
 24

A Case Study of Open Source Tools and Practices
in a Commercial Setting

Vijay K. Gurbani, Anita Garvert
Lucent Technologies/Bell Labs Innovations

2000 Lucent Lane
Naperville, IL 60566 USA

+1 630 224 0216

{vkg,agarvert}@lucent.com

James D. Herbsleb
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

+1 412 268 8933

jdh@cs.cmu.edu

ABSTRACT
Commercially, many in the industry are using products based on
Open Source. What have been missing are studies on if the
commercial industry benefits from developing software following
the open source development model. We present a case study that
examines this issue by applying the concepts of the open source
software development methodology to creating industrial-strength
software. We conclude with lessons learned and open research
questions.

Keywords
Open Source, Software Development, Session Initiation
Protocol, Architecture

1. Introduction
Open source practices and tools have proven potential to
overcome many of the well-known difficulties of
geographically-distributed software development [9], and
to allow widely distributed users of software to add
features and functionality they want with a minimum of
conflict and management overhead [11]. Some reports
have appeared in the literature describing experiences with
open source tools in an industry setting [6], and in fact
there has been a workshop focused specifically on open
source in an industry context [2].

It is not immediately obvious, however, that open source
tools and practices are a good fit to a commercial setting.
To be sure, open source software is used extensively in the
industry, and the recent acceptance of Linux and the
Apache project are excellent examples of this phenomenon.

However, what needs further study is whether the industry
as a whole can benefit from adopting the methodology of
the open source software development. Is the open source
development methodology conducive to the manner in
which industry develops its software, or are there only
certain industrial projects that are amenable to the open
source development methodology?

In this paper, we report a case study on using open source
development in telecommunication software. The project
was an Internet telephony server originally built by one of
the authors (VKG), and later administered as an open
source project inside Lucent Technologies in order to speed
development and quickly add functionality desired by
different project groups who wanted to make use of it in
their product lines. We describe the effort’s experiences
over a four-year period and present a number of lessons
learned about how to make such projects succeed.

The rest of this paper is structured as follows: in section 2,
we compile a set of characteristics that while common to
all open source projects, may be exhibited differently under
a commercial setting. Section 3 describes the software
project we used in the case study. In section 4, we describe
the initial development of the software and its use inside
the company, the open source style setup and the
experience as various groups begin to use and contribute to
the software. We conclude with lessons learned and a
discussion of further research questions suggested by our
work.

2. Open Source Project Characteristics
While there is, of course no definitive set of characteristics
that all open source project necessarily share beyond
permitting legal and pragmatic access to source code, there
are many practices which are common across a large
sample of open source projects (e.g., [7]). Some examples

 This work was supported in part by a grant from CMU Cylab
and an IBM Faculty Award to the third author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Open Source Application Spaces: Fifth Workshop on Open Source
Software Engineering (5-WOSSE) May 17, 2005, St Louis, MO, USA.

Copyright 2005 ACM 1-59593-127-9 … $5.00.

 25

of how these practices seem potentially incompatible with
commercial development are the following:

2.1 Requirements
Commercial projects typically devote considerable effort to
gathering and analyzing requirements, in a process that
often involves several disciplines including marketing,
product management, and software engineering. Open
source projects, on the other hand, rely for the most part on
users who are also developers to build the features they
need and to fix bugs. Other users generally have to rely on
mailing lists and change requests [13] to communicate
feature requests to developers, who then may or may not
address them, depending on their interests and the
perceived importance of the requests. In commercial
environments, management, often operating through a
change control board, makes decisions about changes
based on business needs.

2.2 Work assignments
In firms, developers are generally assigned by management
to projects and development tasks. There is usually an
effort to match tasks with developers’ skills, and often an
attempt to match their interests if possible, but developers’
choices are generally rather limited. In open source,
developers typically choose what they want to work on.
Generally, they begin building something they themselves
need as users of the software. Those who continue to
contribute tend to begin taking on jobs because of their
perceived importance to the overall project [14].

2.3 Software architecture
It has often been argued that open source projects require a
more modular architecture than commercial projects, and
there is now some evidence that this is the case [10]. In
fact, the architecture of the Netscape browser became much
more modular after it was released as open source [10].
More generally, it is widely recognized that the structure of
the organization is a critical determinant of the structure of
the code [3, 8]. It is not clear how well architectures
designed for a commercial environment will support the
sort of collaboration that open source practices must
support.

2.4 Tool compatibility
Most open source projects exist on their own, or coexist on
hosting services other projects that have all decided to
adopt the same set of tools. In commercial environments,
however, the situation is generally more complicated.
There is often a wider range of tools used, and it is not
clear how to support open source practices in
heterogeneous environments.

2.5 Software processes
Many commercial environments have various levels of
defined processes, often accompanied by stage gate

systems where projects are evaluated at various critical
points along the development path. These process are
generally seen as critical to assuring software quality. Open
source, on the other hand, generally has very little in the
way of formal process, and instead insures quality through
the “walled server” [7], placing control over what goes into
releases in the hands of a “benevolent dictator”, or small
group of proven technical experts. These two approaches
may prove to be incompatible.

2.6 Incentive structure
Commercial development is profit-driven, while open
source is driven by a complex set of motives, including the
desire to learn new skills, the desire to create features one
needs, philosophical beliefs about contributing to the
general welfare, for enjoyment of the freedom to build
what one wants, and sometimes as a political statement
about commercial business practices. The practices that
make the very different open source and commercial
practices succeed may rest in complicated ways on the
developers’ differing motivations.

3. The Software: A Telecommunications
Signaling Server
The specific software we use in our case study is a
telecommunication-signaling server. The server is a
faithful implementation of the Internet Engineering Task
Force (IETF) Session Initiation Protocol (SIP [12]). SIP is
an Internet telephony signaling protocol that establishes,
maintains, and tears down sessions across the Internet. SIP
is a text-based protocol that operates on the notion of a
transaction. A transaction is a request issued by a client
followed by the receipt of one or more responses (from that
viewpoint, SIP is like any reply-response protocol like
HTTP, SMTP, or FTP).
It is interesting to note that protocol development work in
IETF has been compared to an open source project (pp. 47-
52, [5]). IETF hold physical meetings three times a year;
the rest of the time, parties interested in a specific work
item in the IETF follow the discussions in a public mailing
list. IETF is unique as a standardization organization in
that no membership or dues are required for an individual
to participate in the development of a protocol; all that is
required is contribution in the form of time and running
code. In the IETF, a protocol goes through many drafts;
once rough consensus has been reached with a protocol and
design tradeoffs are known, the protocol is released as a
standards-track document. Interested implementers
typically follow the work closely from its draft stage and
produce a working implementation of the protocol as it
progresses. By 2002, SIP became a Proposed Standard as
described in [12].
By the early 2000, the telecommunications industry was
starting to coalesce around a cellular telecommunications

 26

architecture called the 3rd Generation Internet Multimedia
Subsystem (3G IMS). IMS imposed additional
requirements on SIP beyond what the IETF standards
dictated.
A SIP system has many entities: proxy servers help end
points (called user agents) rendezvous with each other;
registrars exist to register user agents so they can be found
easily. Integral to a SIP entity is the notion of a
transaction. Thus, in a typical SIP software stack, a
transaction manager (defined above) that is scalable and
provides the many services that the standard requires is
essential. Residing on top of the transaction manager
would be specific SIP entities called transaction users:
proxies, user agent servers, user agent clients, and
registrars, are all transaction users.
The source code was written in the C programming
language and Concurrent Version System (CVS) was used
for source code control and versioning. The code executed
on the Solaris and Linux operating systems. The original
version of the software was written as a server, however, as
we will discuss later, the code was re-factored to create a
library, which currently hosts the server.
What we have described so far suffices as a technical
context for the rest of the paper; however, interested
readers can refer to Rosenberg et al. [12] for more
information on the protocol and detailed workings of it.

4. The Open Source Experience
In this section, we will give an overview of how the code
and the development process evolved, in order to clarify
the experience base from which our lessons learned were
derived.

4.1 Initial development
The initial work on developing the software was conducted
by one of the co-authors of this paper (VKG) at Lucent
Technologies, Inc. by closely following the work
progressing in the IETF SIP working group (1999-2002).
At this point in time, the development was mainly an effort
lead by the author of the code and an additional developer.
The author was in close touch with the work progressing in
the IETF by contributing to and deriving a benefit from the
discussions about the protocol. Once the code had enough
features in it, it was taken to an interoperability event that
is held periodically. The outcome of these interoperability
events is to interoperate two or more independent
implementations against each other to ensure that they
work across a broad set of features specified in the
protocol.

4.2 Ad hoc partnering
As the code grew stable and achieved feature parity against
the functionality specified in the protocol, the author

started to distribute the binary to a wider audience inside
Lucent Technologies, Inc1. An internal website advertised
new binary releases of the server for others within the
company to download and experiment with. The maturity
of the server implementation coincided with the
burgeoning acceptance of SIP as a protocol of choice in the
telecommunications domain (1999-2001).
As internal interest in the server grew, the capabilities of
the server were demonstrated by closely partnering in an
opportunistic way, with select groups. For instance, the
author extended the programmability of the server by
providing callbacks when certain SIP events occurred in
the server (arrival of a SIP request or a response). Using
this programmability, the server was tied to a
collaboration- and presence-related framework that was the
focus of research in other groups within Lucent
Technologies, Inc. Partnering of this type benefited many
research projects within the company. At this time, such
partnering was mainly limited to integration with existing
frameworks and jointly staging demonstrations.

4.3 User-initiated change requests
As the server matured, it moved beyond a research-only
project and was being productized as part of a standard
Lucent Technologies, Inc. offer. Initially, even though
select groups within the company had access to the source
code, there weren't any contributions from them beyond the
users reporting their experience to the author. Most
internal users were simply downloading the compiled
version of the server and using it for their work.
Expanding the class of users in this way created a positive
feedback loop in which the original code author
implemented new features these users needed. The author
encouraged other users within the company to use the
software and report feedback and wishes for new features.
This communication was conducted in an ad-hoc fashion,
primarily over email and an updated web page. Requests
for new features were ordered according to the business
needs of the group productizing the server and the research
interests of the author (often time, luckily, these coincided).
As SIP continued to gain industry adherents and as the
general field of Internet telephony became more important,
the server was viewed as a critical resource by many
groups. Certainly, having access to the source code of a
standard compliant server was extremely advantageous,
more so since the standards were in a state of flux as SIP
further evolved to touch other aspects of Internet services
such as instant messaging and presence. By 2003, the

1While the server was not made available for download outside

the company, for the sake of interoperability, it was hosted on a
machine accessible to the public. Implementers outside Lucent
Technologies, Inc. can use the server to benchmark their
implementation even today.

 27

server's source code was studied extensively by other
groups within Lucent Technologies, Inc. Requests started
to arrive on evolving the server to serve as a framework for
many SIP-related groups within the company.

4.4 Establishing open source development
project
At about the same time that requests for product-specific
changes began to accelerate, others within the company
started to contribute code and ideas back to the author. The
stage was set to enter the traditional open source
development model, albeit within an industrial setting.
The author of the original code (VKG) assumed the role of
a "benevolent dictator" controlling the code base to ensure
that the contributions coming in and features that other
groups were proposing to build into the code matched the
architectural principles of the software.
The author re-factored major portions of the server code to
create a transaction library that could be used by any
project within the company (since all SIP entities need a
transaction manager). Working in close co-operation with
two other projects, APIs and interfaces between the
transaction manager and the transaction users were defined
for information to flow between the manager and the
transaction user. Re-factoring the software in this manner
was very successful and enabled rapid creation of user
agents [1] that executed on top of the transaction manager.
Since the user agents were using the services of a
transaction manager that was already implemented and
tested, the programmers of these user agents could
concentrate on the task of implementing the specific
behavior of the user agent itself instead of worrying about
the details of handling SIP transactions and other protocol-
related minutiae. The re-factoring has been so successful
that the initial server now runs on top of the transaction
manager as well. Other groups that want specific
transaction users can build them over the transaction
manager by simply adhering to the APIs and interfaces.
Following the open source model, the code was made
widely available to any project within the company that
had a need for it. The "many eyeballs" effect of open
source development is well known (i.e., the code benefits
from being scrutinized by a wider audience with different
interests and capabilities). This effect exhibited itself in
this specific project in many interesting ways:
• By studying the code, the performance experts

suggested a list of changes that would optimize the
implementation [4];

• API experts suggested a layer of API that would lead
to a more programmable framework;

• Others who were working on a 3G IMS project
suggested (and contributed) modifications that made
the code compliant to that architecture;

• Others still ported the code to other operating systems
such as Windows and pSOS (a real-time operating
system).

There are three reasons why these groups contributed the
changes. The first is that having a stable, standards-
compliant implementation provided motivated individuals a
test-bed to try out new ideas (for instance, a major
contribution to the code was a technique to optimize the
parsing step). Another very important reason was saving
time by making the contribution part of the base software.
Unless this was done the group may have to manage their
contribution separately. This may involve merging their
contribution to the base code each time a new release
arrived. To avoid this, it was better to contribute the
change. A third reason is that certain groups, having used
the software, wanted to contribute something back.
One big advantage of using open source techniques is to
allow other groups to examine the existing code and bring
their unique expertise directly to bear. For instance, while
the original author was well versed in the IETF
standardization process, he found it too time consuming to
keep up with the 3G standard as well. Thus contributions
coming in from the 3G team reflected their expertise, and
were a welcome addition to the code. The problem, of
course, was managing this complexity.

4.5 Delegating responsibility
The synergy that resulted in the complexity lead to the
replication of another well known phenomenon in the open
source community: the role of a "trusted lieutenant."
Management identified strategic personnel in different
groups and assigned them to manage key portions of the
code while working closely with the author of the original
code. Currently, the code is being modified by two main
groups, using two concurrent lines of development. To
manage these lines, there are two independent source code
repositories (using different source code management
systems). The intent is to merge the code across both the
lines of development such that there is only one code base
(currently, a set of specific customizations are applied
manually to the base software, a step that will be eliminated
after the merge). Because source code management
systems and tools vary among projects, and also because
the build systems are often tied to the source code control
system, it is still likely that different groups will use their
own source code repositories; however, the source code
available to all groups will be identical.
The open source development model has, undoubtedly,
succeeded for this project. Currently, there are 18 different
projects within the company using the server. Of these
projects, 30% are actively contributing code (or have
already contributed code). There are currently 17 active
contributors to the code. Some of these are responsible for
user agents running on top of the library, others work on

 28

the transaction library itself and still others work on
providing support in the form of applying customizations
and distributing the code to different projects within the
company.

5. Conclusion
Our experience from harnessing the open source
development methodology has resulted in a number of
lessons learned, which we present in this section. We are
also, however, experiencing several ongoing problems that
present opportunities for future research.

5.1 Lessons learned
First, management support for the "benevolent dictator" is
essential if the project is to succeed. Keeping up with the
changes being made to the code as new features are added
and accepting contributions from the set of interested users
is a time consuming task. The benevolent dictator should
be the final arbiter on what goes into the code while
preserving the architecture (although this is not always
possible; see next lesson).
Second, unlike traditional open source, the benevolent
dictator cannot be concerned solely with a personal vision,
a vision of the developers and users of the software when
making decisions about what features go in and how the
software evolves. In a commercial setting, those features
that attract the most paying customers must percolate to the
top of the priority list. The benevolent dictator can still
remain a powerful force for maintaining the conceptual and
architectural integrity of the software, but business
necessities must be respected as well.
Third, owning the source code and having many eyeballs
contributing to it has made it easier to keep up with the
numerous extensions to SIP. It is beyond the capability of
one team to be knowledgeable in all aspects (for instance,
the team that knows about performance optimization may
not know too much about security). Having access to the
source code is invaluable since different individuals
contribute in different ways to the cohesive whole.
Fourth, if possible, independent strains of the software
should be discouraged, or tracked carefully. One of the
biggest challenges we faced was how to merge independent
changes done across two development lines. Each line had
features and bug fixes that the other one wanted.
Fifth, a well thought out code distribution strategy is
important. In traditional open source, the recipient receives
a tar file (or downloads the source tree) and proceeds from
there. However, in a commercial setting, the distributed
code has to fit in the load building strategy of a particular
group.
Sixth, since the standards and the technology were rapidly
evolving, owning the source code allowed the company to
respond quickly to customer needs. The authors of the
paper have witnessed many commercial companies who

have purchased SIP stacks from third party vendors; in
such cases, these companies have to depend on the release
schedules of the stack vendors. In developing solutions in
the Internet timeline, this delay can provide extremely
costly. Identifying states of flux such as this should be a
valuable guide to finding opportunities for internal open
source projects.
And finally, it is important to move toward a common set
of development tools, particularly version control and
change management systems. Unlike traditional open
source, the broader community of developers is constrained
by the tool environments of their project work. Moving
code among different version control systems in order to
build a variety of products is a difficult problem, and
introduces the temptation of maintaining separate forks for
each project.

5.2 Open questions
The experience we have gained leads to yet more open
questions. As more projects are using the software, each
one wants to customize it in its own manner. It is a
challenge to allow such customizations while still
preserving the core architecture. It would be extremely
valuable to improve our understanding of how to design
architectures to support open source style development.
Another question concerns limitations of the open source
development methodology. Can what we did at Lucent
Technologies be replicated with any random project across
all industries? The answer is that it depends. We
succeeded due to the convergence of many external forces
and ideas. The manner of protocol development in the
IETF was a big impetus to our project since we essentially
tracked the earlier drafts; i.e., our implementation matured
with the standard. When we started our work, Internet
telephony was not viewed as mainstream a technology that
it has now become. We just happened to be positioned at
the right cusp when the company was looking for a SIP
implementation that was standards compliant and that it
owned. It is not clear, in general, how and when to initiate
a project that can serve as a shared resource.
We also had a significant pool of users who were interested
and capable developers, which seems to be a precondition
for a successful open source project. If SIP servers were
simply a well-understood and stable commodity
technology, product groups could simply use it out of the
box. We speculate that open source will succeed where
there is 1) a technology that is needed by several product
groups (hence there is reason to pool resources), 2) the
technology is relatively immature so that requirements and
features are not fully known at the outset, but rather evolve
over time, 3) product groups have different needs and
specific expertise in customizing the software for their
needs, and 4) the initial product has a sound, modular
architecture so that it it feasible to merge all the diverse

 29

changes into a single development branch. Hopefully,
future research will shed light on whether these
speculations are correct.

6. REFERENCES
[1] Arlein, R. and Gurbani, V., An Extensible

Framework for Constructing Session Initiation
Protocol (SIP) User Agents. Bell Labs Technical
Journal, 9, 3 (November 2004), p. 87-100.

[2] Broy, M., et al., Workshop on Open Source in an
Industrial Context, http://osic.in.tum.de/

[3] Conway, M.E., How Do Committees Invent?
Datamation, 14, 4 (1968), p. 28-31.

[4] Cortes, M., Ensor, J.R., and Esteban, J.O., On SIP
Performance. Bell Labs Technical Journal, 9, 3
(November 2004), p. 155-172.

[5] DiBona, C., Ockman, S., and Stone, M., Open
Sources: Voices from the Open Source Revolution.
1999, Sebastopol, CA: O'Reilly.

[6] Dinkelacker, J., et al. Progressive open source. in
International Conference on Software Engineering.
2002. Orlando, Florida.

[7] Halloran, T.J. and Scherlis, W.L. High Quality and
Open Source Practices. in Meeting Challenges and
Surviving Success: 2nd Workshop on Open Source
Software Engineering. 2002. Orlando, FL.

[8] Herbsleb, J.D. and Grinter, R.E., Architectures,
Coordination, and Distance: Conway's Law and
Beyond. IEEE Software, Sept./Oct., (1999), p. 63-70.

[9] Herbsleb, J.D. and Mockus, A., An Empirical Study
of Speed and Communication in Globally-Distributed
Software Development. IEEE Transactions on
Software Engineering, 29, 3 (2003), p. 1-14.

[10] MacCormack, A., Rusnak, J., and Baldwin, C.,
Exploring the Structure of Complex Software
Designs: An Empirical Study of Open Source and
Proprietary Code, in Harvard Business School
Working Paper. 2004: Boston, MA 02163.

[11] Mockus, A., Fielding, R., and Herbsleb, J.D., Two
Case Studies of Open Source Software Development:
Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology, 11, 3 (2002), p. 309-
346.

[12] Rosenberg, J., et al., SIP: Session Initiation Protocol,
IETF RFC 3261, July 2002,
http://www.ietf.org/rfc/rfc3261.txt

[13] Scacchi, W., Understanding the requirements for
developing open source software systems. IEE
Proceedings on Software, 149, 1 (February 2002), p.
24-39.

[14] Shah, S. Understanding the Nature of Participation
and Coordination in Open and Gated Source
Software Development Communities. in Annual
Meeting of the Academy of Management. 2004.

