEE Computer Society (1994) 341-350.

[21] F. Leymann and W. Altenhuber, Managing Buiness Pro-
cesses as an Information Resource, IBM Systems Journal 33,
No. 2 (1994) 326-348.

[22] M.Freeman and P.Layzell, A Meta-Model of Information
Systems to Support Reverse Engineering, Information and
Software Technology 36, No. 5 (1994) 283-294.

[23] B. Blum, Characterizing the Software Process, Information
and Decision Technologies 19, No. 4 (1994) 215-232.

[24] H. Bhargava and R. Krishnan, Computer Aided Model Con-
struction, Decision Support Systems 9, Nos. 3-4 (1993)
91-112.

{25] A. Sen, A. Vinze and T. Feng-Liou, Construction of a Model
Formulation Consultant: The AEROBA Experience, IEEE
Transactions on Systems, Man, and Cybemetics 22, No. 5
(1992) 1220-1232.

[26] D. Dolk and J. Kottemann, Model Integration and a Theory
of Models, Decision Support Systems 9, Nos. 3-4 (1993)
51-66.

[27] P. Mi and W. Scacchi, Process Integration in CASE Environ-
ments, IEEE Software 9, No. 2 (1992) 45-53.

{28] W. Scacchi, The Software Infrastructure for A Distributed
System Factory, Software Engineering Journal 6, No. S
(1991) 355-369.

[29] P. Mi and W. Scacchi, Modeling Articulation Work in
Software Engineering Processes, in: Proceedings of the Ist
International Conference on the Software Process (1991)
188-201.

[30] W. Scacchi and P. Mi, Experiences with Process Modeling,
Analysis, and Simulation of Formalized Process Models, in:
Position Paper at the 8th International Software Process
Work, Dagstuhl, Germany, 1EEE Computer Society (1993).

[31] L. Votta, Comparing One Formal to One Informal Process
Description, in: Position Paper at the 8th Internatinoal Sofi-
ware Process Work, Dagstuhl, Germany, IEEE Computer
Society (1993).

[32] W. Scacchi and P. Mi, Modeling, Integrating, and Enacting
Software Engineering Processes, in: Proceedings of the 3rd
Irvine Software Symposium, Irvine Research Unit in Soft-
ware, University of California at Irvine (1993).

[33] R. Balzer and K. Narayanaswamy, Mechanisms for Generic
Process Support, in: Proceedings of the [st ACM SIGSOFT
Symposium on Foundations Software Engineering, ACM,
Software Engineering Notes 18, No. 5 (1993) 9-20.

[34] R. Conradi, C. Ferstrom, A. Fuggetta and B. Snowden,
Towards a Reference Framework for Process Concepts, in:
Software Process Technology, Second European Workshop
on Software Process Technology (EWSPT '92) (Springer-
Verlag, Lecture Notes in Computer Science 635, September
1992) 3-17.

[35] S.C. Choi and W. Scacchi, SOFTMAN: An Environment for
Forward and Reverse CASE, Information and Software
Technology 33, No. 9 (1991).

[36] P. Mi, Modeling and Analyzing the Software Process and
Process Breakdowns, PhD Thesis (Computer Science Dept.,
University of Southern California, 1992).

[37] P. Mi and W. Scacchi, Articulation: An Integrated Approach
to Diagnosis, Re-planning, and Re-scheduling, in: Proceed-
ings of the 8th Knowledge-Based Software Engineering Con-
ference, Chicago, IL (1993) 77-85.

[38] US Department of Defense, Defense System Software Devel-
opment, Document DOD-STD-2167A, Technical Report, De-
partment of Defense (1988).

[39] S.C. Choi and W. Scacchi, Assuring the Correctness of
Configured Software Descriptions, ACM Software Engineer-
ing Notes 17, No. 7 (1989) 67-76.

[40] P.K. Garg and W. Scacchi, A Hypertext System to Manage
Software Life Cycle Documents, IEEE Software 7, No. 3
(1990) 90-99.

[41] J. Noll and W. Scacchi, Integrating Diverse Information
Repositories: A Distributed Hypertext Approach, Computer
24, No. 12 (1991) 38-45.

[42] G. Booch, Object Oriented Design with Application (The
Benjamin /Cummings Publishing Company, Inc., 1991).

[43] A.M. Zaremski and J.M. Wing, Signature Maiching: A Key
to Reusem, in: Proceedings of the Ist ACM SIGSOFT
Symposium on Foundations Software Engineering, ACM,
Software Engineering Notes 18, No. 5 (1993) 182-190.

