
1

Walt Scacchi
Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425
Wscacchi@ics.uci.edu

http://www.ics.uci.edu/~wscacchi/Presentations/OSS-Requirements

2

• Research methodology
• Community characteristics
• Software Requirements process
• Open source processes for Requirements
• Software Informalisms
• Implications
• Conclusions

3

• Prior empirical (case) studies of Open Source
Software Development (OSSD) Projects
– Mockus, Fielding, Herbsleb, 2000, 2002, Apache httpd

server
– Reis and Fortes, 2002, Mozilla Web browser
– Schach et al., 2002; Holt et al., 2000, Linux Kernel
– Koch and Schneider 2001; German 2002, GNOME User

Interface
– Jorgensen, 2001, FreeBSD operating system
– Garg et al., 2002, OSSD (“progressive open source”)

within HP

4

• Individual case studies: significant details, but
limited (and premature) generalization, little/no
comparative analysis
– Halloran and Scherlis, 2002, comparative study of

software tools and code volume in eleven OSSD
projects, all in one domain (Internet infrastructure)

• No studies that examine multiple OSSD projects in
multiple domains
– Such studies would offer higher degree of comparative

analyses and generalization of results

5

• Comparative case studies
– Multiple open software development projects

• Across four communities
– Two research oriented
– Two development oriented

• Qualitative (“grounded theory”) techniques
• Analyzing and modeling

– development processes
– work practices
– community structures

6

• According to Steve Ballmer (CEO, Microsoft)
– "We have to compete with free software, on

value, but in a smart way. We cannot price at
zero, so we need to justify our posture and
pricing. Linux isn't going to go away--our job is
to provide a better product in the marketplace."

– "Linux is not about free software, it is about
community”(emphasis added).

– London, 24 September 2002, speaking on MS, its “Most Valued
Professionals” (MVPs), and “shared source” vs. “open source”

7

• Development oriented domains
– Networked computer games
– Internet infrastructure

• Research oriented domains
– Astrophysics/deep space imaging
– Academic software design

8

• Classic Requirements Engineering Process
– Elicitation
– Analysis
– Specification and modeling
– Validation
– Communicating and managing

9

Open source processes for Requirements
• Post-hoc assertion of requirements+design
• Reading, sense-making, accountability
• Continually emerging webs of discourse
• Condensing and hardening discourse
• Global access to discourse

10

Open source processes for Requirements

• OSS Requirements are
– not explicit
– not formal

• QED, OSS Requirements embedded within
“informalisms”

• Example OSS informalisms follow

11

12

13

14

15

16

17

Open source processes for Requirements

• Elicitation
• Analysis

• Specification and
modeling

• Validation

• Communicating and
managing

• Post-hoc assertion
• Reading, sense-

making, accountability
• Continually emerging

webs of discourse
• Condensing and

hardening discourse
• Global access to

discourse

18

• Community communications
– Threaded discussion forums
– Email (list servers)
– Newsgroups
– IRChat/Instant messages
– Community digests (“Kernel Cousins”)

19

• Scenarios of Usage as linked Web pages

20

• How-To guides, To-Do lists, FAQs
• Traditional software user documentation

– Unix/Linux man pages
• External publications

– trade articles
– scholarly research papers
– books (cf. O’Reilly Books)

21

• Open Software Web Sites
– Community Web sites
– Community Software Web sites
– Project Web sites
– Source code Webs/Directories

22

23

24

• Software bug reports
– Ad hoc report Web
– Bugzilla (database tracking)

• Issue tracking
– Issuezilla

25

26

• Software extension mechanisms
– Inter-application scripting

• Csh, Perl, Python, Tcl, scripting
• Pipelines (cf. CXCDS)

– Intra-application scripting (e.g., UnrealScript)
– Plug-in architectures

• Apache server architecture

27

• Open source software licenses
– GNU Public License (GPL)
– Lesser/Library GPL (LGPL)
– Artistic License
– Mozilla Public License (MPL)
– SUN Public License (SPL)
– and 25 more (http://opensource.org)
– “Creative Commons” Project at Stanford Law

School developing public license framework

28

• Software informalisms are the media of
software requirements

• Software informalisms are the subject of
software requirements

• OSS Requirements are implied activities or
capabilities

• (Re)reading and reviewing informalisms is a
prerequisite to writing open software

29

• Developing open software requirements is a
community building process
– not just a technical development process
– open source peer reviewing creates a community

of peers
• OSSD processes often iterate daily versus

infrequent singular (milestone) SLC events
– frequent, rapid cycle time (easier to improve) vs.

infrequent, slow cycle time (hard to improve)

30

• Determining the quality of open software
requirements:
– not targeted to consistency, completeness,

correctness
– instead focusing attention to community

building, freedom of expression, ease of
informalism navigation (traceability), implicit
vs. explicit informalism structuring

31

• Developing open software requirements is
different than requirements engineering
– not better, not worse, but different and new
– more social, more accessible, more convivial

• Open source software systems don’t need
and probably won’t benefit from classic
software requirements engineering.

32

• Need to integrate OSSD with SE
– development infrastructure (tools and environments)
– development processes
– developer community

– across multiple domains
• Scientific research
• Commercial development

33

• People use OSS development tools to create,
update, distribute, or browse OSS informalisms

• OSSD tool taxonomy:
– Seven level hierarchy; more than 40 tool types
– http://www.ics.uci.edu/~wscacchi/Software-

Process/Open-Software-Process-Models/Open-
Source-Software-Tools.html

34

• Project collaborators:
– Mark Ackerman, UMichigan,
– Margaret Ellliot, Ph.D., Mark Bergman,

Xiaobin Li, UCI-ISR
– Julia Watson, The Ohio State University

• Funding support:
– National Science Foundation, IIS#-0083075, ITR#-

#0205679
– Defense Acquisition University, N487650-27803

35

• W. Scacchi, Understanding the Requirements for Developing Open Source
Software, IEE Proceedings--Software, 149(1), 24-39, 2002.
http://www.ics.uci.edu/~wscacchi/Papers/New/Understanding-OS-
Requirements.pdf

• W. Scacchi, Exploring Open Source System Acquisition Processes and
Architectures, Final Report, June 2002,
http://www.ics.uci.edu/~wscacchi/ProjectReports/DAU-Final-Report-2002.pdf

• W. Scacchi, Open EC/B: A Case Study in Electronic Commerce and Open
Source Software Development, Final Report, July 2002,
http://www.ics.uci.edu/~wscacchi/ProjectReports/CRITO-Final-Report-2002.pdf

• W. Scacchi, Is Open Source Software Development Faster, Better, and Cheaper
than Software Engineering?, 2nd Workshop on Open Source Software
Engineering, Orlando, FL, May 2002,
http://www.ics.uci.edu/~wscacchi/Papers/New/ICSE02-Workshop-Scacchi-
01.pdf

	Understanding the Requirements for Open Source Software Development
	Overview
	Research methodology
	Research methodology
	Research methodology
	Community characteristics
	Community characteristics
	Software Requirements process
	Open source processes for Requirements
	Open source processes for Requirements
	Open source processes for Requirements
	Software Informalisms
	Software Informalisms
	Software Informalisms
	Software Informalisms
	Software Informalisms
	Software Informalisms
	Software Informalisms
	Implications
	Implications
	Implications
	Conclusions
	Conclusions
	Conclusions
	Acknowledgements
	References

