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Abstract

Hypertext is a simple concept for or-
ganizing information into a graph structure
of linked container objects. This paper ex-
amines issues involved in applying hyper-
text concepts to the integration of hetero-
geneous, autonomous software repositories,
and presents a solution called the Distributed
Hypertext System (DHT). Based on a hy-
pertext data model and client-server archi-
tecture, DHT features powerful modeling ca-
pabilities, integration of heterogeneous, pre-
existing repositories, update with concur-
rency control, and full local autonomy.

1 Introduction

Considerable research has been de-
voted to software object management. Ta-
ble 1 summarizes some of the results. For
the most part, these efforts assume that the
objects in the repository are stored in a
central database or storage manager, which
may be accessed by distributed clients. In
reality, however, software artifacts may be
stored in many diverse locations under in-
dependent control. This may happen due
to multi-contractor development projects,
corporate mergers, cooperative relationships
among otherwise autonomous organizations,

*Appears in Proc. 3rd. Irvine Software Sympo-
sium, ACM SIGSOFT and UC Irvine, Irvine, CA,
49-60, April 1994.

or introduction of new repository technology
into existing environments. It may also hap-
pen when seeking to support the distributed
development of software systems and related
documents over the Internet.

Consider the following two examples.
Multiplatform project. A software de-
velopment group is developing a database
application to run in a client-server environ-
ment. The database server runs on a Unix
host; the clients will run on PCs with PC
operating systems.

Developers of the database software
will use the traditional Unix programming
tools (cc, make, RCS) to develop and test
their code. PC programmers will use na-
tive integrated development environments.
In addition, there will be a shared network
file system so all platforms can share files.

The group desires tools for doing anal-
ysis on the project artifacts taken as a whole,
to do requirements traceability, impact of
change analysis, and metric collection.

Despite the logical centralization af-
forded by a shared filesystem, there is still
considerable heterogeneity present. Fach
programming environment has its own mech-
anisms for storing dependency relationships,
function cross references (“tags”), and ver-
sions. Thus, the global analysis tools will



‘ System ‘ Concurrency ‘ Collections ‘ Granularity ‘ Query ‘ Versioning ‘
SoftBench[7] optimistic directories® file no tool-level®
AtFS[19] locks® directories file attr.? | yes
NSE[1] copy-edit-merge | directories file no yes
SLCSE[29] via dbms® no record dml’ | yes
PMDBI[25] locks no record attr. | no
Aspect[5] locks no record dml yes
AD/Cycle[21] locks trees record, file dml tool-level
NuMil[22] via dbms directories file dml yes
Atherton[24] versions directories object attr. yes
Triton[15] optimistic complex objects | object no no
PCTE/OMS][3] locks trees file no yes
CAIS-A[5] nested trans. directories file no ?
PGRAPHITE[30] | optimistic collection primitive types | no no

““Directories” refers to hierarchical containers of objects or other directories.

*Tool-level versioning implements versioning through tools built on top of the repository layer.
““Locks” refers to the “check-out” style of long duration locking used by RCS.

d“Attr.” refers to searching for nodes with matching attribute values.

¢SLCSE and NuMil use the underlying relational dbms to provide concurrency control.

IDml queries use a full-featured data manipulation language that would be found in a DBMS.

Table 1: Software engineering repositories.

have to retreive data from several different
“repositories”.

Collaborative development across the
Several teams of researchers

throughout North America have been assem-

Internet.

bled to collaborate on research into sharing
resuable software process models. Each team
is expected to provide technical reports that
document their individual research results,
as well as to cooperate in the production of
project-wide reports on their collective find-
ings. Fach of these documents will evolve in
both structure and content over the course of
the project. Additionally, the teams intend
to develop a shared collection of reusable pro-
cess assets and experience reports that can
be accessed over the Internet, although each
team will use their pre-exisiting repositories.

Due to geographic separation and the
loose cooperative structure of this project,
each team will be highly autonomous, man-
aging its own computing environment and

tools. Thus, there will be no shared file sys-
tem or database to serve as an integrating
resource. Similarly, we cannot assume that
all teams will agree to adopt and use any
one team’s object storage manager or data
model. Nonetheless, it will be necessary for
each team to be able to modify jointly devel-
oped documents or process assets.

Each of these two scenarios indicate
that there is a need to organize and man-
age dispersed collections of related software
objects across autonomous computing envi-
ronments, as well as heterogeneous reposito-
ries and data models. To date, little research
has been conducted on how to manage soft-
ware engineering artifacts, whether as hyper-
text nodes, files, or database entities, that
are stored across many heterogeneous, au-
tonomous repositories.

The Distributed Hypertext system
(DHT) is a research project at USC ex-
ploring the application of Hypertext con-




cepts to the integration of heterogeneous, au-
tonomous software repositories. The goal is
to devise a scheme for software object man-
agement that provides the following:

1. Services to support software engineering
activities that require concurrency con-
trol and versioning;

2. Integration of pre-existing, heteroge-
neous repositories that preserve au-
tonomous control over local repositories
and existing applications;

3. Transparent object access; and

4. A simple implementation strategy.

Note that in a heterogeneous environ-
ment composed of autonomous, pre-existing
repositories, some of these requirements are
difficult to meet. For example, concur-
rency control based on data-processing style
transactions violates execution autonomy by
requiring participants to defer to a global
transaction manager. Likewise, atomic oper-
ations applied to collections of objects may
violate association or execution autonomy if
they require participants to coordinate the
Fi-
nally, some repositories (such as relational
database systems) do not have built-in sup-
port for versioning or full-text searching. So-

commit or abort of such operations.

lutions to these issues must take repository
autonomy and the variation in the capabili-
ties of heterogeneous storage managers into
account.

The problem has three aspects:

Heterogeneity MclLeod and colleagues de-
fine the “spectrum of heterogeneity” for
databases, comprised of several facets:
data model, schema, object compara-
bility, data format, and storage man-
ager [13]. This is equally applicable to
software repositories. We find a vari-
ety of data models, from file-oriented to
relational to object-oriented. Likewise,

schema and object comparability are
problems: one person’s module is an-
other’s subsystem; dependency relation-
ships may be called by different names,
such as “derived-from”, “depends-on”,
etc.

Autonomy Our view of autonomy ad-
dresses three concepts: design auton-
omy reflects the degree to which a repos-
itory can specify its own data model,
schema, storage manager, applications,
etc; execution autonomy is the ability of
a repository to dictate who has access to
what objects, in what fashion; associa-
tion autonomy refers to the freedom of
a repository to choose with what other
repositories, if any, it will cooperate [28].

Transparency Schatz [27] defines three
types of transparency: type trans-
parency, the ability to apply the same
operations to any type object; location
transparency, the ability to access re-
mote objects in the same manner as lo-
cal objects; and scale transparency, the
ability of a system to perform as well
with one million as with 1000 objects.
To this we add source transparency, the
ability to apply the same operations to
an object regardless of where it is stored.

This property has to do with differences
among storage managers and the access
techniques they provide for storing and
retrieving objects. Source transparency
requires that one should be able to re-
trieve an object using the same com-
mand or access function regardless of
how the object is stored.

Note that this is not the same as lo-
cation transparency. Location trans-
parency requires only that the same
commands or access functions apply
to both local and remote repositories.
Thus, the same SQL commands would
apply to a local or remote relational
database; the open() function should

open a remote or a local file.



In contrast, source transparency re-
quires that there be a single function
(say, GetObject()) that would retrieve
an object from a relational database or a
file system or any other repository type.

In the following sections, we present
the DHT system and show how it addresses
the issues above to meet our stated require-
ments.

2 DHT Architecture and Data Model

We now present a brief overview of
DHT, a typical example of which is depicted
in figure 1. A more detailed description of an
earlier version of DHT can be found in [23].
However, this report highlights refinements
and enhancements incorporated into DHT in
its current version.

The DHT architecture is
based on a client-server model. Clients im-
plement all application functionality that is
not directly involved in storage management;
a client is typically an individual tool, but
may be a complete environment.

Architecture.

Several servers manage the objects
(nodes or links) in the hypertext, where dif-
ferent servers can manage nodes and links.
Each server consist of two components: the
repository that owns and manages local ob-
jects, and a gateway process that transforms
local objects into DHT nodes and links, and
DHT messages into local operations (see fig-
ure 2). From the repository viewpoint, the
gateway process can be just another applica-
tion.

Note that the gateway process is equiv-
alent to a combination of transforming and
accessing processor components of the feder-
ated database architecture reference model
described by Sheth and Larson [28]. The
style of access implemented, however, is nav-
igational rather than query-oriented, as dis-
cussed later in section 4.

A request-response style communica-

NETWORK

DHT node GetObject(" dht.c")

t }

Gateway

l” |

SELECT * FROM modules
Resultrecord - WHERE name=" dht.c"

Local Repository
(Relational db)

Figure 2: A server for a software module
database.

tion protocol implements the operations
specified in the DHT data model (see sec-
tion 2), and includes provisions for locating
servers and authenticating and encrypting
messages.

Data Model. The DHT Data Model de-
fines hypertext primitives that provide suffi-
cient modeling power to represent software
engineering concepts, without compromis-
ing the autonomy of local repositories. It
consists of four basic objects: nodes, the
content objects; links that model relation-
ships among nodes; anchors, that specify
the points within node contents that an-
chor the endpoints of a link; and contexts,
that contain links to allow specification of
object compositions as sub-graphs. Nodes,
links, and contexts have types, attributes,
and unique object identifiers (oids).

A fixed set of operations can be ap-
plied to DHT objects: create, delete, read,
and update an object. Additionally, retrieve
links can be applied to a context to obtain
the links within a context associated with
a specified node. The important feature of
these operations is that any one can be per-
formed by a single repository on its own ob-
jects. Cooperation among repositories is not
required. In addition, a given repository can
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Figure 1: A typical DHT environment.

elect to provide any subset of these opera-
tions, as appropriate for the level of access it
intends to provide.

3 Issues

Some additional issues related to sup-
port of software engineering, such as version-
ing, aggregations, and concurrency control,
must be addressed. We discuss these next.

Versioning. Since participating reposito-
ries may not have native support for version-
ing, it is a difficult issue to address. There
are three possible alternatives for versioning
in hypertext (figure 3): An object identifier
(0oid) can refer to all of the versions together,
as in HAM [8]. In this case, a link to the
object can refer to any version of the object.
Alternately, an oid can refer to the most re-
cent version. In this case a link always points
to the current version of an object. Finally,
an oid can refer to a specific version in the
history of an object’s evolution, in which case
a link always points to the specified version.
Subsequently, links that point to the most
recent version are not possible, because each
new version gets a distinct new oid.

Each of these alternatives can be rep-
resented using DHT primitives. The first re-
quires a repository to manage a collection of

versions as a context. The second is simpler,
requiring the repository to assign a new oid
to the last version of an object before updat-
ing the current version. The last alternative
simply requires creation of a new entity. In
addition, note that all three require relation-
ships to be maintained as links among the
versions.

The choice of versioning model depends
on the application. For example, to build
a specific configuration of a system, specific
versions of each module must be selected.
A configuration can be modeled as a depen-
dency graph where the nodes are specific ver-
sions of a module, hence the third versioning
alternative is appropriate.

On the other hand, a programmer’s
workspace should include the most recent
versions of each module that the program-
mer is working on, indicating that the sec-
ond versioning alternative (where links point
to the most recent version of a node) would
be most appropriate.

Finally, a tool tracing requirements will
likely refer to modules implementing particu-
lar requirements. In this case, it is important
to know which module implements a require-
ment. This case would likely consider all ver-
sions as part of the same whole, thus the first
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Figure 3: Versioning models.

alternative is appropriate.

Aggregation. Aggregate object are com-
mon in software engineering environments: a
project is a collection of lifecycle documents;
a system is compiled from a set of software
modules. It is therefore desirable to have a
modeling construct that allows sets of ob-
jects to be referred to as a single entity. Ag-
gregation, however, introduces conflicts be-
tween the goals of transparency and auton-
omy. Transparency requires that the same
operations (create, get, update, delete) apply
to aggregations as to unit objects; this may
conflict with autonomy constraints depend-
ing on the semantics of delete operations ap-
plied to aggregates. For example, if delete
implies that the components of the compos-
ite object are deleted as well, and the com-
posite contains objects from more than one
repository, the operation will violate execu-
tion and association autonomy because the
affected repositories will need to coordinate
to ensure that the components are deleted.

To overcome this difficulty, aggregation
is modeled by contexts in DHT. A context

specifies a set of links, which in turn can
describe a variety of graph structures from
simple sets of nodes to trees, DAGs, and gen-
eral graphs. However, deleting a context only
deletes its links. The nodes connected by the
links remain unaffected. Since a context’s
links are created and managed by the same
repository that owns the context, autonomy
is preserved.

Concurrency Control. Providing con-
currency control presents problems similar to
those of aggregation, because each repository
must be free to implement its own concur-
rency mechanism (or none at all). As such,
we cannot assume that there is a common
notion of concurrency control. The challenge
is to provide a concurrency mechanism that
does not violate a repository’s autonomy.

As discussed in Section 2, DHT oper-
ations apply to single objects, and can be
performed by one server without coordina-
tion with other servers. The DHT architec-
ture exploits this feature to provide a form
of timestamp concurrency control [18, pp.
380-383] designed to prevent “lost updates”.



When a client reads an object, the server
returns a timestamp along with the object
data; this timestamp is used to determine
whether subsequent updates conflict. The
client includes the timestamp with any sub-
sequent update requests on the object. The
server, upon receiving an update request, ex-
amines the timestamp to determine when the
last update occurred in relation to the times-
tamp. If the update precedes the timestamp,
the update succeeds; if an update has oc-
curred since the timestamp, the server re-
fuses the update and returns an error mes-
sage. The client then takes whatever action
it deems appropriate.

4 Related Work

We now compare the DHT approach
to possible alternatives, as represented by
(i) heterogeneous database management sys-
tems, (ii) hypertext systems for software de-
velopment, and (iii) proposed “standard” ob-
ject models.

Heterogeneous Database Management
Systems. HDBMSs provide query-
oriented access to data stored in hetero-
geneous component databases.
three broad classes of such systems|[4]: global
schema multidatabases, in which applica-
tions access data through a single unified
schema [9, 12, 26]. federated databases,
wherein import schemas are used to provide
access to external data through the exist-
ing local database schema [16, 13]; and mul-
tidatabase language systems, that retrieve
data by posing queries directly to participat-
ing databases using a multidatabase query
language [20, 6].

There are

They main difference between hetero-
geneous databases and DHT is the style
of access. Heterogeneous databases provide
query oriented access, with the accompany-
ing requirement for query processors, sched-
ulers, and local translators for the global
query language. As a result, most heteroge-
neous database systems assume that compo-

nents are also databases. In contrast, DHT
objects are accessed primarily by navigation,
which requires a much simpler local inter-
face, and less capability from the component
repositories.
Hypertext. A number of research
projects have applied hypertext to software
object management, including the Hyper-
text Abstract Machine (HAM) [8], the Doc-
uments Integration Facility (DIF) [14], and
HyperCASE [11]. For the most part these
are based on a single, centralized repository
architecture. In contrast, systems such as
PROXHY [17] and Chimera [2] seek to move
away from this position. These two systems
enable linking among objects from diverse
sources. Subsequently, links are managed
by the hypertext system, while nodes are
managed by individual applications. This
contrasts sharply with the DHT approach,
which attempts to insulate applications from
the details of object storage management
through a uniform access interface.

Standardized Object Models Program
integration mechanisms such as the Com-
mon Object Request Broker (CORBA), Ob-
ject Linking and Embedding (OLE), and the
IBM System Object Model (SOM) specify
interfaces to potentially heterogeneous ob-
jects. However, these mechanisms focus on
sharing application behavior, such as the ren-
dering capability of a drawing tool or calcu-
lation functions of a spreadsheet. In these
cases, the data objects used by the applica-
tion (graphic file or spreadsheet) remain hid-
den behind the object interface. Thus, they
are more appropriate for application integra-
tion and interoperability rather than data in-
tegration.

5 Discussion and Observations

Conklin describes the “essence” of hy-
pertext as a combination of three compo-
a data access method based on nav-
igation; a representation scheme similar to

nents:
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Figure 4: Modeling aggregation in DHT.

a semantic net; and an interface modality in-
corporating browsing by direct manipulation
of link anchors [10]. By exploiting this mul-
tifaceted nature of hypertext, the DHT so-
lution embodies a comprehensive approach
to software object management across het-
erogeneous environments, with the following
benefits:

(1.) The navigational style of access
is an intuitive, natural mode for interact-
ing with the structured and semi-structured
(textual, graphical) data prevalent in soft-
ware environments.

(2). DHT lends itself to very simple
gateway implementations, since only get and
put operations are required. Most of the im-
plementation of a gateway consists of code
to manage connections and process requests
and replies. This code is repository inde-
pendent and can therefore be reused. The
current DHT prototype provides a library
of basic server functions for this purpose.
The repository-dependent part of a gateway
comprises an interface to the local storage
manager, and must be hand crafted for each
repository. This task, however, is straightfor-
ward requiring the implementation of eight
basic storage management interface func-
tions that are called by the server library (see
Table 2). (Note that a simple read-only gate-
way need only implement OpenRepository(),
CloseRepository(), and GetObject().)

OpenRepository()
CloseRepository()
CreateObject()
DeleteObject ()
GetObject()
UpdateObject()
GetAttributes()
GetLinks()

Table 2:
tions.

Storage manager interface func-

Repository type Gateway Size

Unix File system 1400
Relational database 900
Object-oriented database 600

Table 3: Gateway implementations (lines of

code).

Our experience shows these are simple
to implement. For instance, we have been
able to get gateways running within a sin-
gle day of programming effort. Examples of
actual effort to implement several gateways,
measured in lines of C language source code,
are shown in Table 3.

(3.) The semantic net representation
scheme of attributed nodes and links enables
multiple, flexible structures to be overlayed
on the same core set of objects. This means
that users can organize objects in different



ways to suit their specific needs. For ex-

ample, users can access shared nodes using

Addi-

tionally, links can represent relationships be-

the same or independent contexts.

tween parts of objects (via anchors), in addi-
tion to linking objects as a whole.

(4.) The user interaction technique
complements navigational access with a com-
mon interaction style that applies to all soft-
ware object types, yielding application- and
type-transparent interfaces.

6 Conclusions

We believe the DHT concept and ar-
chitecture propose an interesting solution to
a research problem and a practical problem.
The research problem entails how to pro-
vide object management services to a dis-
persed group of autonomous, heterogeneous
The practical
problem is how to provide the geographically

software object repositories.

dispersed software development teams with
a logically centralized repository of sharable
and reusable software assets, where each has
its own locally developed artifact repository.
An evolving prototype implementation of
DHT which demonstrates a solution to these
problems, in support of distributed software
development environments, is operational.
Further, experience with DHT access perfor-
mance shows that its retrieval (“get”) and
storage (“put”) operations across Internet
sites rivals that of local-area network file sys-
tems for many different types of reposito-
ries. Thus, we believe these results begin to
demonstrate the viability of the DHT con-
cept, architecture, and implementation.
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