AVSOFTWARE ENGINEERIVG |

arge-scale software systems are developed, used,
and maintained by teams of people cooperating
over long periods of time — a cooperative
phenomenon often called the *‘software life cycle.”
A typical software life cycle is error prone, expensive, and
unpredictable. Other researchers have discussed these prob-
lems at length elsewhere, as in Frederick Brooks’ insightful
article on ‘‘Essence and Accidents of Software Engineer-
ing.”’! We agree with Brooks that no simple method exists
for overcoming the many problems of software engineering.

52 0885-9000/89/0800-0052 $1.00 © 1989 IEEE

IsHys

Designing an Intelligent
| Software Hypertext System

Pankaj K. Garg and Walt Scacchi

University of Southern California

However, we believe that careful research into factors influ-
encing the software life cycle will help solve these problems.

The web of computing. We seek to gather, into a unified
framework, knowledge regarding the effects of various cir-
cumstances influencing the software life cycle. In turn, this
unified framework will provide an experimental basis for
exploring solutions to some hard problems in software
engineering. To describe this framework, Kling and Scacchi
have coined the term ‘‘web of computing.’’? The following

IEEE EXPERT

three interrelated aspects of the software life cycle provide a
basis for this web:

(1) Tangible products produced and used throughout
the software life cycle;

(2) Settings in which software systems are developed,
used, and maintained; and

(3) Processes carried out during the softwarelife cycle.

As Figure 1 depicts. these aspects in the web of computing
are mutually influential and co-evolutionary. For example,
the fact that an office information system was developed in
a particular manner influences work patterns of office
workers using that system. Conversely. user work patterns
influence the system’s ongoing development and evolu-
tion.>* We know of one such case in which office workers
assumed that a flaw in an enrollment system’s design was
one of the system’s many accounting rules.

Similarly, the expertise of individuals developing a sys-
tem may relate directly to the number of bugs discovered
later in the system. In practice. many such situations arise in
the software life cycle. Unfortunately, no unified theoretical
framework exists that would help to predict such phenomena
and to understand exact relationships between products,
processes, and settings of the software life cycle.

Ultimately, we want to build a knowledge-based project
support system that (1) embodies relationships between
products. settings, and processes of the software life cycle,
and (2) provides assistance to its users based on the system’s
understanding of these relationships. Building upon our
previous work in software hypertext systems,* this article
describes the architecture of Ishys — an intelligent software
hypertext system — and considers a limited number of the
web of computing’s different attributes and aspects.

Developing and using software hypertext systems.
Hypertext, an information storage structure. can be viewed
as a graph with nodes containing information units and
edges (links) that explicate relationships between infor-
mation units. Different nodes can contain ditferent types of
information, including source codes of programs, natural
language text, figures, and graphs.

Chief hypertext characteristics are the availability of

¢ Hierarchical and nonhierarchical linked nodes;

¢ Typed links (defined relations) between nodes;

¢ User-defined attribute/value pairs for nodes or links;

e Paths of linked nodes that can be treated as persis-
tent objects;

o Nodes with more than one version;

¢ Procedures attached to nodes and links that are ac-
tivated when a node or link is visited;

¢ Editing abilities for the nodes’ information content;

FALL 1989

Software life
cycle processes

Settings of development
use, and maintenance

Software life cycle
tangible products

Figure 1. Aspects of the web of computing.

e Support for concurrent users;
® Graphics in nodes; and
¢ Graphical browsing of linked node networks.

Software hypertext is hypertext in which nodes contain
and organize information pertaining to the development,
use. and maintenance of a software system. Systems
supporting the management of software hypertext. in
conjunction with various software engineering tools. can
provide an integrated software engineering environment.
The advantage of this combination (a hypertext system plus
software engineering tools) is that one can exploit the
facilities of tools for automated information processing
while using hypertext system facilities for storing and re-
trieving information. We have designed and implemented
such a hypertext-based software engineering environment
called DIF.* the documents integration facility at USC’s
System Factory — an eight-year-old project that conducts
experiments in researching, developing, using. and
maintaining large-scale software systems.*

DIF supports not only the hypertext capabilities men-
tioned above, but also provides

e Consistency and completeness checking for formal-
ized software document nodes;

e Intra- and interdocument traceability;

e Template-based document standards;

¢ Multiversion documents with or without shareable
annotations;

e On-line software document inspections and walk-
throughs; and

¢ Implicit software process modeling.

Intelligent software hypertext systems. DIF, a practical
but passive system, contains little explicit knowledge about
its surrounding environment. We will describe the design of
Ishys, an extension to DIF that incorporates and manipulates
this kind of knowledge. Ishys, coupling DIF with knowledge
of its surrounding web of computing, not only subsumes
DIF’s capabilities but does so in ways that make Ishys
an active agent supporting the roles of other agents and
participating in the software life cycle. Ishys’ intelligent
behavior springs from its ability to (1) automatically derive
relationships between hypertext nodes, (2) automatically
determine attributes of hypertext nodes, and (3) coordinate
and schedule agent tasks in the software life cycle.

Tools
Knowledge

Knowledge manipulation system
(KMS)

Unix tools
(make, spell,

mail, LaTeX)

System Factory tools
(Gist analyzer,
NuMIL processor,
System visualizer)

Software hypertext system
(DIF)

Figure 2. The Ishys architecture.

The Ishys architecture

We designed Ishys as a distributed knowledge-based
system (see Figure 2). It has four chief components:

(1) A knowledge manipulation system with access to
different pockets of knowledge for each agent about
which Ishys knows;

(2) A software hypertext system that maintains
tangible products of the software life cycle;

(3) Software engineering tools used to engineer and
manage information contained in the software hypertext;
and

(4) An interaction control system that interacts with
users and controls user access to the knowledge mainte-
nance system, the software hypertext system, and soft-
ware engineering tools.

In typical Ishys scenarios, users enter Ishys and declare
themselves to be agents playing particular roles about which
Ishys knows. Ishys invokes appropriate knowledge bases
that must become active as a result. The knowledge mainte-
nance system then advises the interaction control system
what is expected of (and how to help) the current user.

54

Interaction control system
(ICS)

Based on the user’s actions. Ishys can appropriately
modify different pockets of knowledge. Actions that users
perform through Ishys operate on software hypertext nodes
and links. This can require the invocation of one of the
software tools intertaced with Ishys.,

The Ishys knowledge base

Ishys® knowledge base follows directly from our web-of-
computing model. We will initially consider selected attrib-
utes of this web to limit our effort while still providing
desirable capabilities. These attributes have proven
particularly salient in recent empirical studies of software
development projects.'® Figure 3 shows relationships be-
tween the web of computing s three aspects and how they are
modeled in Ishys (as listed below):

(1) Products are modeled in Ishys as a software hy-
pertext, a network of semistructured software object de-
scriptions. Using the knowledge maintenance system. Ishys
intelligently maintains nodal attributes and relationships.

(2) The setting of development, use, and maintenance
is captured primarily by representing a taxonomy of the
various roles that participating agents in the software life

IEEE EXPERT

Metatasks
Product tasks
Actions
Primitive actions

Software life
cycle processes

Settings of
development,
use,
and maintenance

Agents, tools

i

Figure 3. The Ishys knowledge base.

cycle play, and knowledge about the various software tools
available in the setting. The taxonomy of roles helps us
develop an understanding of the skill requirements of differ-
ent agents in the software life cycle. Agents playing different
roles perform specific tasks on different types of software
objects. Each agent has a set of characteristics maintained in
the knowledge base for the agent. Knowledge about the
various software tools available in the setting enables Ishys
to -uggest appropriate tools for specific tasks, make sure that
application preconditions have been satisfied, suggest op-
tions for using a tool in a specific instance, and associate
certain tools with specific agent roles.

(3) Ishys models the process of producing software
(the software life cycle) as a set of relationships between
tasks of various agents in the system. We consider two kinds
of tasks — metatasks and product tasks. Metatasks construct
product tasks and relationships between product tasks. Prod-
uct tasks modify the information content of at least one node
in software hypertext. Either kind of task may require
searching or navigating through software hypertext. Tasks
are composed of actions that, in turn, are composed of
primitive actions. Actions denote processing steps performed
by an agent (with or without an appropriate tool) to produce
or modify software product information. Primitive actions
are Ishys commands invoked by agents to perform each step
of an action. With this three-level approach, software pro-
cess knowledge (the structure of software engineering tasks)
is conveniently mapped into a set of system commands.

FALL 1989

Software life cycle
tangible products

Let’s examine in further detail how individual cQmpe:
nents of Ishys’ knowledge base are constructed. We' will
subsequently describe some novel applications that poten-
tially can be supported through Ishys.

Tangible products. The software life cycle’s tangible
products are descriptions of the target software system from
different perspectives. The requirements document describes
the system from a user’s perspective. The functional speci-
fications document describes the system from a behavioral
perspective. The architectural design document describes
the system from a structural perspective. The detailed com-
ponent design document describes the system from an algo-
rithmic perspective. The source code document describes
the system from a computational perspective. The testing
document describes the system from a validation perspec-
tive. The user’s manual describes the system from a devel-
oper’s perspective. And the maintainer’s manual describes
the system from an evolutionary perspective. By compara-
tively analyzing these perspectives, users can acquire a
deeper understanding of what a software system does,
how it does it, and why.

Two issues are involved in representing the information
of these perspectives: (1) specification of the structure
of descriptions must be maintained, and (2) diverse types
of information must be maintained. DIF, our software
hypertext system, deals effectively with these two issues
through concepts of Forms and Basic Templates (BTs).

55

Forms

Basic templates Basic template instances

Requirements)

1.0 Overview and summary j

Functional specifications

2.0 Informal specifications |

Architectural design)

2.1 Narrative specifications

2.2 1 Object hierarchy]

Detailed design j

2.2 Functional diags.

2.2 2 Flow of control I

Implementation)

2.2.1Type lattice |

Source code)

1 2.2.2 Functional network diags.

festing)

Lz.z.s State transistor diags. |

User's manual j

La.o Formal specifications [

Maintainer's manual)

1 3.1 Gist processor results]

Figure 4. Hypertext of software documents in DIF.

BTs are hypertext nodes containing semistructured infor-
mation. The extent of a node’s “*structuredness’’ is indicated
by its type and attribute values (its syntax and semantics).
Forms are tree-structured organizations of BTs. Figure 4
shows the Form and BTs that were used for System Factory
functional-specification descriptions. Forms provide a way
of specifying what needs to be documented in the software
life cycle, while BT's contain parts of documents. Attributes
attached to BT's provide associative retrieval of information.
Links attached to BTs provide a means of browsing through
software hypertext. Our references detail issues involved in
maintaining software life cycle documents in a hypertext.*

Settings of development, use, and maintenance. One
part of a software system'’s setting of development, use, and
maintenance is captured through the notion of agents that
Ishys supports. A second part of the software life cycle’s
setting is captured by representing information regarding the
software tools accessible in the setting. Accordingly, when
performing tasks, agents employ automated tools to create
or modify software objects and relations.

Agent roles. Agents are people or intelligent systems that
play well-defined roles. An individual in the software pro-
cess can play the role of more than one agent. For example,
a person who has designed, implemented, and used a per-
sonal database management system is at different times a
designer, implementer, manager, and user. The following
describes four categories of roles, as used in the KBSA
(knowledge-based software assistant) project:*

56

(1) Users — Agents who will use the target software
system (end users) and additional agents who want the
system developed (clients).

(2) Managers— Agents responsible for software project
management. We will consider two managerial agent
roles: agents who coordinate the activities of other agents in
the process (the process manager, or PM) and agents who
analyze and evaluate the status of the process (the quality
assurance manager, or QAM).

(3) Developers— Agents who develop the system. Their
tasks involve design and innovation, in which they transform
user requirements into a working target system. Developer
agents play roles including Analyst, Specifier, Designer,
Implementer, Tester, Integrator, and Technical Writer.

(4) Maintainers— Software systems are often modified
to handle changes in the requirements or discovery of system
development errors. Maintainers make such modifications,
but may not have participated as initial system developers.

The preceding taxonomy, reflected in Figure 5, helps us
conceptualize task skills of agents in the software process.
Each role provides the basis for at least one major task in a
typical software life cycle, but does not preclude the exis-
tence of interactions between agents (necessary when agents
have intertwined tasks).

However, this does not mean that every instance of a
software life cycle must contain each type of role and
corresponding task. It means that, if a task of a particular
nature is to be accomplished, it must be performed by an
agent skilled at performing the roles required by that task.

IEEE EXPERT

Agents

Figure 5. A taxonomy of agent roles.

Tools. Tools are objects that manipulate hypertext BTs by
changing BT attributes. For example, entering information
in a BT with the use of an editing tool changes the Edited
attribute from No to Yes. Similarly, compiling a BT contain-
ing source code changes the Compiled attribute from No to
Yes. The pre- and postconditions of tool operations are
attribute value relationships for different BTs. One BT
attribute — the type of BT — is especially useful in limiting
the choices of applicable tools; it doesn’t make sense to
invoke the C compiler on a BT containing information
that is of the ‘‘natural language text’’ type.

Software-life-cycle processes. Ishys models the soft-
ware life cycle, using the following concepts:

e Metatasks — Tasks defining the nature, configuration,
and possible orderings of product tasks;

¢ Product tasks — Tasks modifying the informational
content of at least one node in the software hypertext;

e Actions — Actions needing to be performed to fulfill
task commitments; and

¢ Primitive actions — Actions denoting commands per-
formed with Ishys by agents.

Figure 6 depicts the relationship of agent concepts, their
tasks, and software hypertext. The following sections

elaborate this categorization.

Metatasks. An agent assuming the role of ‘‘manager”
performs all metatasks. We have identified the following

FALL 1989

Users Managers Developers Maintainers
Clients End users
Process Quality
manager assurance
manager
Analysts Specifiers Designers Implementer Integrator Technical writer Tester

metatask types (indicating in parentheses the responsible
agent category):®

¢ Planning(PM) — Detailing the tasks that need to be
performed in the software process;

¢ Organizing(PM) — Allocating resources to agents;

o Staffing(PM) — Assigning agents to tasks;

User, Developer,
Maintainer

Product task

Manager

Operates on

Structure
of Is
hypertext composed
of

Y

Is composed of

\
Primitive actions

(Commands)

Figure 6. Software life cycle products, agents,
and tasks.

57

¢ Directing(PM) — Helping agents in terms of what
decisions to make in situations involving uncertain or
incomplete information;

¢ Coordinating(PM) — Getting groups of people to
work collaboratively;

¢ Scheduling(PM)—Assigning time constraints to tasks;

¢ Validating(QAM) — Confirming that the running
system meets user requirements; and

¢ Verifying(QAM) — Confirming the consistency,
completeness, and integrity of evolving software product
descriptions.

When creating Ishys, we intended to transfer the burden
of some of these tasks from people to the system. Hence,
Ishys can play the role of a PM by coordinating the tasks of
various other agents, based on its knowledge of the tasks they
are performing. It can also help human PMs by keeping
current information about available project resources, the
allocation of resources and tasks to agents, and relationships
between varjous agents and their tasks.

Product tasks. Agents assuming the role of either a
Developer, a Maintainer, or a User carry out product-related
tasks. Users pose requirements for the system and use the
developed system. Maintainers change the system based on
emerging requirements of Users. Developers build the sys-
tem, using requirements posed by Users and guidelines
suggested by PMs. Several task types can be performed in
this regard, as follows:

User tasks

e — Requirements definition (Client): Define the ap-
plication domain of the target software system and describe
how the system fits in the domain.

e — System use (End user): Use the system to support
some functionality of the end user.

. System bug discoveries and reporting (End user):
Use the system, encounter anomalous functionalities, and
report errors in the form of bug reports.

e — Requesting system enhancements (End user):
Realize functionalities that could be added to the running
system, and send each enhancement requirement to the
appropriate agent.

Developer tasks

s — Requirements analysis (Analyst): Verify that user
requirements are complete, consistent, and valid.

o — Functional specifications (Specifier): Describe
the behavior of the target software system’s computational
objects.

58

e — Architectural configuration design (Designer):
Describe the system’s structure.

e — Detailed component design (Designer): Describe
the data structures and algorithms to be processed by
individual system modules.

¢ — Implementation (Implementer): Write the source
code for system modules in some programming language.

e — System integration (Integrator): Package system
modules as a whole, possibly combining the result with
other systems.

e — Testing (Tester): Test the system and its modules
against various test case runs.

e — Usage description (Technical writer): Write the
system’s user manual.

e — System delivery (Integrator): Deliver the system
to customer sites.

¢ — Maintenance description (Implementer): Write
the system’s maintenance manual.

Maintainer tasks

e — Fixing bugs in the system: Analyze bug reports
and fix the system and its documents to remove bugs.

e — Creating system revisions: Maintain the source
code and associated system documents in some revision
management system.

e — Enhancing the system: Add functionalities to the
system for which the system may not originally have been
designed and built.

e — Creating new versions of the system: Combine
various system changes into a new version of the system.

The taxonomy of task types defined for metatasks and
product tasks is not meant to be unique or exhaustive.
Instead, we support a redefinable taxonomy, thereby associ-
ating task configurations with whatever life cycle production
model that agents may follow. Several interesting relation-
ships emerge from such a breakup of tasks.

For example, we can organize a software-product-task
sequence to follow the conventional *‘waterfall life cycle™
(see Figure 7) or the automation-based paradigm (see Figure
8) suggested by Balzer et al.* The differences would
depend on task definitions, task (action) sequences, and
task (action) relationships.

Boxes in Figures 7 and 8 represent tasks, ellipses repre-
sent products, and agents are associated with their appropri-
ate tasks. Arrows from agents to tasks represent the relation-
ship ‘‘is-responsible-for’’; arrows from products to tasks
represent the relationship ‘‘uses’’; arrows from tasks to
products represent the relationship *‘results-in.”’

Relationships between tasks (must-precede and must-
follow, for example) can be used with a PERT chart to
configure tasks in a timing-constraint network. Other

IEEE EXPERT

Bug reports

Pose
requirements

New revisions

Modify system

Analyze
requirements

System
requirements

Development
functional |
specifications |

Functional
specifications

Develop
architectural
design

Delivered
system

“Enhancement
requests

Source code

Structural

uctur Implement
specﬂlcahons

system

Figure 7. The waterfall life cycle model viewed from product, agent, and task perspectives.

relationships indicate dependencies between tasks. Tasks
can be strongly dependent on other tasks, in which case the
former task must follow the latter. When tasks are weakly
dependent on other tasks, it is preferable (but not necessary)
to do the former after the latter is finished. Also, interdepend-
ent tasks can require communication or interaction between
agents responsible for those tasks.

Resuits of product tasks are software hypertext nodes.
Relationships between hypertext nodes have interesting
influences on tasks responsible for creating those relation-
ships and nodes. For example, the relationship ‘‘compiled-
into’’ might exist between a source code node and its
corresponding object code. Therefore, the task of creating
the object code translates into compiling the source code
node instead of editing the object code node. The system can
utilize the semistructured nature of software hypertext nodes
to guide users in creating nodes.

For example, the requirements document can be broken
down into nodes describing capabilities that the system must
satisfy. Capabilities can be described from a dataflow per-
spective as a set of input data objects, a set of output data
objects, and the name of the transforming capability. To
enter system requirements, therefore, the system can give
users a Form containing the three appropriate nodes. In
addition, based on this knowledge, the system performs
consistency checks across various capabilities. For instance,
the input set of a capability cannot contain a data object
unless it’s in the output set of some capability (assuming that
the user of the target system is also considered to be a
capability in the total dataflow diagram). Naturally, the level
of guidance and support users receive depends on the extent

FALL 1989

Requirements
definition

Informal
\ specifications

Specification
validation

Optimization

“Forma
development
history

Interactive
translation

Decisions an
rationales

Low-level

specifications Compilation

Figure 8. The automation-based life cycle model
viewed from product, agent, and task perspectives
(adapted from Baizer, Cheatham, and Green?®.

59

Understand user s
requirements

Access library
of specifications

Understand tunctional
specifications

Develop informal
specifications

Develop
specifications

documen
P R T et

Develop formal
specifications

T RET TR

« = Weak dependency
- == Strong dependency

igure ctions BVelop functiona

specifications” task.

Discuss
(Requirements,
User. PM. specifiert)

Annotate
{Reguirement)

Explain-Request
(Requirement. User)

Print-Annotations
(Requirement)

Fig 10. A flow chart of primitive actions for
the “Understand user’s requirement” action.

to which node contents can be described with a computable
grammar; for programming languages, various supporting
features (including syntax-directed editing, compiling, de-
bugging, and linking) can be provided. In the case of user
manuals, on the other hand, facilities for navigation, search,
and completeness (structure) checking can be provided.

Actions. Actions are obtained from task definitions by
detailing steps that the agent must complete to effectively
carry out the task. As an example, consider the Develop-
functional-specifications task— in which an agent plays the
role of a Specifier — and which can be broken down into
several different actions:

¢ Understand the user’s requirement;
¢ Understand the system’s functional specifications;

¢ Develop the system’s informal specifications;

o Access the library of exemplar specifications;
e Develop the system’s formal specifications; and
e Develop a specifications document.

Specifier agents can carry out each action. Figure 9 shows
dependencies between actions. We can relate these actions
to the BTs defined for the Functional Specifications Form
(Figure 4) as follows:

e ‘“‘Understand user’s requirements’’ leads to the in-
formal narrative specification BT 2.0;

¢ “Understand functional specifications’’ and ‘‘De-
velop informal specifications’’ of the system lead to the
narrative specification BT 2.1;

e ““Access library of (exemplar) specifications’® and
“‘Develop formal specifications’’ of the system lead to
BTs 2.2 through 3.0; and

¢ ‘“‘Develop specifications document”’ for the system
leads to the Functional Specifications Form, with all its
BTs integrated.

Therefore, DIF BTs and Forms are eminently suitable
for capturing and integrating the results of multiple actions
and tasks. DIF deals only with action and task results,
however, and not with how-actions and tasks are performed.
Hence, DIF supports actions and tasks at a coarse granularity
level, ignoring detailed actions that ultimately make up
tasks. In contrast, we focus our attention in Ishys on (1)
developing nonprocedural and nondeterministic task
definitions in terms of micro-actions composing them, and
(2) representing these micro-actions as finely as necessary
for automated support. To see how this could be achieved,
consider the ‘‘Understand user’s requirements’’ action, which
is part of the ‘‘Develop functional specifications’’ task.
It can be broken into finer-grained actions as follows:

¢ View the requirements document;

e Create notes regarding the key points of require-
ments;

¢ Clarify unclear points by communicating with the
user;

¢ Discuss (with fellow developers, PMs, or users)
points that remain unclear; and

¢ Organize notes about the understanding.

Primitive actions. Consider hypertext to consist of objects
and relationships between objects. Objects are nodes in the
hypertext graph, and relationships are edges (in DIF, BTs
and links between BTs). From the preceding example, we
can identify the following types of primitive action:

¢ View(Requirement) — ‘‘Look at’’ an information
object containing a user’s requirement;

U-M-1

60

The paper and ink used in the original material affect the quality of the

IEEE EXPERT

scanned image. This reproduction is made from the best copy available.

¢ Annotate(Requirement) — Attach notes of ‘‘under-
standing’’ to an object X;

¢ Explain-Request(Requirement, U) — Request an
explanation of a requirement from a user agent (U);

. Discuss(Requirement,{Al, A, ...A})— Discuss a
requirement with other agents of the process; and

¢ Print-Annotations(Requirements) — Organize and
print annotations attached to requirements.

As Figure 10 shows, the ‘‘Understand user’s require-
ments’’ action can be understood in terms of these primitive
actions. Consider Figure 10’s diagram as a nondeterministic
flow chart. The double-lined arrows show the ‘elaboration’’
relation, which means that the action ordering at the arrow’s
head can be considered as the elaboration of the action at the
arrow’s tail.

Primitive actions developed in this manner can be gener-
alized by replacing Requirement with an arbitrary object X.
For example, we can have an action Understand(X) —
composed of View(X), Discuss(X, o), Explain-Request(X,[3),
Annotate(X), and Print-Annotations(X)—where o is a set of
agents, and P is the agent responsible for the creation of X.
Using primitive actions, we can readily enhance our DIF
approach of combining hypertext and software-engineering-
environment features to support various needed capabilities
(which we will describe).

Ishys applications

As we have shown, Ishys supports hypertext-based soft-
ware engineering environment capabilities. In addition, Ishys
can help to (1) establish the context of hypertext nodes, (2)
accommodate social interactions as work interactions, (3)
provide the automatic selection of options for software tools,
(4) provide a set of semantically rich commands, (5) support
task coordination and different forms of interaction, and (6)
provide a basis for experimenting with different factors
influencing and influenced by the software life cycle.

Establishing context. The breakup of tasks into
actions, and of actions into primitive actions, results in
the establishment of the hypertext context. For example,
the ‘‘Understand user’s requirements’’ action establishes
the context in which one of the five primitive actions
can be taking place. Therefore, Ishys can automatically
prune objects and relationships not pertinent to one of these
actions. Since the ‘‘Understand user’s requirements’’ action
is carried out over time, this can reduce the information
overload on agents, as agents need not worry about objects
and relationships irrelevant te their immediate action.

FALL 1989

‘

In current practice, context establishment is done manu-
ally by hypertext users and can lead to much semantic
complexity — including getting lost in information space. A
context emerging from the task-product-agent perspective
minimizes this complexity.

Social interactions and work interactions. One soft-
ware-life-cycle feature is that the author of information is
usually the best source for clarifying concepts about that
information. Often, locating the right source becomes a
nontrivial task. Ishys can support this endeavor by maintain-
ing a complete history of who did what. Moreover, Ishys has
the potential to accommodate social interactions as work
interactions. For example, suppose agent Al communicates
(using the mail system embedded in Ishys) with agent A2.
Also, suppose that A1 and A2 need not interact to accomplish
their tasks. This means that Ishys can determine that A1 and
A2 know each other. The degree of their association is
indicated (to a certain extent) by the number of messages
exchanged between them over time. Consequently, Ishys
knows that, if either A1 or A2 is being sought, the other might
be able to help.

Tool options. Most tools allow the input of ‘ ‘switches’’ to
tune tool behavior for the application at hand. Consequently,
while compiling aC program on Unix, users can give a *‘g”’
option informing the compiler that it should generate symbol
table information to be used by the symbolic debugger. We
can consider such switches as a means for informing tools
about some aspect of the environment in which information
processing is taking place. In the above case, users are
informing the compiler that the code being compiled is an
experimental one and is currently being debugged — infor-
mation required not only for purposes of the switch, but also
useful elsewhere (in project status reports, for instance).

Ishys can store this information generically, and then
‘‘automatically’” generate appropriate switches for the
compiler. As another example, consider the ‘‘c’’ option of
the Unix system’s C compiler, which informs the compiler
that the code in the file is part of a bigger system and that the
compiler should not use a loader to load the file— informa-
tion required at another level (namely, the architectural
configuration of the system). Hence, the information need be
given to Ishys just once, and can be used at multiple places.

Semantically rich commands. Our analysis leads natu-
rally to definitions of primitive actions that can be converted
into semantically rich commands. We can provide com-
mands such as Discuss(X,o), which informs Ishys to start a
discussion about object X with the set of agents o.

Coordination tools (as suggested by Winograd®) can then
be integrated with the hypertext system to ‘‘intelligently’”
support discussions between agents. Similarly, a command
to Print-Annotations(X) can instruct the hypertext system to

61

L

organize and print annotations attached to an object. Appro-
priate models of node composition can encode what kind
of organization is required."

Task coordination. Dividing tasks into the actions that
constitute them informs Ishys about agents and what tasks
they are expected to perform. This enables Ishys to perform
task coordination, by which it can trigger demons when
actions that were supposed to be done are not done, or
when performing an action requires that an agent respond.
For example, if agent Al performs the action Explain-
Request(Requirement, Ul), agent Ul is expected to
respond with either an explanation, denial, or alternative
suggestion.” If Ul does not respond within a certain time, a
demon can be fired that tells Al to abandon the request,
complain to a manager, or ask someone else. A set of such
communication acts arises during a software process, and
each set needs automated support for its coordination.”!!

Ishys as an experimental tool. In Ishys, we explicitly
represent relationships between different factors of the web
of computing. Accordingly, Ishys can serve as a tool for
experimenting with relationships between web factors. Ishys
provides a means for prescribing relationships between
agent actions and for recording the action sequence that took
place in a specific setting, thereby providing important
feedback and increasing our understanding of how work
gets done in the software life cycle.’

e have described the design of Ishys, an

intelligent software hypertext system,

and discussed novel applications that

such a system can potentially support. In
designing Ishys, we sought to support the software life cycle
from a “*web of computing”’ framework — a framework that
necessarily requires the consideration of sociotechnical
factors influencing and influenced by the software life cycle.
Careful analysis of web factors will lead to better designed
and more useful software systems.>¢7¢ Ishys supports
functionalities that include influencing work interactions
based on social interactions, and determining tools and their
options based on project status information. Implementation
of required enhancements to DIF, our current software
hypertext system, has been completed using Prolog, C,
and X Windows.

We are continuing to build and experiment with a system
that will enable the easy modification of automation rules.
This is necessary because— as our experience grows in
the use of Ishys and in our empirical understanding of
relationships between web factors — we expect Ishys’
knowledge base to grow and evolve.

62

Acknowledgments

Our research was funded in part by the Hughes Aircraft
Company’s Radar Systems Group (El Segundo, California)
under contract number KNR-576195-SEK. Additional sup-
port was provided by AT&T, Bell Communications Re-
search, and Eastman Kodak. Pankaj K. Garg was also sup-
ported in part by USC’s graduate school through the all-
university predoctoral merit fellowship.

Salah Bendifallah’s comments on the design of Ishys and
on an earlier version of this article (presented at the ACM
Hypertext ‘87 Workshop in Chapel Hill, North Carolina)
have been very helpful.

References

1. F.P. Brooks. Jr.. “*Essence and Accidents of Software
Engineering,”” Computer, Apr. 1987, pp. 10-19.

2. R. Kling and W. Scacchi, **The Web of Computing: Comput-
ing Technology as Social Organization,”’ in Advances in
Computers, Vol. 21, M. Yovits, ed., Academic Press, Troy,
Mo., 1982, pp. 3-90.

3. T. Winograd and F. Flores, Understanding Computers and
Cognition: A New Foundation for Design, Ablex Publishing,
Norwood. N.J., 1987.

4. P.K. Garg and W. Scacchi, "*A Hypertext System to Manage
Software Life Cycle Documents,”” scheduled to appear in
IEEE Software, Jan. 1990.

5. W. Scacchi, **The USC System Factory Project,”” ACM Soft-
ware Engineering Notes, Jan. 1989.

6. W. Scacchi, ‘‘Managing Software Engineering Projects: A
Social Analysis,”” IEEE Trans. Software Engineering, Jan.
1984, pp. 49-59.

7. S. Bendifallah and W. Scacchi, ‘‘Understanding Software
Maintenance Work: An Empirical Analysis,”” /[EEE Trans.
Software Engineering, Mar. 1987, pp. 311-323.

8. R. Balzer, T.E. Cheatham, and C. Green, ‘‘Software
Technology in the 1990’s: Using a New Paradigm,”
Computer, Nov. 1983, pp. 39-45.

9. T. Winograd, ‘A Language/Action Perspective on the Design
of Cooperative Work,’” Proc. Computer-Supported Coopera-
tive Work Conf., ACM, New York, N.Y., 1986.

10. P.K. Garg and W. Scacchi, *“The Composition of Hypertext
Nodes,”* Proc. 12th ONLINE Int’l Conf., ONLINE Press,
London, UK, Dec. 1988, pp. 63-70.

11. B.I. Kedzierski, Knowledge-Based Communication and
Management Support in a System Development Environ-
ment, doctoral dissertation, University of Southwestern
Louisiana, Lafayette, La., Nov. 1983 (also available as Tech.
Report KES.U.83.3, Kestrel Institute, Palo Alto, Calif.).

IEEE EXPERT

Pankaj Garg received his PhD in computer science in 1989 from
the University of Southern California in Los Angeles, and is
presently a research staff member at Hewlett-Packard Laboratories
in Palo Alto. His research interests are in Al hypertext systems, and
software engineering. An all-university predoctoral merit fellow of
USC’s graduate school from 1984 through 1987, he received his
Bachelor of Technology degree in computer science from the
Indian Institute of Technology in Kanpur, India. He is a member
of the IEEE Computer Society.

The authors can be reached in care of Walt Scacchi, Computer
Science Dept., USC, Los Angeles, CA 90089-0782.

Walt Scacchi received his BA in mathematics and his BS in
computer science from California State University/Fullerton in
1974, and his PhD in information and computer science from the
University of California/Irvine in 1981. Since then, he has been a
computer science faculty member at USC. In 1981, he created and
has since directed USC’s System Factory Project — the only
software factory research project in a US university. His research
interests include very large scale software engineering, knowl-
edge-based systems supporting the software process, and
organizational analysis of system development projects.

An active researcher for more than 50 research publications —
and a consulting and visiting scientist with organizations including
AT&T Bell Laboratories, MCC, and Camnegie Mellon University’s
Software Engineering Institute — he is a member of the IEEE
Computer Society, IEEE, ACM, AAAL and the Society for the
History of Technology.

Unleash the Power of Quintus Prolog
on Your Next Development.

,/ R’

Quintus Prolog creates a rich interactive envi-
ronment designed to minimize development time
and maximize programmer productivity. A robust
Prolog engine assures high performance, while
efficient runtime environments enable convenient
and economical distribution of your application. .

Easy to learn and use, Quintus Prolog has
proven its superiority in over 3500 systems in
diverse applications — rapid prototyping, sophisti-
cated modeling, telecommunications system
analysis, natural language processing, CAD/CAE
and more. The Quintus Prolog Integrated
Environment provides graphics, rule-based capa-
bilities, database facilities, and easy integration
with existing programs and databases, and is
supported on popular workstations including Sun,
DEC, Apollo, Sequent and 386 PCs.

For more information contact us at:

Quintus

Quintus Computer Systems, Inc.
1310 Villa Street, Mountain View, CA 94041

\// Phone: 415-965-7700, Fax: 415-965-0551

Reader Service Number 4

