Formality and Informality in Requirements Engineering

Joseph A. Goguen*
Department of Computer Science and Engineering
University of California at San Diego, La Jolla CA 92093-0114

Abstract: This paper is an overview of a new ap-
proach to requirements; the exposition takes formality
and informality as its theme. The approach considers
that requirements are information and that informa-
tion is social. Ethnomethodology and semiotics are
used to explore the nature of information and require-
ments. Some limits of formalization, and the impor-
tance of tacit knowledge and evolution motivate new
methods for acquiring and tracing requirements.

1 Introduction

Requirements are information, and information is sit-
uated, i.e., we must consider how it is produced and
used, not merely how it is represented. The situa-
tions that determine the meaning of requirements are
not merely technical, but involve social context in sig-
nificant ways. The social situatedness of information
means that to some degree, it is irreducibly informal.
However, there are some advantages to informality
and situatedness for requirements engineering, includ-
ing greater flexibility and efficiency. This paper is an
overview, drawn mainly from [6, 7] and [8].

2 Understanding Requirements

Requirements are properties that a system should have
in order to succeed in the environment where it will
be used. This definition (from [5]) refers to a sys-
tem’s context of use, and thus to the social as well
as the technical. Much of the information needed for
requirements is embedded in the social worlds of users
and managers. It is informal and depends on context
for its interpretation. Moreover, much of it is tacit,
i.e., cannot be verbalized by those who have it (see
Section 2.1). On the other hand, the representations
needed for constructing computer-based systems tend
to be formal, or at least semi-formal.

Important social issues that complicate require-
ments include culture, organizational structure, legal
and economic constraints, work practices of end users,
marketing strategies, and much more. Because such is-
sues cannot be modelled by traditional technical meth-
ods, novel approaches are needed.

*On leave from Programming Research Group, Oxford Uni-
versity Computing Lab.

Of course, technical approaches can be highly suc-
cessful, and are certainly necessary for many problems;
e.g., for humans to survive in a hostile environment
like space, factors like air, water and heat must be
carefully quantified and controlled. However, purely
technical approaches cannot take adequate account of
the informal social, political and cultural factors that
are so often responsible for failures of real systems.
Both the formal, context insensitive, and the infor-
mal, socially situated aspects of systems are crucial to
the success of requirements engineering; [5] suggests
that the task of requirements engineering is to recon-
cile them; see also the discussion in [21].

2.1 Tacit Knowledge

It can be hard to get adequate data on which to base
requirements. Experience shows that simply asking
managers what they want often works poorly. They
do not (usually) know what is technically feasible,
and cannot accurately describe what their workers and
clients really do, or even what they themselves really
do; the same applies to wants and needs.

This is not because managers are incompetent; in
fact, they are often real experts at their job. Rather,
it is due to what philosophers [18] call the problem of
tacit knowledge, i.e., the phenomenon that people are
able to do things, without being able to say how they
do them. Some examples are riding bicycles, speaking
languages, negotiating contracts, reconciling personal
differences, evaluating employees, and using a word
processor. One important reason for this difficulty is
the situatedness of the information involved.

But to build a system that effectively meets a real
business need, it is usually necessary to find out what
workers, clients and managers actully do and want. It
is best to go where the work is actually done, and care-
fully observe what really happens. Various methods
from sociology seem promising for this purpose.

2.2 Social Approaches

We distinguish social approaches from cognitive ap-
proaches. The latter focus on a single autonomous
rational “user” interacting with a computer and pos-
sibly a larger system. Phrases like “human factors,”
“human-computer interface,” “agent,” and “user cen-
tered” all point to a cognitive approach. Actually, the



“human factors” approach represents an even older
style, which takes humans as introducing additional
technical factors to be measured and engineered in
much the same way as traditional physical factors like
bandwidth. (The movie Apollo 18 dramatizes NASA’s
human factors approach, showing how it was miti-
gated by social context, e.g., military traditions like
responsibility and chain of command.)

2.3 Ethnomethodology

Traditional sociology has been much influenced by
what it takes to be orthodox science, which first for-
mulates a theory, then derives some predictions, and
finally tests them. This is done objectively, in that the
desires and biases of the scientist should not affect the
outcome; there is a rigid separation between subject
and object, between observer and observed.

Modern physics has moved far from this model of
science, so it should not be surprising if sociology, and
the social aspects of computing, had to go even fur-
ther. In particular, if objective information is replaced
by situated information, then orthodox techniques for
formulating and testing hypotheses, e.g., statistical
sampling, are not valid, because observed events can-
not be assumed drawn from the same sample space.
However, statistical methods underpin much of sociol-
ogy, e.g., the design and evaluation of questionnaires.
This does not mean statistics and questionnaires are
useless, but rather that they should be used with cau-
tion where context plays a significant role.

Ethnomethodology can be seen as a reaction
against the “scientific” approach of traditional soci-
ology. Ethnomethodology reconciles a radical empiri-
cism with the situatedness of social data, by looking
closely at how members of a group actually organize
their behavior. A basic principle is that members are
held accountable for certain actions by their group;
moreover, exactly those actions are significant for that
group. Members performing such actions can be asked
for an account, i.e., a justification!. We call this the
principle of accountability.

From this, it follows that social interaction is or-
derly, i.e., can be understood. Since the partici-
pants understand it because of accountability, analysts
should also be able to understand it, if they can dis-
cover the methods and categories that members them-
selves use to make sense of their interactions. For this
purpose, it is important to use “naturally occurring”
data, collected in a situation where members are en-
gaged in activities that they regularly and ordinar-

IThis does not mean that such accounts are always, or even
usually, requested by members of the group, or that they are
necessarily given when requested.

ily do; otherwise, the principle of accountability will
not apply, and we cannot be sure that events in the
data have any natural social significance. For exam-
ple, data collected in interviews cannot be used (unless
we want to study what happens in interviews!).

Ethnomethodology tries to determine the categories
and methods that members use to render their actions
intelligible to one another; this contrasts with presup-
posing that the categories and methods of the ana-
lyst are necessarily superior to those of members. The
methods and categories of members are identifiable
through the ways that members are held accountable
by their group. Through immersion in data from some
particular social group (such as stock brokers), par-
ticular competencies are gradually acquired that let
an analyst be a sensitive, effective “measuring instru-
ment” in that domain. In this way, subjectivity is
harnessed rather than rejected?®.

We conclude this subsection with some aspects of
ethnomethodology that may be considered negative.
The use of naturally occurring data precludes many
convenient “quick and dirty” ways to collect informa-
tion, including questionnaires and interviews. Also,
controlled experiments are unsuitable, as are solitary
equipment operators. Since data must be grounded
in the concrete circumstances of its production, eth-
nomethodology cannot be (directly) applied to sys-
tems that have not yet been built.

Analysts must understand members’ concepts and
methods. For some particular purpose, it is only nec-
essary to understand certain members’ concepts and
methods, to a certain degree; but it can be hard to
determine what needs to be understood, and to what
degree. Ethnography can help by providing an ini-
tial understanding of the group being studied. Eth-
nomethodological analysis is labour intensive; projects
may involve hundreds of hours for recording, tran-
scribing and analysing data.

Ethnomethodology can be hard to understand; rel-
atively comprehensible expositions of some important
points appear in [12], [22], and [5]. Conversation anal-
ysis studies details of overlap, response, interruption,
repair, etc. in ordinary conversation [19], while inter-
action analysis uses video data. Projects at Oxford
have used ethnomethodology to better understand re-
quirements in various domains, including stock bro-
kerage and telecom operations; see Section 4.2.

2Tt is worth noting that ethnomethodological analysis is often
done in groups, creating a social situation in which members are
accountable for their accounts.



2.4 Situatedness

We can now be more precise about what situatedness
means: events can only be understood in relation to
the concrete situation in which they occur; they ac-
quire meaning through interpretation in that situa-
tion. The following qualities of situatedness (from [5],
partly following Suchman [22]) may help clarify this:

1. Emergent: Events cannot be understood at the
level of the individual, that is, in terms of indi-
vidual (cognitive) psychology, because they are
jointly constructed by members of some group
through their on-going interactions.

2. Local: Events are seen as such in a particular con-
text, including a particular time and place.

3. Contingent: The construction and interpretation
of events depends upon the current situation, po-
tentially including the current interpretation of
prior events. Interpretations are subject to nego-
tiation, and relevant rules are interpreted locally,
and can even be modified locally.

4. Embodied: Events are linked to particular physical
contexts, and the particular way that (human)
bodies are embedded in a context may be essential
for interpreting some events.

5. Open: Accounts of events cannot in general be
given a final and complete form, but must remain
open to revision in the light of further analyses
and further events.

6. Vague: Practical information is only elaborated
to the degree that it is useful to do so; the rest is
left grounded in tacit knowledge.

These qualities give rise to basic limitations of infor-
mation, and hence of requirements.
2.5 Sociology of Science
There have been exciting new developments in the so-
ciology of science. One important voice is Bruno La-
tour [11]. Latour calls a representation that can be
interpreted in essentially the same way in a variety
of contexts an immutable mobile. This is information
that has been (at least partially) dried out; often it is
what Latour calls a “re-representation,” i.e., informa-
tion that has undergone concentration; for example, a
large set of observations of planetary motion might be
summarized in a single equation. Latour claims that
these three qualities, immutability, mobility, and con-
centration, are characteristic of scientific information.
Formalization tends to increase these qualities. In-
deed, they may be considered as criteria for the suc-
cess of formalization. As Latour [11] points out, the
construction of immutable mobiles can be a way to
achieve control. For example, if an analyst compresses

large amounts of information into simple graphical
representations, then anyone who wishes to disagree
must mobilize the resources to re-represent compa-
rable amounts of information. The presentation of
dataflow diagrams in requirements meetings illustrates
this, since the use of such diagrams is beyond most
users and managers, due to the huge volume of infor-
mation involved in large projects. Several tools have
been developed to help organize requirements. How-
ever, most are based on naive models that take little
account of social context (see [17] for a review). For
example, the IBIS model records decisions in a net-
work of issues, positions and arguments; however, this
is not a natural category system for its users.

2.6 Requirements Evolution

Constantly changing requirements are a major diffi-
culty in building large complex systems; let us call
this requirements evolution. Tracing design decisions,
specs, and code back to the requirements they are sup-
posed to meet involves maintaining a complex network
of links in the face of constant change. Real devel-
opment projects for large complex systems rarely at-
tempt this, and those that do find it excessively bur-
densome, because the current state of practice requires
manual entry and update of all dependencies. Section
5.3 discusses an approach to traceability motivated by
the observations in this paper.

3 What is Information?

We speak of “information technology,” “information
systems,” “information science,” “information engi-
neering,” and even “the information age,” but it is
an open scandal that we do not have any theory, or
even definition, for information that is adequate for
familiar applications in business and science.

To understand information, we must broaden our
perspective beyond specific technical factors. In con-
trast to statistical theories of information following
Shannon [20], and representational theories of infor-
mation like the situation theory of Barwise and Perry
[1], we suggest a social theory of information [6]. No
theory of the kind we need can be “objective” or “re-
alist,” in the sense of agsuming a pre-given distinction
between subject and object, or an objectively given
real world. Thus, traditional semiotics is not ade-
quate, because it agssumes that signs represent things
in a real, objective world; we need a social semiotics.
3.1 Towards a Social Information Theory
It seems very difficult to develop a theory of infor-
mation that can provide an adequate foundation for
requirements engineering, and the material in this sec-
tion should be considered a preliminary exploration.
In that spirit, I suggest that an item of information is



an interpretation of a configuration of signs for which
a social group can be held accountable®. Here, each
item of information is tied to a particular relation of
accountability for a particular interpretation in a par-
ticular group; thus, a given configuration of signs could
be interpreted in different ways, giving rise to different
items of information. It takes work to interpret signs
to make them information, and this work is done in
some particular context, making use of the resources
and constraints of that context.

In classical semiotics, signs are configurations that
do not necessarily have significance. However, the very
notion of sign as configuration already presupposes a
category system (e.g., a certain character set), so that
signs must have at least the significance of belonging to
this system. Hence the notion of “sign” in the above
definition is that of a category in what Section 2.3
calls a category system, rather than part of a pre-given
system of objective distinctions.

We can distinguish information that can be under-
stood in a wide variety of contexts from information
that is so thoroughly situated that it cannot be un-
derstood except in relation to certain very particular
contexts. We call these types of information dry and
wet, respectively [4, 5]. There is really a continuum
of “humidity” for information, i.e., there is “damp”
information, of which cookery recipes seem a typical
example. A fairly extreme case is the “raw data” col-
lected in a scientific experiment; although it may be
just a collection of numbers, it is very highly situated,
because those numbers only make sense to a small
group who share a very particular context. On the
other hand, an equation summarizing that data is rel-
atively more dry, and a general physical law is even
drier. This suggests that formalization is a key tech-
nique for making information drier, i.e., less mutable,
more mobile, and more concentrated.

Information, however dry, must still be interpreted
in some local context. Dry information is distin-
guished by the possibility of its being interpreted in
what counts as the same way for practical purposes in
a useful variety of contexts. Latour [11] discusses the
example of cartographic maps: given the proper in-
struments and proper conditions (e.g., good weather),
such maps can be used anywhere in the world; but
each such use is still a local interpretation. Informa-
tion is always situated in some particular social con-
text: there is no such thing as abstract, ideal infor-
mation, which is independent of its context. We can

3This definition is intended to be useful in practice, rather
than a metaphysical assertion about the nature of information.
The sense of accountability intended is that of Section 2.3.

relate this to the “local language games” of Lyotard
[15], which were inspired by late work of Wittgenstein.

This approach to information is very different from
that of knowledge representation in artificial intelli-
gence, which is objectivist and realist, and takes little
or no account of context, including how information is
acquired, used, and evolved.

3.2 Implications for Requirements

Many difficulties with developing large software sys-
tems arise from how we handle requirements, taking
insufficient account of context, particularly social con-
text. The prevailing belief that information is (or
should be) totally dry may be a major obstacle to
developing and accepting better methods. The discus-
sions above suggest there may be viable alternatives,
though more work is certainly needed.

It can be argued that truly adequate requirements
for a system can only be determined after the system
is actually being used successfully. This is another
facet of the situatedness of information; members re-
vise their accounts in the light of new events, or of
new interpretations for prior events, and even what
counts as an event is negotiable. Support for this can
be found in empical work on plans and explanations
[13, 9, 22]. More radically, it could be argued that
time, in the sense of a linear ordering imposed upon
events, is itself the result of the retrospective recon-
struction of causal chains to explain events, i.e., to
account for them in relation to shared values.

4 Requirements Acquisition
This section discusses some methods for getting data
and determining requirements, following [7].
4.1 Some Methods and their Limitations
Perhaps the most common method for getting infor-
mation about users’ needs and habits is introspection.
Although this can be useful, the introspection of an
expert in a different field, such as computer science,
may not reflect the experience of the intended users.
Experts tend to use what they remember or imagine
of themselves; for user interface design, this can be far
from the assumptions, questions and fears of actual
users. For example, if a word processer unexpectedly
centers some text, a user may not try to understand
why; many users seem to believe computers just are
sometimes puzzling or irritating, and that it is neither
necessary nor valuable to explain their more bizarre
behavior. Cognitive scientists tend to be surprised at
this, because their rationalistic theories suggest that
a user who finds a bug in a model should correct it.
It is difficult to introspect what work settings look
like, or the conditions under which a new technology
will be learned or used. For example, many users learn



and use technology in conditions that require multiple
and ongoing splitting of attention, e.g., due to collab-
orative relationships.

Questionnaires, whether administered in writing or
an interview, are limited by their simplistic model of
interaction, which assumes that a given question has
the same meaning to all subjects. This excludes inter-
actions that could be used to establish shared mean-
ing. Although open ended interviews are less con-
strained, they are still limited by the need for partici-
pants to share basic concepts and methods, so they can
negotiate shared meanings. Open ended interviews are
also more vulnerable to interviewer bias. Similar lim-
itations apply to focus groups and their cousins, JAD
(or RAD) groups. These methods are also vulnera-
ble to political manipulation by participants, as many
requirements engineers know from bitter experience.

Protocol analysis asks a subject to engage in some
task and concurrently talk aloud, explaining his/her
thought process. Protocol analysis is also used to re-
flect on tasks retrospectively, i.e., after they have been
accomplished. Proponents claim this can be consid-
ered a “direct verbalization of specific cognitive pro-
cesses” ([2], p. 16). They claim protocols are traces of
“autonomous cognitive activity”. However, language
is intrinsically social, created for a conversational part-
ner (this property is called recipient design in conver-
sation analysis). When an experimenter asks a person
to solve a problem and talk aloud, that person imag-
ines a partner with certain desires, and tries to ad-
dress those desires (subjects may be rebellious as well
as cooperative). Thus, protocols are an unnatural dis-
course form, based on an incorrect cognitivist model
that ignores social context. This unnaturalness can be
shown by specific linguistic features [7].

None of these methods can elicit tacit knowledge.
The principles of ethnomethodology provide a power-
ful framework for a deeper consideration of the limi-
tations of traditional methods, as well as a basis for
methods that do not have the same limitations.

4.2 Video-Based Elicitation

The Video-Based Requirements Elicitation project at
Oxford University is exploring techniques to reveal
tacit, interactional work practices that are invisible
to standard requirements methods. The following are
some goals of this project:

1. To develop an effective new requirements method
that can be used by ordinary requirements engi-
neers in actual projects.

2. To identify informal practices in the workplace
that must be supported by some new or updated
computer-based system.

3. To ease the introduction of new systems by un-
derstanding where disruptions might and might
not be tolerable.

4. To help manage user expectations by determining
where users might want a new system to give a
better service than the old one, through analysis
of current work practices.

In this project, video recordings of actual work are
analyzed using principles from ethnomethodology and
other areas to better understand interactional prac-
tices in the workplace [10, 14].

4.3 Combining Methods and Zooming

Despite their limitations, I do not suggest that any
method is useless (except possibly protocol analysis).
In fact, their strengths seem complementary, so that
various combinations could be useful. In particular,
it is helpful to start with an ethnographic study to
uncover basic concept systems and methods used by
members, typical patterns of work, etc. After this, one
might use questionnaires or interviews to explore what
problems members see as most important, how mem-
bers apply various classification schemes, etc. Then
one might apply discourse, conversation or interaction
analysis for a deeper understanding of selected issues.
This will likely overthrow aspects of prior analyses.

Discourse analysis of stories can be used to explore
the value system of an organization, and discourse
analysis of explanations can provide a kind of situ-
ated task analysis [4]. Conversation and interaction
analyses can help overcome limitations of other meth-
ods. Interaction analysis reveals details of non-verbal
interaction in real work environments, but the effort
required to produce video transcripts suggests that it
should be used very selectively. Ethnography should
be used continually to provide context.

Thus, I suggest a “zooming” method for require-
ments elicitation [5], whereby more expensive but de-
tailed methods are used selectively for problems found
by other methods to be especially important. The var-
ious methods based on ethnomethodology can be seen
as analoguous to an electron microscope: they pro-
vide an instrument that is very accurate and powerful,
but also expensive, requiring careful preparation to en-
sure that the right thing is examined. One should not
use an electron microscope without first determining
where to focus it as exactly as possible, using first the
naked eye, a magnifying glass, an ordinary microscope,
etc. Similarly, in developing requirements, one should
use ethnography, and perhaps discourse analysis, in-
terviews, or questionnaires, before using conversation
or interaction analyses.



5 Formalization

According to Webster’s Dictionary, “formal” means
definite, orderly, and methodical; it does not neces-
sarily entail logic or proofs. Everything that comput-
ers do is formal in the sense that syntactic structures
are manipulated according to definite rules. Formal
notations and methods are syntactic in essence but
semantic in purpose.

The prototypical formal notation is first order logic,
which encodes the semantics of first order model the-
ory with formal rules of deduction that are provably
sound and complete. Unfortunately, theorem provers
for first order logic can be difficult to work with. For-
mal notations can also capture higher levels of mean-
ing, e.g., they can express security requirements, but
such notations are even more difficult.

The orderliness of social life (due to accountability)
and the Henley Regatta example in [8] suggest that
social interaction might be formalizable; but there are
limits to how successful any such formalization can be.
In particular, it will not be easy to formalize domains
where there are many ad hoc special cases, or where
much of the knowledge is tacit.

Formalization will be more successful on narrow
and orderly domains, such as sporting events, that
have long traditions, rule books, referees, regulating
bodies, etc. For example, it would be more difficult
to formalize a children’s game than a boat race, and
much more difficult still to formalize human political
behavior. There are degrees of formalization, from
dry to wet, and it can be important not to formal-
ize beyond the appropriate degree. Cooking recipes
are an interesting example, showing how an interme-
diate degree of formalization is possible and helpful,
whereas a very formal treatment would be unhelpful, if
it were even possible. This also applies to typical uses
of dataflow diagrams and other semi-formal notations
in requirements engineering.

5.1 Limits of Formalization

Because any use of a formalism is situated, the qual-
ities of situatedness impose basic limits: any formal-
ization will necessarily be emergent, contingent, local,
open, and vague. However, formalization does tend
to reduce these qualities. This implies that without
human intervention, a formalization may well be inad-
equate for its intended application; this is illustrated
by common incidents like computer systems sending
checks or bills for a zero amount. For a discussion of
limits and problems with formal methods, see [8].

5.2 Advantages of Informality

Advocates of formal methods often say that formaliza-
tion eliminates the vagueness and ambiguity of natural

language. But our discussions above show this is not
really so. Even the most formal notation still requires
context for its interpretation: it must be learned, and
then used, before it can have meaning. But more im-
portantly, informality has some real advantages.

We first consider what philosophers call the effi-
ciency of language, which is its ability to mean differ-
ent things in different contexts. For example, if the
word “help” is shouted by a swimmer flailing his arms
wildly, it means something very different from its ap-
pearance in a menu on a computer screen. Moreover,
further refining context can yield still different mean-
ings, e.g., if the swimmer is an actor in a movie, or the
menu item summons police to a bank. We can play
such games indenfinitely, changing meanings, perhaps
drastically, by further refining contexts. Moreover, we
can create many many other contexts; language seems
infinitely plastic. Note that the actual physical situ-
ation in which words are spoken is also part of the
context that gives them meaning.

Without ambiguity, it would be much more difficult
to communicate, perhaps impossible, since so many
new words would be needed to make up for all the
contexts that might arise. In fact, language is efficient,
precisely because of its sensitivity to context. Thus,
the ambiguity of natural language is essential to its
practical use.

Vagueness also contributes to efficiency, but at a
finer level of detail than ambiguity. Words like “tall”
and “there” do not have precise meanings (such as
“seven feet”), so that (for example) “the tall one” can
refer to different things in different contexts, and those
things can have radically different heights. If “tall”
could only mean “seven feet in height,” it would not
be very useful.

These considerations apply directly to require-
ments. Context is certainly needed to resolve ambigu-
ity and vagueness. Moreover, requirements documents
are often deliberately written to be ambiguous, to hide
deep political disagreements; sometimes they are even
written to be deliberately misleading. Vagueness and
ambiguity also help in stating tradeoffs that cannot be
resolved until a later stage of development.

5.3 Tracing Requirements

The path to an RSD (Requirements Specification Doc-
ument) and beyond can be highly non-linear, involving
multiple hypotheses, false starts, experiments, dead
ends, etc. Traceability is crucial for survival in such a
dynamic environment, but is seldom straightforward,
as it involves not just objects and relations to be
traced, but also their context, from the motivation
for the trace to the total system development con-



text. The TOOR system [17] was designed for defin-
ing, instantiating, updating and tracing hypermedia
artefacts and relations in several modes, through an
intuitive template-driven graphical interface. TOOR’s
object orientation supports user-definable classes and
inheritance for requirements objects and relations, and
provides a database with automated checks and anno-
tations. Its design has been deeply influenced by the
social considerations presented in this paper, including
the following four points:

1. Requirements are situated, resulting from
negotiations whose outcome depends on the interests,
organizational position, technical background, etc. of
participants. Moreover, the relations among require-
ments and other objects also depend on context and
result from negotiation. Hence, a trace system should
allow great flexibility in defining and updating arti-
facts and relations. TOOR uses the powerful modules
of parameterized programming [3] to represent con-
text in various ways, and to allow users to define and
update relations; this supports any category systems
that users may wish to employ. Modularity can also
improve quality and reduce cost through reuse.

2. Requirements are an inextricable part of
the development process. Tracing project arte-
facts forward and backward from requirements is use-
ful throughout the lifecycle. This implies that register-
ing requirements and relations among them and other
project artefacts is not just a documentation chore,
and tracing requirements (and other objects) is not
just a management activity. Instead, important re-
quirements issues arise throughout the lifecycle, and
appropriate tool support can make it much easier to
resolve such issues. This requires integrating require-
ments information with information about analysis,
specification, coding, etc.

3. Requirements evolve throughout a project’s
life. An RSD is a set of requirements agreed at a spe-
cific time, but this does not freeze requirements; as de-
velopment proceeds, new ideas, design diagrams, spec-
ifications, code, etc. are produced, generating new ob-
jects and relations, and inevitably modifying require-
ments. Requirements change in content and form, be-
coming more consistent, accurate and clear; new at-
tributes are added and old ones deleted. Requirements
relate to one another and to other artefacts, and these
relations also change in content and in form.

TOOR deals with evolution in a uniform way: classes
are declared for each kind of artifact and relation we
wish to control, and are instantiated as development
proceeds. The framework of declarations also evolves.

In particular:
e New classes can be added for new kinds of item.

o New attributes can be added to existing classes

for new kinds of property.

¢ Classes and attributes can be deleted.

¢ Axioms can be changed to reflect a new view of

relations and their composition.
And of course existing objects can be updated.

4. Tracing is situated, and thus should produce
results that are meaningful in the given situation. In
a system with many thousands of interrelated objects,
getting all information available will not be useful,
since the configurations before and after tracing will
be nearly the same. Thus, selective tracing is neces-
sary. However, the selection criteria may not be clear.
A user can often get insight by browsing, guided by
experience and intuition; in TOOR, this can be con-
strained in various helpful ways. In other cases, the
user may be able to make very precise selections us-
ing regular expressions. Thus, TOOR supports several
different trace modes.

6 Summary and Conclusions

This paper takes a broad view of the role of require-
ments in system development. The construction, in-
terpretation and updating of requirements is situated,
and this gives rise to some fundamental limits. The
facts that evolution is inevitable and unending, and
that much of the pressure for change comes from so-
cial context imply that strong support for tracing re-
quirements is needed.

Formalization plays a more basic role in require-
ments engineering than in other engineering disci-
plines. Since requirements capture 4s a process of
formalization, software development requires the con-
struction of new models for each application, in addi-
tion to updating already established models.

All this can be summarized by saying that more
emphasis should be placed on context in system de-
velopment. Context includes being embedded in the
world, which can make information directly available
so that detailed models are unnecessary. Another way
to say this is that information arises co-dependently
between humans and contexts, as noted long ago by
Peirce [16].

Rising to a still higher level, we might say that
beauty, or perhaps better authenticity, comes from re-
lating properly to context. This includes choosing the
proper level of formality. Inappropriate formality can
be alienating, while properly contextualized formality
can be inspiring.

Acknowledgements

I thank Prof. Jawed Siddiqi for his valuable com-
ments, and the coauthors of the papers from which



this overview was drawn. This research was supported
in part by British Telecommunications plc, the CEC
under ESPRIT-2 Working Groups 6071 and 6112, and
a contract managed by 1PA in the “New Models for
Software Architectures” program sponsored by NEDO
(Japan).

References

[1] Jon Barwise and John Perry. Situations and At-
titudes. MIT, 1983.

[2] K. Anders Ericsson and Herbert Simon. Protocol
Analysis: Verbal Reports as Data. MIT, 1984.

[3] Joseph Goguen. Principles of parameterized pro-
gramming. In Biggerstaff and Perlis, editors,
Software Reusability, Volume I: Concepts and
Models, 159-225. Addison Wesley, 1989.

[4] Joseph Goguen. The dry and the wet. In Falken-
berg, Rolland and El-Sayed, editors, Information
Systems Concepts, 1-17. Elsevier North-Holland,
1992. IFIP WG 8.1 (Alexandria, Egypt).

[5] Joseph Goguen. Requirements engineering as the
reconciliation of social and technical issues. In
Jirotka and Goguen, editors, Requirements En-
gineering: Social and Technical Issues, 165—-200.
Academic, 1994.

[6] Joseph Goguen. Towards a social theory of in-
formation. In Star, Bowker and Turner, edi-
tors, Social Science Researsch, Technical Systems
and Cooperative Work. Addison-Wesley,to appear
1996.

[7] Joseph Goguen and Charlotte Linde. Tech-
niques for requirements elicitation. In Fickas
and Finkelstein, editors, Requirements Engineer-
ing ’93, 152-164. IEEE, 1993.

[8] Joseph Goguen and Luqi. Formal methods
and social context in software development. In
Mosses, Nielsen and Schwartzbach, editors, TA P-
SOFT 95, 62-81. Springer, 1995. LNCS 915.

[9] Joseph Goguen, James Weiner and Charlotte
Linde. Reasoning and natural explanation. In-
ternational Journal of Man-Machine Studies, 19:
521-559, 1983.

[10] Christian Heath, Marina Jirotka, Paul Luff and
Jon Hindmarsh. Unpacking collaboration: the in-
teractional organisation of trading in a city deal-
ing room. In European Conference on Computer
Supported Cooperative Work ’93. IEEE, 1993.

[11] Bruno Latour. Science in Action. Open Univer-
sity, 1987.

[12] Steven Levinson. Pragmatics. Cambridge, 1983.

[13] Charlotte Linde and Joseph Goguen. Structure
of planning discourse. Journal of Social and Bi-
ological Structures, 1: 219-251, 1978.

[14] Paul Luff, Marina Jirotka, Christian Heath and
David Greatbatch. Tasks and social interac-
tion: the relevance of naturalistic analyses of
conduct for requirements engineering. In Fickas
and Finkelstein, editors, Requirements Engineer-
ing '93, 187-190. IEEE, 1993.

[15] Jean-Francois Lyotard. The Postmodern Condi-
tion: a Report on Knowledge. Manchester, 1984.

[16] Charles Saunders Peirce. Collected Papers. Har-
vard, 1965.

[17] Francisco Pinheiro and Joseph Goguen. Design
and use of an object-oriented tool for tracing re-
quirements. IEEFE Software, pages 52—64, March
1996.

[18] Michael Polanyi. The Tacit Dimension. Rout-
ledge and Kegan Paul, 1967.

[19] Harvey Sacks, Emanuel Schegloff and Gail Jeffer-
son. A simplest systematics of the organization
of turn-taking in conversation. Language, 504:
696-735, 1974.

[20] Claude Shannon and Warren Weaver. Mathemat-
ical Theory of Communication. Illinois, 1964.

[21] Jawed Siddiqi. Challenging universal truths of
requirements engineering. IEEE Software, March:
18-19, 1994.

[22] Lucy Suchman. Plans and Situated Actions:
The Problem of Human-machine Communica-
tion. Cambridge, 1987.



