
1

Software Development Practices in Open Software Development
Communities: A Comparative Case Study

(Position Paper)

Walt Scacchi
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3425 USA

http://www.ics.uci.edu/~wscacchi
wscacchi@ics.uci.edu

April 2001
© Copyright 2001, Walt Scacchi

Overview
This study presents an initial set of findings from an empirical study of social processes,
technical system configurations, organizational contexts, and interrelationships that give
rise to open software. "Open software", or more narrowly, open source software,
represents an approach for communities of like-minded participants to develop software
system representations that are intended to be shared freely, rather than offered as closed
commercial products. While there is a growing popular literature attesting to open
software [DiBona, Ockman, Stone 1999], there are very few systematic empirical studies
[e.g., Mockus, Fielding, Herbsleb 2000] that informs how these communities produce
software. Similarly, little is known about how people in these communities coordinate
software development across different settings, or about what software processes, work
practices, and organizational contexts are necessary to their success. To the extent that
academic research communities and commercial enterprises seek the supposed efficacy
of open software [Smarr and Graham 2000], they will need grounded models of the
processes and practices of open software development to allow effective investment of
their resources. This study investigates four communities engaged in open software
development. Case study methods are used to compare practices across communities.

Understanding open software development practices
Our interest is in understanding the practices and processes of open software
development in different communities. We assume there is no a priori model or globally
accepted framework that defines how open software is or should be developed. So our
starting point is to investigate open software practices in different communities to be able
to identify what communities members believe are their best practices (e.g.,
http://www.tigris.org/community/vision/best_practices.html for a description of best
practices for open software development advocated in the ArgoUML/Tigris.org project).

We have chosen four different communities to study. These are those centered about the
development of software for:
• Networked computer game worlds--first person shooters (e.g., Quake Arena, Unreal

Tournament), massively multiplayer online role-playing games (MMORPG, e.g.,



2

Everquest, Ultima Online), and others (e.g., The Sims (maxis.com), Neverwinter
Nights (bioware.com))

• Internet infrastructure--e.g., Apache web server (www.apache.org), InterNet News,
Mozilla Web browser, etc.

• X-ray astronomy and deep space imaging--e.g., Chandra X-Ray Observatory
(http://asc.harvard.edu/swapmeet_top.html) and the European Space Agency's XMM-
Newton Observatory (http://xmm.vilspa.esa.es/).

• Software systems design (e.g., ArgoUML community now appearing under the
banner, argouml.tigris.org).

These communities are constituted by people who identify themselves with the
development of one of the four kinds of software just noted. Participants within these
communities often participate in different roles and contribute software representations
or content (programs, artifacts, execution scripts, code reviews, comments, etc.) to Web
sites within each community. Administrators of these cites then serve as gatekeepers in
the choices they make for what information to post, when and where within the site to
post it, and whether to create a site map that constitutes a classification of site and
community domain content. These people also engage in online discussion forums or
threaded email messages as a regular way to both observe and contribute to discussions
of topics of interest to community participants. Finally, each of the four communities we
are examining, participants choose on occasion to author and publish technical reports or
scholarly research papers about their software development efforts, which are publicly
available for subsequent examination and review. Each of these highlighted items point
to the public availability of data that can be collected, analyzed, and re-represented within
narrative ethnographies or computational process models (Curtis, Kellner, and Over
1992, Kling and Scacchi 1982, Mi and Scacchi 1990, Scacchi 1998,1999). Significant
examples of each kind of data can be readily provided for presentation at the Workshop
and in the full paper.

Comparative case study framework
The software development practices of the four communities we chose to examine can be
compared and contrasted in a number of ways. In this regard, we are conducting case
studies in each community. Observations and findings from each such case study can be
studied, analyzed, and compared:
• As individual cases (e.g., software development practices associated with the

ArgoUML software design tool vs. practices associated with the Apache Web server
vs. scholarly research papers describing studies of each tool (Mockus, Fielding, and
Herbsleb 2000 (Apache), Robbins and Redmiles 2000 (ArgoUML)).

• Multiple cases within a community (e.g., game "mods" (Cleveland 2000) made by
users of first person shooters vs. MMORPG vs. others)

• Multiple cases across two communities (e.g., X-ray astrophysics vs. software design
are both primarily research oriented communities; games vs. Internet infrastructure
are primarily development oriented communities, though these distinctions are not
absolute)

• Multiple cases across all communities



3

These set of choices for comparison implies that a we can analyze and contrast open
software development practices using as many as four different levels of analysis. This
multi-level comparative analysis provides a framework for constructing models of
practice/process that are both empirically grounded and increasingly general in their
scope (Scacchi 1998, 1999). Thus, the comparative case study framework provides a
logic that draws on the strength of capturing qualitative data that can provide a rich
context for interpretation of case study data though with limited generalization. At the
same time, this framework mitigates against the limits of generality assigned to an
individual case study through the comparative, crosscutting, and interrelated (e.g.,
hyperlinked) analyses of multiple cases. As before, examples of each level of case data
analysis can be readily provided for presentation at the Workshop and in the full paper.

Comparative case studies are important in that they can serve as foundation for the
formalization of our findings and process models as a process meta-model (Mi and
Scacchi 1996). Such a meta-model can be used to construct a predictive, testable, and
incrementally refined theory of open software development processes within or across
communities or projects. A process meta-model is also used to configure, generate, or
instantiate Web-based process modeling, prototyping, and enactment environments that
enable modeled processes to be globally deployed and computationally supported
(Scacchi and Noll 1997, Noll and Scacchi 1999). This may be of most value to other
academic research or commercial development organizations that seek to adopt open
software "best practices" or development process that are most suited to their needs and
situation (Smarr and Graham 2000). Subsequently, we now turn to highlight the software
development processes that have been put into practice within different open software
communities.

Open software development processes
In contrast to the world of academic software engineering, open software development
communities do not seem to readily adopt or practice modern software engineering
processes. These communities do develop software that is extremely valuable, generally
reliable, and readily used within its associated user community. So, what development
processes are being routinely used and practiced?

From our studies to date, we have found five types of software development processes
being employed across all four communities. Each process is briefly described in turn,
though none should be construed as independent or more important than the others
should. Furthermore, it appears that these processes may occur concurrent to one another,
rather than strictly or partially ordered within a traditional life cycle model. As before,
examples of these processes (i.e., process instances) can be provided for presentation at
the Workshop and in the full paper.

Requirements analysis and specification
Software requirements analysis helps identify what problems a software system is
suppose to address, while requirements specification identify an initial mapping of
problems to system based solutions. In open software development, how does



4

requirements analysis occur, and where and how are requirements specifications
described? At this point in the study, we have yet to discover any sort of records of
formal requirements elicitation, capture, and analysis activity of the kind suggested by
modern software engineering textbooks in any of the four communities under study.
Similarly, we have not yet found any online (in the Web sites) or offline (in published
technical reports) of documents identified as "requirements specification" documents.
What we have found is different.

It appears at this time that open software requirements are manifested as threaded
messages or discussions that are captured and/or posted on a Web site for open review,
elaboration, refutation, or refinement. Requirements analysis and specification are
implied activities that routinely emerge as a by-product of community discourse about
what their software should or should not do, as well as who will take responsibility for
realizing such requirements. Open software system requirements appear in the form of
situated discourse within private and public email discussion threads, emergent artifacts
(e.g., source code fragments included within a message) and dialectical social actions that
negotiate interest, commitment, and accountability (Goguen 1996, Truex, Baskerville,
and Klein 1999). More conventionally, requirements analysis and specification do not
have first-class status as an assigned or recognized task. Similarly, there are no software
engineering tools used to support their capture, negotiation, and "cost" (e.g., level of
effort, expertise/skill, and timeliness) estimate, though each of these activities regularly
occurs. Nonetheless requirements do exist, though finding or recognizing them demands
familiarity and immersion within the community and its discussions. This of course
stands in contrast to efforts within the academic software engineering community to
develop and demonstrate tools for explicitly capturing requirements, negotiating trade-
offs among system requirements and stakeholder interests, and constructive cost
estimation or modeling (Boehm, Egyed, et al.,1999).

Coordinated version control, system build, and staged incremental release
Software version control tools such as the concurrent versions system, CVS (Fogel 1999-
-itself an open software system and document base), have been widely adopted for use
within open software communities. It is clear, however, that CVS is being used as both a
centralized community software coordination mechanism, as well as a venue for
mediating control over what software enhancements, extensions, or upgrades will be
checked-in and made available throughout the decentralized community as part of the
publicly released version. Software version control, as part of the software configuration
management process, is a recurring situation that requires articulation work (Grinter
1995, Mi and Scacchi 1991). Articulation work is required due to the potential tension
between centralized decision-making authority and decentralized work activity when two
or more autonomously contributed updates are made which overlap, conflict with one
another, or generate unwanted side-effects. Each community or CVS repository
administrator must decide what can be checked in, and who will or will not be able to
check-in new or modified software source code representations. Sometimes these policies
are made explicit through a voting scheme (Fielding 1999), while in others they are left
informal, implicit and subject to renegotiations. In either situation, version updates must
be coordinated in order for a new system build and release to take place. Subsequently,



5

those developers who want to submit updates to the community's shared repository rely
extensively on discussions that are supported using "lean media" such as informally
threaded email messages (Yamauchi, Yokozawa, et al., 2000) posted on a Web site,
rather than onerous or opaque system configuration rules. Thus, coordinated version
control, system build and release is a process that is mediated by the joint use of
versioning, system building, and messaging tools.

Maintenance as evolutionary redevelopment, refinement, and redistribution
Software maintenance, as construed to include the addition/subtraction of system
functionality, debugging, restructuring, tuning, conversion (e.g., internationalization), and
migration (across platforms), is a dominant, recurring process in open software
development communities. Perhaps this is not surprising since maintenance is generally
viewed as the major cost activity associated with a software system across its life cycle.
This traditional characterization of software maintenance does not do justice for what can
be observed to occur within different open software communities.

Open software systems seem to evolve in a manner similar to fruit flies (Drosophila
melanogaster--see http://sdb.bio.purdue.edu/fly/aimain/1aahome.htm) through minor
genetic mutations that are expressed (articulated and reproduced), recombined, and
redistributed across many generations of short life cycles. This is not the same as "genetic
programming", which is a synthetic technique for automatically generating semi-random
alterations to a predefined software program seed. Instead, what we see is socially
constructed mutations (see the Requirements section above) that articulate and adapt
what an open software system is suppose to do (Bendifallah and Scacchi 1987). These
modifications or updates are then expressed as a tentative new version that may survive
redistribution, and subsequently be recombined and re-expressed with other new
mutations in producing a new generation version.

Project management
Community software development can take the form of a "pyramid meritocracy" (cf. Kim
1999, Fielding 1999) operating as an Internet-based virtual enterprise (e.g., Fielding,
Whitehead, et al., 1998, Noll and Scacchi 1999). A pyramid meritocracy is a hierarchical
organizational form that centralizes and concentrates certain kinds of elite authority, trust,
and respect for experience and accomplishment within the community. Meritocracy is
also ironically is a term that connotes the predilection of an emerging elite who become
increasingly self-serving and self-limiting, rather than embracing imaginative,
courageous, or generous departures from the status quo (Young 1958). Meritocractic
enterprises embrace incremental innovation (e.g., software maintenance work
(Bendifallah and Scacchi 1987) and incremental enhancement to an existing software
code base) over radical innovation (exploration or adoption of untried or sufficiently
different software development methods, as might be advocated by a minority who
challenge the status quo).

Figure 1 provides an illustration of such a meritocratic pyramid. It is an organizational
form whose participants are usually geographically distributed, and whose work is
"scheduled", performed, and evaluated in an autonomous and decentralized manner



6

(Fielding, Whitehead, et al., 1998, Noll and Scacchi 1999). However, it is neither simply
a "cathedral" nor a "bazaar", at least as these attributions have been used and popularized
(DiBona, Ockman, and Stone 1999). Instead, when pyramid meritocracy operates as a
virtual enterprise, it must rely on virtual project management (VPM) to mobilize,
coordinate, build, and evaluate (assure quality of) open software development activities.
VPM in turn requires multiple people to act in the component sub-roles of a project
manager in a manner that may be more ephemeral than persistent.

Virtual project management exists within open software communities to enable control
via community decision-making (e.g., voting), Web site and CVS repository
administration all possible and effective. Similarly, it exists to mobilize and sustain the
use of privately owned resources (e.g., Web servers, network access, site administrator
labor, skill and effort) available for reuse by the community.

Figure 1. A pyramid meritocracy and role hierarchy (Kim 2000)

Software technology transfer
Software technology transfer is an important and often neglected process within the
academic software engineering community. However, in open software communities, the
diffusion (distribution), adoption, installation, and routine usage across the Web are all
central to the ongoing maintenance of open software systems. Open software technology
transfer is a community building process that must be institutionalized both within a
community and its software to flourish (Kim 2000). In this regard, software technology
transfer is not an engineering process (at least, not yet). It is instead socio-technical
process that entails the development of constructive social relationships, informally
negotiated social agreements, and a commitment to participate through sustained
contribution of software discourse and shared representations, much like the other
processes identified above. Thus, community building and sustaining participation are



7

essential and recurring activities that enable open software to persist without corporate
investment.

Conclusions
Open software development practices are giving rise to a new view of how complex
software systems can be constructed, deployed, and evolved. Open software development
does not adhere to the traditional engineering rationality found in the legacy of software
engineering life cycle models or prescriptive standards. Open software development is
inherently and undeniably a complex web of socio-technical processes, development
situations, and dynamically emerging development contexts (Kling and Scacchi 1982).
This paper thus provides an empirical framework that begins to outline some of the
contours and dynamics that characterize how open software systems and their associated
communities of practice are intertwined and mutually situated to the benefit of both.

Acknowledgements
The research described in this report is supported by a grant from the National Science
Foundation #IIS-0083075, and from the Defense Acquisition University by grant
N487650-27803. No endorsement implied. Mark Ackerman and Jack Muramatsu at the
UCI Institute for Software Research are collaborators on this research described in this
paper.

References
S. Bendifallah and W. Scacchi, Understanding Software Maintenance Work, IEEE Trans.
Software Engineering, 13(3), 311-323, March1987.

Boehm, B., A. Egyed, J. Kwan, D. Port, A. Shah, and R. Madachy, Using the WinWin Spiral
Model: A Case Study, Computer, 31(7), 33-44, 1998.

C. Cleveland, The Past, Present, and Future of PC Mod Development, Game Developer, 46-49,
February 2000.

B. Curtis, M.I. Kellner and J. Over, Process modeling, Communications ACM 35, 9, 75 - 90,
1992.

C. DiBona, S. Ockman and M. Stone, Open Sources: Voices from the Open Source Revolution,
O'Reilly Press, Sebastopol, CA, 1999.

J. Feller and B. Fitzgerald, A Framework Analysis of the Open Source Software Development
Paradigm, Proc. 21st. Intern. Conf. Information Systems (ICIS), 58-69, 2000.

R.T. Fielding, Shared Leadership in the Apache Project, Communications ACM, 42(4), 42-43,
April 1999.

R.T. Fielding, E.J. Whitehead, K.M. Anderson, G.A. Bolcer, P. Oreizy, and R.N Taylor, Web-
based Design of Complex Information Products, Communications ACM, 41(8), 84-92, August
1998.

K. Fogel, Open Source Development with CVS, Coriolis Press, Scottsdale, AZ, 1999.



8

J.A. Goguen, Formality and Informality in Requirements Engineering (Keynote Address), Proc.
4th. Intern. Conf. Requirements Engineering, 102-108, IEEE Computer Society, 1996.

R.E. Grinter, Supporting Articulation Work Using Configuration Management Systems,
Computer Supported Cooperative Work, 5(4), 447-465, 1996.

A.J. Kim, Community-Building on the Web: Secret Strategies for Successful Online Communities,
Peachpit Press, 2000.

R. Kling and W. Scacchi, The Web of Computing: Computer technology as social organization.
In M. Yovits (ed.), Advances in Computers, Vol. 21, 3-90. Academic Press, New York, 1982.

P. Mi and W. Scacchi, A Knowledge-based Environment for Modeling and Simulating Software
Engineering Processes. IEEE Trans. Knowledge and Data Engineering, 2(3), 283-294, Sept 1990.

P. Mi and W. Scacchi, Modeling Articulation Work in Software Engineering Processes. Proc. 1st
International Conference on the Software Process, Redondo Beach, CA, 188-201, IEEE
Computer Society, Oct 1991.

P. Mi and W. Scacchi, A Meta-Model for Formulating Knowledge-Based Models of Software
Development. Decision Support Systems, 17(3), 313-330. 1996.

A. Mockus, R.T. Fielding, and J. Herbsleb, A Case Study of Open Software Development: The
Apache Server, Proc. 22nd. International Conf. Software Engineering, Limerick, IR, 263-272,
2000.

J. Noll and W. Scacchi, Supporting Software Development in Virtual Enterprises. J. Digital
Information, 1(4), February 1999.

J. E. Robbins and D. F. Redmiles, Cognitive support, UML adherence, and XMI interchange in
Argo/UML, Information and Software Technology, 42(2), 71-149, 25 January 2000.

W. Scacchi, Modeling, Simulating, and Enacting Complex Organizational Processes: A Life
Cycle Approach, in M. Prietula, K. Carley, and L. Gasser (eds.), Simulating Organizations:
Computational Models of Institutions and Groups, AAAI Press/MIT Press, Menlo Park, CA, 153-
168, 1998.

W. Scacchi, Experience with Software Process Simulation and Modeling, J. Systems and
Software, 46,183-192, 1999.

W. Scacchi and J. Noll, Process-Driven Intranets: Life-Cycle Support for Process Reengineering.
IEEE Internet Computing, 1(5), 42-49, September-October 1997.

L. Smarr and S. Graham, Recommendations of the Panel on Open Source Software for High End
Computing, Presidential Information Technology Advisory Committee (PITAC),
http://www.ccic.gov/ac/pres-oss-11sep00.pdf, September 2000.

D. Truex, R. Baskerville, and H. Klein, Growing Systems in an Emergent Organization,
Communications ACM, 42(8), 117-123, 1999.



9

Y. Yamauchi, M. Yokozawa, T. Shinohara, and T. Ishida, Collaboration with Lean Media: How
Open-Source Software Succeeds, Proc. Computer Supported Cooperative Work Conf.
(CSCW'00), 329-338, Philadelphia, PA, ACM Press, December 2000.

M. Young, The Rise of the Meritocracy, 1870-2033, Thames and Hudson, London, 1958.


