
1

Walt Scacchi
Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425
Wscacchi@ics.uci.edu

http://www.ics.uci.edu/~wscacchi/Presentations/OSS-Requirements



2

• Research methodology
• Community characteristics
• Software Requirements process
• Open source processes for Requirements
• Software Informalisms
• Implications
• Conclusions



3

• Prior empirical (case) studies of Open Source
Software Development (OSSD) Projects
– Mockus, Fielding, Herbsleb, 2000, 2002, Apache httpd

server
– Reis and Fortes, 2002, Mozilla Web browser
– Schach et al., 2002; Holt et al., 2000, Linux Kernel
– Koch and Schneider 2001; German 2002, GNOME User

Interface
– Jorgensen, 2001, FreeBSD operating system
– Garg et al., 2002, OSSD (“progressive open source”)

within HP
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• Individual case studies: significant details, but
limited (and premature) generalization, little/no
comparative analysis
– Halloran and Scherlis, 2002, comparative study of

software tools and code volume in eleven OSSD
projects, all in one domain (Internet infrastructure)

• No studies that examine multiple OSSD projects in
multiple domains
– Such studies would offer higher degree of comparative

analyses and generalization of results
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• Comparative case studies
– Multiple open software development projects

• Across four communities
– Two research oriented
– Two development oriented

• Qualitative (“grounded theory”) techniques
• Analyzing and modeling

– development processes
– work practices
– community structures
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• According to Steve Ballmer (CEO, Microsoft)
–  "We have to compete with free software, on

value, but in a smart way. We cannot price at
zero, so we need to justify our posture and
pricing. Linux isn't going to go away--our job is
to provide a better product in the marketplace."

– "Linux is not about free software, it is about
community”(emphasis added).

– London, 24 September 2002, speaking on MS, its “Most Valued
Professionals” (MVPs), and “shared source” vs. “open source”
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• Development oriented domains
– Networked computer games
– Internet infrastructure

• Research oriented domains
– Astrophysics/deep space imaging
– Academic software design
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• Classic Requirements Engineering Process
– Elicitation
– Analysis
– Specification and modeling
– Validation
– Communicating and managing
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Open source processes for Requirements
• Post-hoc assertion of requirements+design
• Reading, sense-making, accountability
• Continually emerging webs of discourse
• Condensing and hardening discourse
• Global access to discourse
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Open source processes for Requirements

• OSS Requirements are
– not explicit
– not formal

• QED, OSS Requirements embedded within
“informalisms”

• Example OSS informalisms follow
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Open source processes for Requirements

• Elicitation
• Analysis 

• Specification and
modeling

• Validation

• Communicating and
managing

• Post-hoc assertion
• Reading, sense-

making, accountability
• Continually emerging

webs of discourse
• Condensing and

hardening discourse
• Global access to

discourse
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• Community communications
– Threaded discussion forums
– Email (list servers)
– Newsgroups
– IRChat/Instant messages
– Community digests (“Kernel Cousins”)
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• Scenarios of Usage as linked Web pages
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• How-To guides, To-Do lists, FAQs
• Traditional software user documentation

– Unix/Linux man pages
• External publications

– trade articles
– scholarly research papers
– books (cf. O’Reilly Books)
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• Open Software Web Sites
– Community Web sites
– Community Software Web sites
– Project Web sites
– Source code Webs/Directories
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• Software bug reports
– Ad hoc report Web
– Bugzilla (database tracking)

• Issue tracking
– Issuezilla
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• Software extension mechanisms
– Inter-application scripting

• Csh, Perl, Python, Tcl, scripting
• Pipelines (cf. CXCDS)

– Intra-application scripting (e.g., UnrealScript)
– Plug-in architectures

• Apache server architecture
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• Open source software licenses
– GNU Public License (GPL)
– Lesser/Library GPL (LGPL)
– Artistic License
– Mozilla Public License (MPL)
– SUN Public License (SPL)
– and 25 more (http://opensource.org)
– “Creative Commons” Project at Stanford Law

School developing public license framework
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• Software informalisms are the media of
software requirements

• Software informalisms are the subject of
software requirements

• OSS Requirements are implied activities or
capabilities

• (Re)reading and reviewing informalisms is a
prerequisite to writing open software
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• Developing open software requirements is a
community building process
– not just a technical development process
– open source peer reviewing creates a community

of peers
• OSSD processes often iterate daily versus

infrequent singular (milestone) SLC events
– frequent, rapid cycle time (easier to improve) vs.

infrequent, slow cycle time (hard to improve)
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• Determining the quality of open software
requirements:
– not targeted to consistency, completeness,

correctness
– instead focusing attention to community

building, freedom of expression, ease of
informalism navigation (traceability), implicit
vs. explicit informalism structuring
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• Developing open software requirements is
different than requirements engineering
– not better, not worse, but different and new
– more social, more accessible, more convivial

• Open source software systems don’t need
and probably won’t benefit from classic
software requirements engineering.
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• Need to integrate OSSD with SE
– development infrastructure (tools and environments)
– development processes
– developer community

– across multiple domains
• Scientific research
• Commercial development
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• People use OSS development tools to create,
update, distribute, or browse OSS informalisms

• OSSD tool taxonomy:
– Seven level hierarchy; more than 40 tool types
– http://www.ics.uci.edu/~wscacchi/Software-

Process/Open-Software-Process-Models/Open-
Source-Software-Tools.html
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