
Requirements engineering: making the connection between the software
developer and customer

H. Saiediana,* , R. Daleb

aDepartment of Computer Science, University of Nebraska at Omaha, Omaha, NE68182-0500, USA
bAIL Systems Inc., Technical Services Operations, Bellevue, NE 68005, USA

Received 11 June 1999; received in revised form 31 October 1999; accepted 11 November 1999

Abstract

Requirements engineering are one of the most crucial steps in software development process. Without a well-written requirements
specification, developer’s do not know what to build, user’s do not know what to expect, and there is no way to validate that the created
system actually meets the original needs of the user. Much of the emphasis in the recent attention for a software engineering discipline has
centered on the formalization of software specifications and their flowdown to system design and verification. Undoubtedly, the incorpo-
ration of such sound, complete, and unambiguous traceability is vital to the success of any project. However, it has been our experience
through years of work (on both sides) within the government and private sector military industrial establishment that many projects fail even
before they reach the formal specification stage. That is because too often the developer does not truly understand or address the real
requirements of the user and his environment.

The purpose of this research and report is to investigate the key players and their roles along with the existing methods and obstacles in
Requirements Elicitation. The article will concentrate on emphasizing key activities and methods for gathering this information, as well as
offering new approaches and ideas for improving the transfer and record of this information. Our hope is that this article will become an
informal policy reminder/guideline for engineers and project managers alike. The success of our products and systems are largely determined
by our attention to the human dimensions of the requirements process. We hope this article will bring attention to this oft-neglected element
in software development and encourage discussion about how to effectively address the issue.q 2000 Elsevier Science B.V. All rights
reserved.

Keywords: Requirements specification; Requirements specification; Key players

1. Introduction

Designing from a deep knowledge of the customer is
central to any requirements definition process. When
attempting to find out the right thing to do for the customer,
we often focus on actions to take-interviews, questionnaires,
and observations. However, the success of all these activi-
ties ultimately depend on how well people communicate
and work together. Not only must we deal with the technical
issues at hand, but we must also consider the interpersonal,
cultural, and organizational aspects of our work environ-
ment. As a developer, it is absolutely critical that we recog-
nize this human dimension in our discourse with the
customer. To be successful in understanding the user and
in meeting his needs with our products, we need to formu-

late customer-centered strategies and communication tech-
niques that encourage customer participation and shared
consensus in our product-making decisions.

This article will investigate the current state of
requirements elicitation. It will introduce the goals of
successful elicitation along with the key players from
both the customer and developer and their intended roles
in the process. The article will examine some of the
more common methods of elicitation and the obstacles to
successful information transfer. The article will then address
these obstacles by identifying the keys to effective com-
munication and by introducing new and alternative
approaches and environments to approaching the elicitation
problem.

The article will conclude by re-addressing the challenge
and need realities for good requirements definition and
analysis. It shall also attempt to offer encouragement and
evolutionary strategy to any individual trying to be a
“change agent” within his or her own organization.

Information and Software Technology 42 (2000) 419–428

0950-5849/00/$ - see front matterq 2000 Elsevier Science B.V. All rights reserved.
PII: S0950-5849(99)00101-9

www.elsevier.nl/locate/infsof

* Corresponding author. Tel.:11-402-554-2849; fax:11-102-554-3284.
E-mail address:hossein@cs.unomaha.edu (H. Saiedian).



2. Background

This section provides the necessary information to orient
the reader who may not be a specialist in the paper subject.

2.1. Role of requirements elicitation

The first step in any software developmental effort is to
determine exactly what the software system shall do.
Software requirements engineering is defined as all the
activities devoted to identification of user requirements,
analysis of the requirements to drive additional require-
ments, documentation of the requirements as a specification,
and validation of the documented requirements against the
actual user needs.

As part of this activity, software requirements elicitation
is the specific processes of gathering, determining, extract-
ing, or exposing software requirements. From the user’s
perspective, good elicitation results in them having a better
understanding of their needs and constraints. From this, they
will be able to effectively evaluate solution alternatives and
understand the implications of their decisions. From the
developer’s perspective, it constructs a clear, high-level
specification of the problem that is to be solved. It ensures
that a solution is being developed for the right problem and
that the solution is feasible. Most importantly, a good elici-
tation process builds a common vision of the problem and
the conceptualized software solution between the user and
developer.

An elicitation strategy is a set of guidelines for identi-
fying the correct source of requirements and background
information, eliciting requirements from them, and
resolving conflicts among them. Of all the aspects of
requirements analysis, it is the most communication-
intensive. As a result, most of the techniques that prove
useful do not come from computer science research, but
from organizational theory, group interaction research,
interviewing techniques, and practical experience
[1, pp. 256–257].

2.2. Key players and their functions

Ideally, there are many participants involved in software
requirements development. It is important that we recognize
the existence of these diverse interests and the specific roles
they play to ensure the right people are involved at the right
time and that the right expectations are addressed. Failure to
do so results in indirect and ineffective communication
between the customer and developer. Issues that are not
addressed until later phases in system development can
become major schedule and budget impacts, at best, and
even potential showstoppers.

The key players (from the customer side) and their
respective functions can be classified as follows:

Buyer; buyers are the people responsible for contracting
and paying for the software system. Their chief concerns
include project schedule and budget, even to the point of

compromising usability. These individuals are usually the
project point of contact for meetings with the developer.
While their background may be technical in nature, they
are often long removed from the user/domain expert
relationship with the work environment they oversee.

End user; end users are the individuals who ultimately
will use the system developed. As such, they are most
concerned with the usability, reliability, and availability of
the system. These individuals are the ones most familiar
with the specific work procedures being addressed by the
system. They have the greatest stake when it comes to issues
concerning user interfaces and user guide documentation.

Domain experts; these are the individuals who understand
the system environment or problem domain where the
software system will be employed. They are the source for
technical input regarding system interface detail and
requirements.

Software maintainers; for projects that will eventually be
maintained by the customers, these are the individuals who
will be responsible for future change management and
implementation and anomaly resolution. As such, they are
most interested in internal product issues such as design
documentation and system architecture.

The key players (from the developer side) and their
respective functions can be classified as follows:

Program management; these are the individuals respon-
sible for product sales and marketing as well as overall
project development oversight. Often, these are the indi-
viduals who deal directly with the customer.

Requirements engineers; these are the individuals,
usually system engineers, who are responsible for the iden-
tification and documentation of the requirements.

Software engineers; these are the individuals who provide
expertise on software design constraints, prototype develop-
ment, and technical feasibility.

Testers; testers are responsible for developing and exe-
cuting the necessary test conditions for development and
sell-off activities. These include module tests, integration
tests (as elements of the product are brought together),
and ultimately system-level functional tests (both stand-
alone and integrated with external interfaces). All are
designed to validate and demonstrate delivered capability
in level-up fashion. As such, testers must intimately under-
stand and trace requirements from origin to final product to
ensure product validation is feasible and completely and
accurately documented. If we cannot adequately
demonstrate to the user that the product meets their needs
at sell-off, then its acceptance will be jeopardized.

As with the customer side, each of the specific disciplines
for the developer brings a critical expertise to the require-
ments definition task. It is important that we do not promise
something that cannot be ultimately implemented or that
cannot be done given the current budget or schedule. For
effective requirements information gathering, it is important
that these various disciplines be organized and coordinated
into a team for brainstorming and analysis activity with the

H. Saiedian, R. Dale / Information and Software Technology 42 (2000) 419–428420



customer. Product definition is unavoidably a battle of
trade-off. User’s invariably desire that which their resources
and/or available technology cannot provide. It is critical that
any early requirements change decisions (added cost,
removed capability, etc.) are made with full customer
involvement. Ensuring that the user understands their
constraints (and the resulting impacts to their needs) is
just as important as identifying their needs. Otherwise, the
developer will shoulder the blame for failing to deliver what
the customer wanted. Given all this, requirements gathering
requires the developer representatives to have a wide variety
of knowledge and skills in addition to the specific technical
expertise in the application domain and software develop-
ment. These include interviewing, group work, facilitation,
negotiation, problem solving, and presentation skills.

2.3. Common techniques and tools

Currently, we gain understanding about the participants
work environment and activities through such traditional
techniques as on-site observations of on-going activities,
open-ended interviews, and examinations of manuals, job
descriptions, and organizational hierarchies. In order to gain
an understanding of the user’s work, we try to appeal to the
very resources upon which the participants draw to achieve
their own understanding of their work. Knowledge of many
of these aspects can only be gained from experienced
co-workers. Further resources are the situational and inter-
actional context in which the activities of work are
conducted.

Such a full complement of data gathered from interviews
and document reviews is often to unwieldy to assemble and
display let alone carry around to all relevant interested
parties dispersed throughout an organization. Further,
project schedule and budget often limit the time for and
the number of participants involved in such information
gathering. Face-to-face discourse is often almost non-
existent. Depending on the complexity of the target problem
domain, this can result in much omitted detail and perspec-
tive leaving us, as the developer, with a skewed view of the
user’s real needs.

3. Underlying difficulties with elicitation

The elicitation of requirements is a difficult process. This
section of the article highlights the most common problems
that hinder the identification/definition of the user’s needs.

3.1. Poor communication

We can communicate goals, objectives, tasks,
procedures, constraints, interdependencies, timetables,
priorities, responsibilities, accountabilities, and even deliver
the solution that perfectly meets our customer’s needs—and
still not meet our customers expectations [2, p. 38]. That is

because how we communicate can be just as important as
what we communicate.

If we inadvertently exhibit signs of non-listening when
we work with customers, we give them the impression that
we are distracted or uninterested. This can undermine our
ability to work together effectively. Conversely, if people’s
perception is that you are listening, it leads them to feel
comfortable with you and to open up to you.

In both verbal and written communication, it is important
not to contradict what we intend to communicate. Over-
eagerness to be responsive or the need to match or exceed
the level of performance by a competitor can cause us to
promise something that we cannot deliver. Conflict can also
occur if we promise a level of service and then exceed it. For
example, if we consistently complete projects for our
customers ahead of schedule or deliver more than we
promise, they will begin to expect the same in future
projects. Worse, they may suspect we are padding our
cost and schedule estimates in our proposals.

Indirect communication links are those in which the
customer and developer do not deal with one another
directly but communicate through intermediaries. The
marketing and sales link (in which a salesperson serves as
the intermediary) is one example of this as is a MIS inter-
mediary who defines corporate customer’s goals and needs
to designers and developers. Intermediaries often do not
have a complete understanding of the customer’s needs
and, as a result, can intentionally or unintentionally filter
and distort messages.

To complicate matters, communication preferences often
vary from customer to customer and from one circumstance
to another. Each has its own priorities, time frames,
pressures, and objectives. It is the responsibility of the
developer to be cognizant of and adapt to the customer’s
communication styles considering such things as their pace
of activity, receptiveness to new ideas, level of risk-taking,
adherence to protocol, and written and oral presentation
formats [2, p. 45]. Showing an interest in the customer’s
preferences tells them they matter and will ultimately help
build the bridge to better communication needed to work
together and meet expectations. Do not wait for the
customer to complain to consider their preferences.

3.2. Resistance

Resistance is a physical expression of an emotional
process-taking place within a person and takes the form of
opposition. Resistance to new ideas is a perfectly natural
part of any improvement process. Nobody likes being told
they are obsolete or that they can do things better. Further,
technological “revolutions.” are often too frequent for most
people’s taste, especially when the costs of learning a new
technology come close to outweighing the benefits [3, p. 42].

Being able to recognize and mitigate resistance is critical
for the requirements engineer because it highlights issues
important to the customer that are not being addressed

H. Saiedian, R. Dale / Information and Software Technology 42 (2000) 419–428 421



adequately. Some of the more common forms of resistance
are listed and briefly described below:

• Time resistance. Person never has time to meet with you.
• Overload resistance. No matter how much information is

given to the person, it is never enough.
• Silence resistance. Person does not react or respond to

anything said.
• Impracticality resistance. Person always reminds you

that he lives in the real world.
• Compliance resistance. Person always agrees with you.

Reservations are never expressed and the implications is
that whatever you do is fine.

3.3. Articulation/expertise problems

A common obstacle to communication on technical
matters is the use of terminology that is not understood by
one of the parties. Professionals love the use of jargon and
acronyms and use them profusely. Overuse of such termi-
nology can serve to confuse, annoy, or intimidate and it is
important to adjust to the customer’s level of technical
sophistication.

The complexity of modern software systems also
complicates the elicitation process. Many systems have
countless interconnections between subsystems and even
environments that even experts in specialized disciplines
have difficulty in understanding. Even more problematic is
the ever-changing nature of requirements as user’s learn and
grow and the difficulties of integrating multiple, diverse and
conflicting views.

Another problem can be the developer “talking down” to
the “dumb users.” In the minds of some engineers and
programmers, making software easy to use is necessary
only because “most people are too unsophisticated to under-
stand the glories of a real computer system” [3, p. 70]. When
a system is approached with that attitude, the result can be
downright offensive to the oft-intelligent user. Too often, we
think that something is too complex to explain, so why
waste the effort? However, taking time to educate the
customer has a number of benefits. It not only forces us to
fully understand the problem and how our solution
addresses it, but it demonstrates that explicitly to the user.
More importantly, it demonstrates a confidence in our work
and willingness to go above and beyond to help the
customer. This can help build trust with the customer and
encourage them to open up to us.

3.4. Problem perspective differences

Most companies in the high-tech industry have not yet
integrated customer-centered techniques into the front-end
of their development processes. Further, most development
engineers have little or no experience as an end-user in the
application domain for which they develop software. As a
result, development tends to be technology (or solution)
driven without a contextualized sense of the problem to be

solved. We tend to offer products to our customers not based
on their actual needs but rather on the whims of what
updated hardware and software packages allow us to do.
Nate Borenstein offers a great example of this misguided
technology fixation in the following excerpt from his book,
Programming As If People Mattered:

The developer may emerge wild-eyed from his office,
ranting to anyone who will listen about the breakthrough
he has made, about how easy his new gadget or program
is to use, about how it will revolutionize the way people
talk to computers. His colleagues will smile uneasily and
shift restlessly from one foot to another, pondering
several alternatives, all of them unpleasant:
1.1. The developer has finally gone over the edge, lost his

mind, and will not longer be useful for anything.
1.2. The developer has re-invented the wheel, and will

eventually have to face the disappointment of
knowing that his technique isn’t new at all.

1.3. The developer has indeed made a minor innovation,
but nobody is really likely to care about it because it
is irrelevant for most purposes.

1.4. The developer is telling the truth, but the world is not
ready for his breakthrough, and it will languish with-
out aggressive and expensive marketing.

1.5. The developer is telling the truth, and the world is
about to sit up and take notice. The colleague is
going to have to take the time it takes to learn how
to use this new breakthrough. Since he is not (yet)
aware of any need for the breakthrough, this is an
unappealing prospect.

Conversely, customers and end users are experts in the
application domain but not in the process of engineering
software. As a result, they are not aware of any existing
limitations in their process that recent technology
improvements have alleviated. They simply do not know
what it is they can ask for in a new or updated product
development.

As developers, we are in the business to make money—
our companies would not survive if we were not profit-
motivated. It is much more appealing to present a solution
that requires significant new development effort than a
simple modification to an existing tool. However, if we
push something that is not truly needed, the strategy can
backfire and potentially lose us future contracts. That is
not to say we should not look for and offer new and better
ways to do things. Customers and end users, although
experts in the application domain are not usually proficient
in the process of engineering software. As a result, they are
not aware of any existing limitations in their process that
recent technology improvements have alleviated. They
simply do not know what it is they can ask for in a new or
updated product development. It is our responsibility to
inform them of the possibilities, but to always keep the
focus on the benefit to their activity.

H. Saiedian, R. Dale / Information and Software Technology 42 (2000) 419–428422



4. Techniques and tools for enhancing elicitation

This section of the article attempts to address the identi-
fied obstacles to effective requirements elicitation. In the
end, it is the relationship between designers and customers
that determine how well the design team understands and
meets the user’s needs. Customers and designers must
develop a shared understanding of the work problems and
the impact of technical solutions on the work [4, p. 31]. This
section highlights important tips for better communication
along with presenting some of the latest identified tools/aids
for promoting meaningful information transfer dialogue.
Where possible, examples of industry application of these
techniques are identified.

4.1. Effective communication and information-gathering
skills

Knowing how to show we are listening can help us
improve our information gathering and relationship
building. Eye contact, body posture, and facial expressions
all convey information about listening or non-listening.
These techniques for effective listening are equally pertinent
to effective speaking.

To help focus our attention, it is important to actively
participate in the customer’s conversation. Techniques
such as asking questions, re-stating what we have heard,
and taking notes not only demonstrate we are listening but
also help us in making sure we do listen. It is important not
to overdo our responsiveness. Overly eager listening or too
many interruptions can be worse than underdoing it.
Jumping to conclusions about what a person is saying can
lead us to focus only on their comments that support our
conclusions and to ignore all others.

Frustration concerning customers who do not know or
understand what they want requires us as developers to
help them do a better job of describing their needs.
Customers are often at a disadvantage when brought into
a developer’s meeting environment. The user’s unique
expertise is their real work experience. Taken out of this
context, they are much less able to represent real experience
[15, p. 94]. Customers often feel stress when asked by
specialists to describe or document their needs. Offering
customers something that resembles what they want—a
focal point—is a powerful way to help those, who lack
the necessary visualization, description, or language skills,
to articulate their requirements [2, p. 66]. Focal points can
backfire if the customer feels we are trying to railroad him
into a solution of our choosing, not his.

Naomi Karten, in her book Managing Expectations,
emphasizes that it is not only important to be an infor-
mation-gathering specialist, but also an “information-
gathering skeptic” [2, p. 77]. This role is required, not
because customers deliberately mislead us, but rather
because they, like us, often do not say what they mean.

Karten offers several suggestions to extract information
from customers:

1. Take nothing at face value. Never make assumptions.
Repeat questions already asked, rephrasing them to get
different perspectives.

2. Ask for clarification. Be sure to understand the
customer’s language used to describe a problem. Donot
be afraid of admitting not knowing something. Stress to
the customer how important our questions are to ensure
we fully understand their expectations.

3. Gather information from multiple sources. We can get a
broader perspective of diverse needs by presenting
similar questions to individuals in separate interviews.
Multiple responses helps to fill in the gaps in what any
one given source provides.

4. Watch for inaccuracy. Be sure to consider the skill-level
and any resistance in the customer. Are they answering
questions from their own perspective or simply trying to
tell you what you want to hear?

Even the types of questions we ask can help draw
accurate information from the customer. Focusing on the
process, rather than individuals, is less likely to generate
defensiveness. Avoid simple yes and no type questions.
Involve the customer in the questioning process by solicit-
ing their concerns and by using consensus-building queries.
Keep in mind that identifying what customer’s do not want
can be just as important as what they do want.

Also important is the need to understand the ways that
indirect communication links can manifest themselves in
practice and to work to rely more heavily on direct links
(e.g. face-to-face conversations, etc.). Technological
advances and cost reductions in the area of telecommuni-
cations have dramatically increased the techniques and
channels that allow customers and developers to exchange
information. In addition to standard links (such as surveys,
interviews, and observational studies), support lines,
bulletin boards, and e-mail now allow users to post
questions and suggestions at the drop of a hat.
However, this presents both a challenge and an opportunity.
Undoubtedly, increasing the number of links between
customer and developer is important. In his article,
Customer–Developer Links in Software Development,
Mark Keil presents the results of an inductive, multiple-
case study regarding the communication characteristics
between more successful and less successful projects.
Based on his data it was shown that project managers should
establish at least four different Customer–Developer Links
to facilitate effective transfer of information. However, the
same study also showed a point of diminishing returns by
the time there are six or seven links [5, p. 38]. Further, the
study data demonstrated that the absolute number of links is
only a partial measure of customer participation. More
important are the link characteristics, its perceived effective-
ness, and how it is employed in practice. The question is not
whether customers should participate in the development

H. Saiedian, R. Dale / Information and Software Technology 42 (2000) 419–428 423



process but how they should participate. While a wide
variety of specific techniques (such as those documented
in this article) exist to aid requirements elicitation, what is
missed is the detail as to who should be involved. As Keil
points out, “links such as user groups will be less effective
when meetings are attended by buyers rather than users and
by marketers rather than developers” [5, p. 39].

4.2. Graphical representations of the user environment

They say a picture is worth a thousand words when it
comes to describing something. The use of non-traditional
“artifacts” to capture and characterize the user environment
can help clarify and detail requirements understanding.
Such artifacts can include wall-sized diagrams of the
customer’s environment, hierarchies of problem
encountered, matrices showing key customers and markets,
priority lists of benefits and capabilities desired, and story-
boards of the products use and non-functional GUIs
[6, p. 73]. Such items can bring written text to life giving
the customer and developer alike a tangible conceptual
framework that allows the proposed end product to be
visualized.

The Aarhus University Research Foundation, in its intro-
duction of new Picture Archive and Communication
Systems (PACS) hardware and software to the Radiology
Department at Skejby Hospital in Aarhus, Denmark,
developed a graphical documentation tool, known as Blue-
print Mapping, to aid their requirements research.

Essentially, they started from a regular blueprint of the
building to establish an overview of the daily work. Conven-
tional techniques such as interviews and questionnaires
were used to initially document the general work procedures
and roles of the professionals involved. The interviews were
audio-taped to allow formal referencing of requirements.
The interviews were supplemented by observations of
various locations and activities and still photographs
captured the physical setting. In addition, department
employees participated in role-playing workshops to further
illustrate standard and non-standard practices (see Section
4.3). The idea was to create “an overview of the current
situation and at the same time try to frame the ideal future”
[7, p. 56].

The size of the diagram was scaled up to make room for
post-its representing information about employee locations
and work activities performed. Miniaturized copies of
equipment photographs were positioned with data entry
and data retrieval actions indicated by arrows of colored
tape. The map was presented to the department staff, and
they added, changed, deleted information as needed. The
map was then used as the shared understanding of the work-
space and its problems, as well as to identify and develop
ideas for alternative organizational designs.

Certainly, this example is not overwhelming in its techno-
logical achievement. But, it was easy to create and modify
and it did prove to be a valuable tool in eliciting information

from the customer and in refining the developer’s overall
understanding of the requirements. It just goes to show what
a little creativity and interactive discourse can achieve.

The use of videotape has been found to be particularly
effective in documenting the user site and activities. With
the consent of the participants, video recordings can be
obtained of people going about their everyday activities as
well as during interviews and information-gathering meet-
ings. This enables the users to speak and be heard in their
own terms without intermediary interpretation. Complaints
and requests seen and heard directly from users attempting
to do some piece of work have much greater authority, far
greater effect, and are more difficult to dismiss, than any
summary reports field workers produce [8, p. 68].

Video provides a stable reference that can be shared,
viewed, and discussed by viewers having different back-
grounds. Tapes can be transcripted and time-stamped to
make it easier to locate particular clips. It allows people,
who otherwise would be unable, to interact with the user
environment and results in everyone gaining a richer under-
standing of the activities and issues being explored. The
real-time nature of video provides a glimpse of the user
environment that still photos and written or audio-only
products can never match. Video helps reveal easily over-
looked features of the work environment (e.g. a task that is
much more involved than initially described). It can be
reviewed repeatedly and frozen allowing a more thorough
review. Implications of certain features not apparent to
some members of a design team may be detected by others.
As a result, it can lead to early identification of possible
sources of misunderstanding.

Experience has shown that user willingness to participate
in video documentation is surprisingly high despite the fact
that it requires a considerable investment in terms of time
and resources. Part of the reason may be that the participants
can use the video for their own purposes, such as displaying
their work to others in the workplace.

4.3. Customer participatory techniques

Direct customer involvement in requirements definition
early-on is a consistent factor in successful programs. The
need to use participatory analysis is critical when it comes to
understanding the flexibility aspects of a workplace, since
flexibility concerns not the regular procedures and standard
ways of doing things, but the unexpected, unprecedented,
exceptional cases, situations, and events that are only
experienced by the people who do the day-to-day work.

One way of accomplishing this is the use of situational
workshops or organizational games. Such an approach was
demonstrated by The Aarhus University Research
Foundation during its PACS project with Skejby Hospital
in Aarhus, Denmark. In conducting the organizational
game, situation cards—index cards describing a specific
situation at the workplace—were used. These situations
were solicited from the customer prior to the activity and

H. Saiedian, R. Dale / Information and Software Technology 42 (2000) 419–428424



described situations in which normal procedures were not
followed. During the game, the situational cards were used
to trigger discussions about how particular situations are
actually handled and other ways they could be handled
[7, p. 57]. Such discourse helps the developer identify
requirements raised by exceptions.

The traditional relationship between a master and
apprentice has also been identified as a useful interactive
model to encourage information elicitation. Just as an
apprentice learns a skill from a master, designers want to
learn about their customer’s work from the customer. A
designer taking on the role of apprentice automatically
adopts the humility, inquisitiveness, and attention to detail
needed to collect good data.

Apprenticeship in the context of on-going work is a most
effective way to learn. “Nobody can talk better about what
they do and why they do it than they can while in the middle
of doing it” [9, p. 46]. Talking about work while doing it
ensures that details are not confused or omitted. Teaching in
the context of doing work obviates formal presentations and
course materials, meaning little extra effort on the part of
either the master or apprentice. Further, transfer of infor-
mation in this context is not just limited to the work at hand.
Events that occur while the designer is present can remind
customers to talk about events that happened previously.

In their articleApprenticing With The Customer, Holtz-
balt and Beyer detail how such an apprenticeship would
work in practice:

In practice, the customer might work for a while, with
the designer looking on. The customer is immersed in
the work, thinking about content (as usual). The
designer, as apprentice, looks for patterns, for
structure, and for things he or she does not understand.
At some point, the designer makes an observation or
asks a question. This interrupts the flow of work. In
order to respond, the customer has to stop working,
step back, and think about the question…. The
customer now responds on two levels: First, he or
she addresses the question and a conversation about
the work ensues. When the conversation winds down,
the customer returns to doing the work and the
designer returns to watching. Second, the question is
an example of seeing strategy where before the
customer saw only actions. Customers soon learn to
see strategy, and start interrupting themselves to make
observations about the work they do [9, pp. 49–50].

While apprenticeship defines an attitude for designers to
adopt, their motive in observing work is not that of an
apprentice. The designer is constantly thinking about ways
to improve the work structure and strategy with technology.
The apprenticeship model allows both designer and
customer to introduce design ideas as the work suggests
them. The customer can respond to the idea while doing
the work the idea supports—there is no better time to get
feedback.

Maintaining the apprenticeship relationship requires
attention to the interaction or the customer and developer
may fall back into more traditional patterns for requirements
gathering. As an example, working together as such usually
results in a close, personal relationship. This can lead to
conversations that are irrelevant to the design focus which
can reduce the effectiveness of the information-gathering
activity.

4.4. Prototyping

In the context of requirements engineering, prototyping is
the construction of an executable system model to “enhance
understanding of the problem and identify appropriate and
feasible external behaviors for possible solutions” [10, p. 77].
Prototyping has been identified, especially for user interface
software products, to be a viable, maybe even necessary,
definition and development tool that reduces risk by early
focus on feasibility analysis, identification of real require-
ments, and elimination of unnecessary requirements. User
interfaces are fundamentally evolutionary artifacts, much
more so than other computer programs [3, p. 116]. No
matter how carefully they are designed, they change
frequently, often radically, in the early stages of their
development. Thus the effort to prematurely formalize the
requirements and to “perfect.” the code is wasted. A better
approach, in many cases, is to make the initial user interface
“a quick-and-dirty component of the larger system, the rest
of which is built as a more stable and lasting edifice”
[3, p. 117]. Then when the interface has stabilized it is
rewritten in the traditional style of professional design and
programming.

Stephen Andriole strongly believes that prototyping is a
critical prerequisite to specifying requirements. In his article
“Fast, Cheap Requirements: Prototype—Or Else!,” he iden-
tifies a fast, powerful, cost-effective merger of require-
ments-modeling and the prototyping process. The key
with prototyping, he stresses, is to simply get something
running quickly that can be tested on the users [11, p. 85].
Prototypes, by their very nature, are designed to be
disposable and as such can and should cut corners wherever
possible when it comes to issues such as reliability, robust-
ness, and algorithmic efficiency. It is generally acceptable
for prototypes to simply die when they get unusually abnor-
mal input data, when they run out of memory, or when an
interfaced subsystem fails. The danger, however, is that the
prototype evolve semantically into a final product as they so
often do. Therefore, a “good.” prototype will be full of
shortcuts and assumptions, but each will be briefly docu-
mented on a list of things to be cleaned up, rewritten, or
redesigned for the final version of the interface. Such a list
will simplify (and justify) the ultimate choice between a
total rewrite and a thorough cleanup of the prototype.

A typical prototyping phase can be outlined as follows:

1. Design the user interface. Make your best guess on
limited user input and your own past experience to

H. Saiedian, R. Dale / Information and Software Technology 42 (2000) 419–428 425



develop a rough outline of the interface functionality.
Since this is a prototype, nothing formal is needed.

2. Build a “quick-and-dirty system.” The prototype should
be built well enough to let users assess the interface, but
need not address reliability and error-checking. Keeping
a complete list of all known inadequacies will prove
invaluable if the prototype doesn’t get thrown away as
planned.

3. Let users play with the prototype. There is a natural
tendency to want to “polish.” the prototype before
releasing it, but the real strength of prototyping is getting
something to the user quickly for their immediate
feedback.

4. Observe the users. Pay particular attention to first reac-
tions since people learn quickly to work around or accept
interface deficiencies or annoyances. Ensure the methods
used to accomplish goals are the ones intended or
redesign may be in order.

5. Collect user feedback. Ask the users a series of questions,
both specific and open-ended, about the prototype. Allow
for both face-to-face and anonymous feedback from
multiple sources to ensure a comprehensive review.

6. Back to the drawing board. Reconsider the interface (and
its requirements) in light of the experience with the users,
and return to Step 1 [11, pp. 85–86].

The prototyping cycle obviously cannot continue endlessly.
At some point, waning interest or schedule will require it to be
complete. Some developers have devised user-satisfaction
indices by which this decision can be made, e.g. when 90%
of the users consider the interface satisfactory. Most often,
however, a simple and definite amount of time is budgeted
for prototype activity when a project starts to eliminate
arguments whether to continue or not.

5. Implementing change

Good requirements elicitation takes time and money and
as such often faces a hard sell to justify to program
managers with ever reducing budgets and schedules.
Integrating new tools and process techniques into an
organization imposes additional workload upon the require-
ments process—they cannot simply be plugged in and
expected to work [12, p. 79].

Good practice must be introduced incrementally and its
performance verified. Some tools and techniques will work
better than others will in a given situation. Some agencies
may not want to be videotaped for fear it will eventually be
used against them if negative workplace practices exist.
Highly interactive techniques such as the apprentice
relationship require mature and motivated participation on
the part of the customer. Such a relationship may not always
exist. As with any process, elicitation has to be adapted to
match the scope of the task, the initiative maturity of the
using agency, and the cost and schedule constraints. Identi-
fying an exact strategy for any situation is impossible.

However, the Esprit Requirements Engineering Adaptation
and Improvement for Safety and Dependability (REAIMS)
Project has proposed the Requirements Engineering Good
Practice Guide (REGPG) to “define a measurable process
improvement framework for the systematic, incremental
adaptation of good requirements practice” [12, p. 79].

The REGPG, like the Capability Maturity Model (CMM)
for overall software development, uses multiple maturity
levels to characterize the requirements process and a
strategy to improve it. Three levels exist: initial, repeatable,
and defined. REAIMS research indicates that nearly all
existing requirements processes are at level one having
only pockets of good practice. The key according to Pete
Sawyer of Lancaster University (involved in the Reaims
project) is “increasing the use of appropriate good practice.”
It is not simply a matter of buying more tools or using new
approaches, but of “introducing the right practices, in the
right order, at the right place, and with the required degree
of strategic commitment” [12, p. 80].

The REGPG defines 66 good practices that are
extracted from existing requirements standards and prac-
tices. These are classified as basic, intermediate, or
advanced depending on their utility and required exper-
tise. Basic practices represent the fundamental measures
that are part of any good requirements process (e.g.
documentation standards and organizational procedures).
The intermediate and advanced practices represent
increasingly technical and specialized measures that
make the process more systematic. Each measure
contains a qualitative assessment of the costs and bene-
fits associated with introducing the particular measure.
The maturity levels are based on the implementation
progress of the various practices. Organizations, once
they have baselined their existing process strengths
and weaknesses, can use the REGPG as guideline to
introduce practice improvements incrementally to
address areas of need. The maturity level is calculated
by measuring (via interviews and checklists) the extent
to which individual practices have been implemented
and summing the associated numerical scores. This
self-assessment used to baseline the existing process
and to evaluate the continuous-improvement process,
is the difficult part. The REGPG, unlike the CMM,
does not require outside certification, and as such
loses a degree of objectivity. People naturally tend to
bias the successes of their existing practices and this
must be given consideration during scoring analysis.
However, the internally driven nature of REGPG is
also a strength. It is not overly prescriptive—i.e. it
does not require a massive infrastructure to create and
maintain. Too often, nowadays our prescribed solutions
to process failures are worse than the original problem.
We create untold new bureaucracy and spend more time
defining and monitoring progress than we do making
progress. REGPG is simple. It provides a meaningful
measure of process evaluation and improvement by

H. Saiedian, R. Dale / Information and Software Technology 42 (2000) 419–428426



matching the most effective measures to the most press-
ing needs. It helps to raise management’s awareness of
the importance of requirements engineering in a visible
and quantifiable way. And yet, it remains flexible and
feasible enough to adapt to specific company and/or
project needs for targeting improvement.

Changing the attitudes and work habits of any organi-
zation can be daunting at best, especially if an organi-
zation perceives itself as successful and secure,
dominating the market for its products. Dennis Allen
faced this same dilemma at WordPerfect Corporation
several years ago as a product design strategist. Allen
recognized the lack of direct contact with the customer
and the need for “a software requirements definition
process grounded in the real work of real customers
using real machines” [13, p. 82].

Allen was particularly sensitive to the urgency for change
based on his experiences in software development at a start-
up software company that was working on natural language,
machine-translation systems. He had witnessed the
complete cancellation of their development efforts due to
customer rejection. This rejection stemmed from a failure
by the program managers and company leaders to recognize
and address the customer’s true needs. Rather than correct
their fundamental ignorance relating to the user’s work
practice and its effect on the success or failure of their soft-
ware applications, they instead directed all efforts to
responding to corrections of individual problem reports
and complaints.

These experiences were used by Allen to be powerful,
personal motivating influences in his efforts to be a “change
agent” at WordPerfect and to avoid repeating the same
dismal ending. His approach was instructional and
collaborative in nature, seeding concepts in the develop-
ment community rather than “harassing people into
submission” [13, p. 83]. He wanted to avoid the risks of
cross-organizational antagonism. By focusing on intro-
ducing only one or two concepts at a time, casually and
repeatedly working the topic into as many conversations
as possible, and creating opportunities for conversation
throughout the organization, he was able to quietly create
a context for change. Before long people were pressing
ahead and claiming the idea as their own. Allen found his
approach to be successful for several reasons: It is not
preaching, but rather casual conversation that seeks to
engage and solicit individual opinion. In addition, it
includes everyone. Allen stresses that its important that
everyone be given the opportunity to stand in the spotlight.
This creates a sense of community. The greater the sense of
community and the more unified the vision of the goal, the
faster you can move [13, p. 84].

6. Conclusions

As Stephen Andriole points out, “the software industry

talks a good requirements game, but seldom takes it
seriously” [11, p. 87]. We need to understand the realities
of requirements elicitation and analysis. User-specified
requirements are often vague, ambiguous, and incomplete.
It is the nature of the game given the user’s oft-limited
expertise in the technical aspects of their application domain
and in software development. As a result of this ambiguity,
requirements can be discovered, evolve, change, and
disappear without warning throughout the development
cycle.

However, while such unpredictability is inevitable, it
does not mean we cannot work to mitigate its influence or
reduce its presence. Certainly building flexibility into our
program definition and follow-on design is important to
allow for downstream changes in requirements. But, no
matter how well we buffer ourselves, such changes incur
significant costs in time and money. It would be better to
avoid the need for such changes altogether. And that is
where an effective requirements elicitation strategy comes
into play. Taking the time to learn about our customer and
his work environment yields many benefits. In addition to
helping the user (and us) understand what it is he needs, it
also helps to foster a better working relationship and
communication between the developer and customer. By
better addressing the users’ needs through their participation
and through consensus-building, we help to break down the
“us vs. them” mentality that exists in many customer
agencies.

The elicitation techniques and approaches to change we
choose are not important. What is important is recognizing
the participatory necessity of the customer in defining their
requirements to us. This philosophy needs to become a
standard part of our development goals—one that is
accepted as an absolute need, not a nice to have, and one
that is budgeted for in time and schedule. Ultimately, it is
the customer that decides our fate whether we like it or not
and whether or not we think they are qualified to proceed
without us. Without the customer’s business and dollars, we
cease to exist. Including the customer right from the
beginning in our product definition and design goes along
ways in ensuring our delivered systems meets his needs the
first time. That in turn instills confidence, hopefully laying
the groundwork for a growing and mature business
relationship.

References

[1] C. Potts, Seven (plus or minus two) Challenges for Requirements
Research, Sixth International Workshop on Software Specification
and Design, IEEE Computer Society Press, Los Alamos CA, 1991,
pp. 256–259.

[2] N. Karten, Managing Expectations, Dorset House Publishing, New
York, NY, 1994.

[3] S. Borenstein, Programming As If People Mattered, Princeton
University Press, Princeton, NJ, 1991.

[4] K. Holtzblatt, H. Beyer, Requirements gathering: the human factor,
Communications of the ACM 38 (5) (1995) 31–32.

H. Saiedian, R. Dale / Information and Software Technology 42 (2000) 419–428 427



[5] M. Keil, E. Carmel, Customer–Developer Links in software
development, Communications of the ACM 38 (5) (1995) 33–44.

[6] A. Hutchings, S. Knox, Creating products customers demand,
Communications of the ACM 38 (5) (1995) 72–80.

[7] A. Kjaer, K. Madsen, Participatory analysis of flexibility, Communi-
cations of the ACM 38 (5) (1995) 53–60.

[8] F. Brun-Cottan, P. Wall, Using video to re-present the user, Commu-
nications of the ACM 38 (5) (1995) 61–71.

[9] H. Beyer, K. Hotzblatt, Apprenticing with the customer,
Communications of the ACM 38 (5) (1995) 45–52.

[10] P. Hsia, A. Davis, D.C. Kung, Status report: requirements
engineering, IEEE Software 10 (6) (1993) 75–79.

[11] S. Andriole, Fast, cheap requirements: prototype, Or Else!, IEEE
Software 11 (2) (1994) 45–52.

[12] P. Sawyer, I. Sammerville, S. Viller, Capturing the benefits of require-
ments engineering, IEEE Software March/April (1999) 78–85.

[13] C.D. Allen, Succeeding as a clandestine change agent, Communi-
cations of the ACM 38 (5) (1995) 81–86.

[15] K. Holtzblatt, H. Beyer, Making customer-centered design work for
teams, Communications of the ACM 36 (10) (1993) 93–103.

H. Saiedian, R. Dale / Information and Software Technology 42 (2000) 419–428428


