
A Hypertext System for Integrating

Heterogeneous� Autonomous Software

Repositories�

John Noll and Walt Scacchi

Information and Operations Management Dept�

University of Southern California

Los Angeles� CA ����������

Abstract

Hypertext is a simple concept for or�
ganizing information into a graph structure
of linked container objects� This paper ex�
amines issues involved in applying hyper�
text concepts to the integration of hetero�
geneous� autonomous software repositories�
and presents a solution called the Distributed
Hypertext System �DHT�� Based on a hy�
pertext data model and client�server archi�
tecture� DHT features powerful modeling ca�
pabilities� integration of heterogeneous� pre�
existing repositories� update with concur�
rency control� and full local autonomy�

� Introduction

Considerable research has been de�
voted to software object management� Ta�
ble � summarizes some of the results� For
the most part� these e�orts assume that the
objects in the repository are stored in a
central database or storage manager� which
may be accessed by distributed clients� In
reality� however� software artifacts may be
stored in many diverse locations under in�
dependent control� This may happen due
to multi�contractor development projects�
corporate mergers� cooperative relationships
among otherwise autonomous organizations�

�Appears in Proc� �rd� Irvine Software Sympo�

sium� ACM SIGSOFT and UC Irvine� Irvine� CA�

������ April �����

or introduction of new repository technology
into existing environments� It may also hap�
pen when seeking to support the distributed
development of software systems and related
documents over the Internet�

Consider the following two examples�

Multiplatform project� A software de�
velopment group is developing a database
application to run in a client�server environ�
ment� The database server runs on a Unix
host� the clients will run on PCs with PC
operating systems�

Developers of the database software
will use the traditional Unix programming
tools �cc� make� RCS� to develop and test
their code� PC programmers will use na�
tive integrated development environments�
In addition� there will be a shared network
�le system so all platforms can share �les�

The group desires tools for doing anal�
ysis on the project artifacts taken as a whole�
to do requirements traceability� impact of
change analysis� and metric collection�

Despite the logical centralization af�
forded by a shared �lesystem� there is still
considerable heterogeneity present� Each
programming environment has its own mech�
anisms for storing dependency relationships�
function cross references �	tags
�� and ver�
sions� Thus� the global analysis tools will

�



System Concurrency Collections Granularity Query Versioning

SoftBench��
 optimistic directoriesa �le no tool�levelb

AtFS���
 locksc directories �le attr�d yes

NSE��
 copy�edit�merge directories �le no yes

SLCSE���
 via dbmse no record dmlf yes

PMDB���
 locks no record attr� no

Aspect��
 locks no record dml yes

AD�Cycle���
 locks trees record� �le dml tool�level

NuMil���
 via dbms directories �le dml yes

Atherton���
 versions directories object attr� yes

Triton���
 optimistic complex objects object no no

PCTE�OMS��
 locks trees �le no yes

CAIS�A��
 nested trans� directories �le no �

PGRAPHITE���
 optimistic collection primitive types no no

a	Directories
 refers to hierarchical containers of objects or other directories�
bTool�level versioning implements versioning through tools built on top of the repository layer�
c	Locks
 refers to the 	check�out
 style of long duration locking used by RCS�
d	Attr�
 refers to searching for nodes with matching attribute values�
eSLCSE and NuMil use the underlying relational dbms to provide concurrency control�
fDml queries use a full�featured data manipulation language that would be found in a DBMS�

Table �� Software engineering repositories�

have to retreive data from several di�erent
	repositories
�

Collaborative development across the

Internet� Several teams of researchers
throughout North America have been assem�
bled to collaborate on research into sharing
resuable software process models� Each team
is expected to provide technical reports that
document their individual research results�
as well as to cooperate in the production of
project�wide reports on their collective �nd�
ings� Each of these documents will evolve in
both structure and content over the course of
the project� Additionally� the teams intend
to develop a shared collection of reusable pro�
cess assets and experience reports that can
be accessed over the Internet� although each
team will use their pre�exisiting repositories�

Due to geographic separation and the
loose cooperative structure of this project�
each team will be highly autonomous� man�
aging its own computing environment and

tools� Thus� there will be no shared �le sys�
tem or database to serve as an integrating
resource� Similarly� we cannot assume that
all teams will agree to adopt and use any
one team�s object storage manager or data
model� Nonetheless� it will be necessary for
each team to be able to modify jointly devel�
oped documents or process assets�

Each of these two scenarios indicate
that there is a need to organize and man�
age dispersed collections of related software
objects across autonomous computing envi�
ronments� as well as heterogeneous reposito�
ries and data models� To date� little research
has been conducted on how to manage soft�
ware engineering artifacts� whether as hyper�
text nodes� �les� or database entities� that
are stored across many heterogeneous� au�
tonomous repositories�

The Distributed Hypertext system
�DHT� is a research project at USC ex�
ploring the application of Hypertext con�

�



cepts to the integration of heterogeneous� au�
tonomous software repositories� The goal is
to devise a scheme for software object man�
agement that provides the following�

�� Services to support software engineering
activities that require concurrency con�
trol and versioning�

�� Integration of pre�existing� heteroge�
neous repositories that preserve au�
tonomous control over local repositories
and existing applications�

�� Transparent object access� and

�� A simple implementation strategy�

Note that in a heterogeneous environ�
ment composed of autonomous� pre�existing
repositories� some of these requirements are
di�cult to meet� For example� concur�
rency control based on data�processing style
transactions violates execution autonomy by
requiring participants to defer to a global
transaction manager� Likewise� atomic oper�
ations applied to collections of objects may
violate association or execution autonomy if
they require participants to coordinate the
commit or abort of such operations� Fi�
nally� some repositories �such as relational
database systems� do not have built�in sup�
port for versioning or full�text searching� So�
lutions to these issues must take repository
autonomy and the variation in the capabili�
ties of heterogeneous storage managers into
account�

The problem has three aspects�

Heterogeneity McLeod and colleagues de�
�ne the 	spectrum of heterogeneity
 for
databases� comprised of several facets�
data model� schema� object compara�
bility� data format� and storage man�
ager ���
� This is equally applicable to
software repositories� We �nd a vari�
ety of data models� from �le�oriented to
relational to object�oriented� Likewise�

schema and object comparability are
problems� one person�s module is an�
other�s subsystem� dependency relation�
ships may be called by di�erent names�
such as 	derived�from
� 	depends�on
�
etc�

Autonomy Our view of autonomy ad�
dresses three concepts� design auton�
omy re�ects the degree to which a repos�
itory can specify its own data model�
schema� storage manager� applications�
etc� execution autonomy is the ability of
a repository to dictate who has access to
what objects� in what fashion� associa�
tion autonomy refers to the freedom of
a repository to choose with what other
repositories� if any� it will cooperate ���
�

Transparency Schatz ���
 de�nes three
types of transparency� type trans�
parency� the ability to apply the same
operations to any type object� location
transparency� the ability to access re�
mote objects in the same manner as lo�
cal objects� and scale transparency� the
ability of a system to perform as well
with one million as with ���� objects�
To this we add source transparency� the
ability to apply the same operations to
an object regardless of where it is stored�

This property has to do with di�erences
among storage managers and the access
techniques they provide for storing and
retrieving objects� Source transparency
requires that one should be able to re�
trieve an object using the same com�
mand or access function regardless of
how the object is stored�

Note that this is not the same as lo�
cation transparency� Location trans�
parency requires only that the same
commands or access functions apply
to both local and remote repositories�
Thus� the same SQL commands would
apply to a local or remote relational
database� the open�� function should
open a remote or a local �le�

�



In contrast� source transparency re�
quires that there be a single function
�say� GetObject��� that would retrieve
an object from a relational database or a
�le system or any other repository type�

In the following sections� we present
the DHT system and show how it addresses
the issues above to meet our stated require�
ments�

� DHT Architecture and Data Model

We now present a brief overview of
DHT� a typical example of which is depicted
in �gure �� A more detailed description of an
earlier version of DHT can be found in ���
�
However� this report highlights re�nements
and enhancements incorporated into DHT in
its current version�

Architecture� The DHT architecture is
based on a client�server model� Clients im�
plement all application functionality that is
not directly involved in storage management�
a client is typically an individual tool� but
may be a complete environment�

Several servers manage the objects
�nodes or links� in the hypertext� where dif�
ferent servers can manage nodes and links�
Each server consist of two components� the
repository that owns and manages local ob�
jects� and a gateway process that transforms
local objects into DHT nodes and links� and
DHT messages into local operations �see �g�
ure ��� From the repository viewpoint� the
gateway process can be just another applica�
tion�

Note that the gateway process is equiv�
alent to a combination of transforming and
accessing processor components of the feder�
ated database architecture reference model
described by Sheth and Larson ���
� The
style of access implemented� however� is nav�
igational rather than query�oriented� as dis�
cussed later in section ��

A request�response style communica�

GetObject("dht.c")

SELECT * FROM modules
WHERE name = "dht.c"

Gateway

Local Repository
(Relational db)

NETWORK

DHT node

Result record

Figure �� A server for a software module
database�

tion protocol implements the operations
speci�ed in the DHT data model �see sec�
tion ��� and includes provisions for locating
servers and authenticating and encrypting
messages�

Data Model� The DHT Data Model de�
�nes hypertext primitives that provide su��
cient modeling power to represent software
engineering concepts� without compromis�
ing the autonomy of local repositories� It
consists of four basic objects� nodes� the
content objects� links that model relation�
ships among nodes� anchors� that specify
the points within node contents that an�
chor the endpoints of a link� and contexts�
that contain links to allow speci�cation of
object compositions as sub�graphs� Nodes�
links� and contexts have types� attributes�
and unique object identi�ers �oids��

A �xed set of operations can be ap�
plied to DHT objects� create� delete� read�
and update an object� Additionally� retrieve
links can be applied to a context to obtain
the links within a context associated with
a speci�ed node� The important feature of
these operations is that any one can be per�
formed by a single repository on its own ob�
jects� Cooperation among repositories is not
required� In addition� a given repository can

�



Ingres RDB

LAN

LAN

LAN

Wide Area
Network

Client applications

Client applications

in-memory
database

Gateway

Gateway

Gateway

file system

Gateway Softman
Database

Software
Archive

OODB

Gateway

Development
Database

Process
Model
Repository

Lisp db Name
Server

Figure �� A typical DHT environment�

elect to provide any subset of these opera�
tions� as appropriate for the level of access it
intends to provide�

� Issues

Some additional issues related to sup�
port of software engineering� such as version�
ing� aggregations� and concurrency control�
must be addressed� We discuss these next�

Versioning� Since participating reposito�
ries may not have native support for version�
ing� it is a di�cult issue to address� There
are three possible alternatives for versioning
in hypertext ��gure ��� An object identi�er
�oid� can refer to all of the versions together�
as in HAM ��
� In this case� a link to the
object can refer to any version of the object�
Alternately� an oid can refer to the most re�
cent version� In this case a link always points
to the current version of an object� Finally�
an oid can refer to a speci�c version in the
history of an object�s evolution� in which case
a link always points to the speci�ed version�
Subsequently� links that point to the most
recent version are not possible� because each
new version gets a distinct new oid�

Each of these alternatives can be rep�
resented using DHT primitives� The �rst re�
quires a repository to manage a collection of

versions as a context� The second is simpler�
requiring the repository to assign a new oid
to the last version of an object before updat�
ing the current version� The last alternative
simply requires creation of a new entity� In
addition� note that all three require relation�
ships to be maintained as links among the
versions�

The choice of versioningmodel depends
on the application� For example� to build
a speci�c con�guration of a system� speci�c
versions of each module must be selected�
A con�guration can be modeled as a depen�
dency graph where the nodes are speci�c ver�
sions of a module� hence the third versioning
alternative is appropriate�

On the other hand� a programmer�s
workspace should include the most recent
versions of each module that the program�
mer is working on� indicating that the sec�
ond versioning alternative �where links point
to the most recent version of a node� would
be most appropriate�

Finally� a tool tracing requirements will
likely refer to modules implementing particu�
lar requirements� In this case� it is important
to know which module implements a require�
ment� This case would likely consider all ver�
sions as part of the same whole� thus the �rst

�



Key:

Node - 

Link -

Most Recent Version -

Last Node Created -

Second update:

First update:

Version 1 OID_1

Version 2

Version 1 OID_2

OID_1

OID_3

Version 3

Version 1 OID_2

Version 2 OID_1

Link points to current version.

Version 1 OID_1

Version 2

Version 1

OID_2

OID_1

OID_3Version 3

Version 2

Version 1

OID_2

OID_1

Link points to initial version.

Version 1

Version 3

Version 1

Version 2

OID_1

OID_1

Version 2

Version 1
OID_1

Link points to all versions.

Figure �� Versioning models�

alternative is appropriate�

Aggregation� Aggregate object are com�
mon in software engineering environments� a
project is a collection of lifecycle documents�
a system is compiled from a set of software
modules� It is therefore desirable to have a
modeling construct that allows sets of ob�
jects to be referred to as a single entity� Ag�
gregation� however� introduces con�icts be�
tween the goals of transparency and auton�
omy� Transparency requires that the same
operations �create� get� update� delete� apply
to aggregations as to unit objects� this may
con�ict with autonomy constraints depend�
ing on the semantics of delete operations ap�
plied to aggregates� For example� if delete
implies that the components of the compos�
ite object are deleted as well� and the com�
posite contains objects from more than one
repository� the operation will violate execu�
tion and association autonomy because the
a�ected repositories will need to coordinate
to ensure that the components are deleted�

To overcome this di�culty� aggregation
is modeled by contexts in DHT� A context

speci�es a set of links� which in turn can
describe a variety of graph structures from
simple sets of nodes to trees� DAGs� and gen�
eral graphs� However� deleting a context only
deletes its links� The nodes connected by the
links remain una�ected� Since a context�s
links are created and managed by the same
repository that owns the context� autonomy
is preserved�

Concurrency Control� Providing con�
currency control presents problems similar to
those of aggregation� because each repository
must be free to implement its own concur�
rency mechanism �or none at all�� As such�
we cannot assume that there is a common
notion of concurrency control� The challenge
is to provide a concurrency mechanism that
does not violate a repository�s autonomy�

As discussed in Section �� DHT oper�
ations apply to single objects� and can be
performed by one server without coordina�
tion with other servers� The DHT architec�
ture exploits this feature to provide a form
of timestamp concurrency control ���� pp�
�������
 designed to prevent 	lost updates
�

�



When a client reads an object� the server
returns a timestamp along with the object
data� this timestamp is used to determine
whether subsequent updates con�ict� The
client includes the timestamp with any sub�
sequent update requests on the object� The
server� upon receiving an update request� ex�
amines the timestamp to determine when the
last update occurred in relation to the times�
tamp� If the update precedes the timestamp�
the update succeeds� if an update has oc�
curred since the timestamp� the server re�
fuses the update and returns an error mes�
sage� The client then takes whatever action
it deems appropriate�

� Related Work

We now compare the DHT approach
to possible alternatives� as represented by
�i� heterogeneous database management sys�
tems� �ii� hypertext systems for software de�
velopment� and �iii� proposed 	standard
 ob�
ject models�

Heterogeneous Database Management

Systems� HDBMSs provide query�
oriented access to data stored in hetero�
geneous component databases� There are
three broad classes of such systems��
� global
schema multidatabases� in which applica�
tions access data through a single uni�ed
schema ��� ��� ��
� federated databases�
wherein import schemas are used to provide
access to external data through the exist�
ing local database schema ���� ��
� and mul�
tidatabase language systems� that retrieve
data by posing queries directly to participat�
ing databases using a multidatabase query
language ���� �
�

They main di�erence between hetero�
geneous databases and DHT is the style
of access� Heterogeneous databases provide
query oriented access� with the accompany�
ing requirement for query processors� sched�
ulers� and local translators for the global
query language� As a result� most heteroge�
neous database systems assume that compo�

nents are also databases� In contrast� DHT
objects are accessed primarily by navigation�
which requires a much simpler local inter�
face� and less capability from the component
repositories�

Hypertext� A number of research
projects have applied hypertext to software
object management� including the Hyper�
text Abstract Machine �HAM� ��
� the Doc�
uments Integration Facility �DIF� ���
� and
HyperCASE ���
� For the most part these
are based on a single� centralized repository
architecture� In contrast� systems such as
PROXHY ���
 and Chimera ��
 seek to move
away from this position� These two systems
enable linking among objects from diverse
sources� Subsequently� links are managed
by the hypertext system� while nodes are
managed by individual applications� This
contrasts sharply with the DHT approach�
which attempts to insulate applications from
the details of object storage management
through a uniform access interface�

Standardized Object Models Program
integration mechanisms such as the Com�
mon Object Request Broker �CORBA�� Ob�
ject Linking and Embedding �OLE�� and the
IBM System Object Model �SOM� specify
interfaces to potentially heterogeneous ob�
jects� However� these mechanisms focus on
sharing application behavior� such as the ren�
dering capability of a drawing tool or calcu�
lation functions of a spreadsheet� In these
cases� the data objects used by the applica�
tion �graphic �le or spreadsheet� remain hid�
den behind the object interface� Thus� they
are more appropriate for application integra�
tion and interoperability rather than data in�
tegration�

� Discussion and Observations

Conklin describes the 	essence
 of hy�
pertext as a combination of three compo�
nents� a data access method based on nav�
igation� a representation scheme similar to

�



Set Sequence Tree Graph

Key:

Context

Node

Link

Figure �� Modeling aggregation in DHT�

a semantic net� and an interface modality in�
corporating browsing by direct manipulation
of link anchors ���
� By exploiting this mul�
tifaceted nature of hypertext� the DHT so�
lution embodies a comprehensive approach
to software object management across het�
erogeneous environments� with the following
bene�ts�

���� The navigational style of access
is an intuitive� natural mode for interact�
ing with the structured and semi�structured
�textual� graphical� data prevalent in soft�
ware environments�

���� DHT lends itself to very simple
gateway implementations� since only get and
put operations are required� Most of the im�
plementation of a gateway consists of code
to manage connections and process requests
and replies� This code is repository inde�
pendent and can therefore be reused� The
current DHT prototype provides a library
of basic server functions for this purpose�
The repository�dependent part of a gateway
comprises an interface to the local storage
manager� and must be hand crafted for each
repository� This task� however� is straightfor�
ward requiring the implementation of eight
basic storage management interface func�
tions that are called by the server library �see
Table ��� �Note that a simple read�only gate�
way need only implement OpenRepository���
CloseRepository��� and GetObject����

OpenRepository��
CloseRepository��
CreateObject��
DeleteObject ��
GetObject��
UpdateObject��
GetAttributes��
GetLinks��

Table �� Storage manager interface func�
tions�

Repository type Gateway Size

Unix File system ����
Relational database ���
Object�oriented database ���

Table �� Gateway implementations �lines of
code��

Our experience shows these are simple
to implement� For instance� we have been
able to get gateways running within a sin�
gle day of programming e�ort� Examples of
actual e�ort to implement several gateways�
measured in lines of C language source code�
are shown in Table ��

���� The semantic net representation
scheme of attributed nodes and links enables
multiple� �exible structures to be overlayed
on the same core set of objects� This means
that users can organize objects in di�erent

�



ways to suit their speci�c needs� For ex�
ample� users can access shared nodes using
the same or independent contexts� Addi�
tionally� links can represent relationships be�
tween parts of objects �via anchors�� in addi�
tion to linking objects as a whole�

���� The user interaction technique
complements navigational access with a com�
mon interaction style that applies to all soft�
ware object types� yielding application� and
type�transparent interfaces�

� Conclusions

We believe the DHT concept and ar�
chitecture propose an interesting solution to
a research problem and a practical problem�
The research problem entails how to pro�
vide object management services to a dis�
persed group of autonomous� heterogeneous
software object repositories� The practical
problem is how to provide the geographically
dispersed software development teams with
a logically centralized repository of sharable
and reusable software assets� where each has
its own locally developed artifact repository�
An evolving prototype implementation of
DHT which demonstrates a solution to these
problems� in support of distributed software
development environments� is operational�
Further� experience with DHT access perfor�
mance shows that its retrieval �	get
� and
storage �	put
� operations across Internet
sites rivals that of local�area network �le sys�
tems for many di�erent types of reposito�
ries� Thus� we believe these results begin to
demonstrate the viability of the DHT con�
cept� architecture� and implementation�

References

��
 Evan W� Adams� Masahiro Honda� and
Terrence C� Miller� Object management
in a CASE environment� In Proceedings
of the ��th International Conference on
Software Engineering� The Association
for Computing Machinery� �����

��
 Kenneth M� Anderson� Richard N� Tay�

lor� and E� James Whitehead� Jr�� Hy�
pertext for heterogeneous software envi�
ronments� Technical report� University
of California� Irvine� �����

��
 Gerard Boudier� Ferdinando Gallo�
Regis Minot� and Ian Thomas� An
overview of PCTE and PCTE�� In
SIGSOFT �		
 Proceedings of the
Third ACM SIGSOFT�SIGPLAN Soft�
ware Engineering Symposium on Prac�
tical Software Development Environ�
ments� Boston� The Association for
Computing Machinery� �����

��
 M� W� Bright� A� R� Hurson� and
Simin H� Pakzad� A taxonomy and
current issues in multidatabase systems�
IEEE Computer� March �����

��
 Alan W� Brown� Database Support for
Software Engineering� Halstead Press
�John Wiley and Sons�� �����

��
 Omran A� Bukhres� Jiansan Chen�
Weimin Du� Ahmed K� Elmagarmid�
and Robert Pezzoli� Interbase� An ex�
ecution environment for heterogeneous
software systems� Computer� ���������
��� August �����

��
 M� H� Cagan� The HP SoftBench envi�
ronment� An architecture for a new gen�
eration of software tools� The Hewlett�
Packard Journal� ������ June �����

��
 Brad Campbell and Joseph M� Good�
man� HAM� A general purpose hyper�
text abstract machine� Communications
of the ACM� ������ July �����

��
 Chin�Wan Chung� DATAPLEX� An
access to heterogeneous distributed
databases� Communications of the
ACM� ������������ January �����

���
 Je� Conklin� Hypertext� An introduc�
tion and survey� Computer� ������������
September �����

�



���
 Jacob L� Cybulski and Karl Reed� A hy�
pertext based software�engineering envi�
ronment� IEEE Software� March �����

���
 Umeshwar Dayal and Hai�Yann Hwang�
View de�nition and generalization for
database integration in a multidatabase
system� IEEE Transactions on Software
Engineering� SE��������������� Novem�
ber �����

���
 D� Fang� J� Hammer� D� McLeod� and
A� Si� Remote�exchange� An ap�
proach to controlled sharing among au�
tonomous� heterogenous database sys�
tems� In Proceedings of the IEEE Spring
Compcon� San Francisco� IEEE� Febru�
ary �����

���
 Pankaj K� Garg and Walt Scacchi� A
hypertext system for software life cycle
documents� IEEE Software� �����������
May �����

���
 Dennis Heimbigner� Experiences with
an object manager for a process�
centered environment� Technical Report
CU�CS�������� University of Colorado
at Boulder� �����

���
 Dennis Heimbigner and Dennis McLeod�
A federated architecture for information
management� ACM Transactions on
O
ce Information Systems� ����� July
�����

���
 Charles J� Kacmar and John J� Leggett�
PROXHY� A process�oriented exten�
sible hypertext architecture� ACM
Transactions on Information Systems�
������������� October �����

���
 Henry F� Korth and Abraham Sil�
bershatz� Database System Concepts�
McGraw�Hill� �����

���
 Andreas Lampen and Axel Mahler� An
object base for attributed software ob�
jects� In Proceedings of the EUUG Au�
tumn �		 Conference� London� Euro�
pean UNIX Users Group� October �����

���
 Witold Litwin and Abdelaziz Abdellatif�
An overview of the multi�database ma�
nipulation language MDSL� Proceedings
of the IEEE� �������������� May �����

���
 V� J� Mercurio� B� F� Meyers� A� M� Nis�
bet� and G� Radin� AD�Cycle strategy
and architecture� IBM Systems Journal�
�������������� �����

���
 K� Naryanaswamy and Walt Scacchi� A
database foundation to support software
systems evolution� The Journal of Sys�
tems and Software� ����������� March
�����

���
 John Noll and Walt Scacchi� Inte�
grating diverse information reposito�
ries� A distributed hypertext approach�
IEEE Computer� ������������� Decem�
ber �����

���
 William Paseman� Architecture of the
Atherton software BackPlane� In Pro�
ceedings of ��	� ACM SIGMOD Work�
shop on Software CAD Databases� The
Association for Computing Machinery�
�����

���
 Maria H� Penedo and E� Don Stuckle�
PMDB�a project master database for
software engineering environments� In
Proceedings of the 	th International
Conference on Software Engineering�
IEEE� August �����

���
 Ming�Chien Shan� Uni�ed access in
a heterogeneous information environ�
ment� IEEE O
ce Knowledge Engi�
neering� ����� August �����

���
 B�R� Shatz� Telesophy� A system for
manipulating the knowledge in a com�
munity� In Proc� Globecom 	�� pages
���������� New York� Sept� ����� The
Association for Computing Machinery�

���
 Amit P� Sheth and James A� Larson�
Federated database systems for manag�
ing distributed� heterogeneous� and au�

��



tonomous databases� ACM Computing
Surveys� ������ September �����

���
 Tom Strelich� The software life cycle
support environment �SLCSE� a com�
puter based framework for developing
software systems� In SIGSOFT �		

Proceedings of the Third ACM SIG�
SOFT�SIGPLAN Software Engineering
Symposium on Practical Software De�
velopment Environments� Boston� The
Association for Computing Machinery�
�����

���
 Jack C� Wileden� Alexander L� Wolf�
Charles D� Fisher� and Peri L�Tarr�
PGRAPHITE� an experiment in per�
sistent typed object management� In
SIGSOFT �		
 Proceedings of the
Third ACM SIGSOFT�SIGPLAN Soft�
ware Engineering Symposium on Prac�
tical Software Development Environ�
ments� Boston� The Association for
Computing Machinery� �����

��


