
1

A. Cover Page

NSF ITR Research Proposal
ITR/SOC: Understanding Open Software Communities,
Processes and Practices: A Socio-Technical Perspective

NSF Award - #0083075

PI: Walt Scacchi
Co-PI: Mark Ackerman

Institute for Software Research
Information and Computer Science Dept.

University of California, Irvine
Irvine, Ca 92697-3425 USA
949-824-7355, 949-574-0481

949-824-4056 (Fax)
Wscacchi@ics.uci.edu
Ackerman@ics.uci.edu

Relevant NSF ITR Programs:
I. Social and Economic Implications of Information Technology

II. Software Processes

mailto:Wscacchi@ics.uci.edu

2

B. Project Summary
Our interest is to develop empirically grounded models and theory of the social processes,
technical system configurations, organizational contexts, and their interrelationships that give
rise to open software [cf. KS82]. "Open software", or more narrowly, open source software,
represents a new approach for communities of like-minded participants to develop software
systems and related utilities that are intended to be shared freely, rather than offered as
commercial products. While there is a growing popular literature attesting to the potential or
apparent success of open software, there is little in the way of careful systematic empirical study
that characterizes or informs: (a) how such communities produce software; (b) how do they
coordinate software development work across different settings; (c) what social processes, work
practices or organizational contexts constitutes how open software is produced and sustained,
and the like. However, researchers in a number of distinct scientific/engineering disciplines and
commercial enterprises appear motivated to adopt open software practices as a basis for reducing
the complexity and improving the reliability of software programs relevant to their domains.
Thus, to the extent that science research communities or commercial enterprises seek to
primarily follow popular prescriptions and testimonials regarding the efficacy of open software,
we cannot be assured that their activities will be most effective or efficient investment of their
time, skill and related resources.

A comparative empirical study of open software work structures, processes and practices from
socio-technical perspective is most appropriate. Such a study must concurrently examine the
social arrangements, work processes and practices from which open software communities and
artifacts arise, as well as the technical information infrastructure through which these
communities and artifacts are articulated and shared. Studying either the social or the technical
arrangements in isolation would discount the significance of how the continual emergence of
both is a jointly situated socio-technical ecology. Such discounting could easily facilitate
misunderstanding and unwise investments.

We will investigate, compare and contrast four communities engaged in the production, use and
evolution of open software. Two communities are engaged in scientific research: in high-energy
astrophysics (with the Chandra Observatory [C00]), and in software architecture (within the
larger Software Engineering community [SoAR00]). The other two communities are engaged in
developing and sustaining the Apache Web server [F99], and in enhancing the computer action
game, Unreal (a global community spanning over 100 Web sites [U00]). These last two
communities are primarily engaged in software development, not research, but have relationships
with commercial enterprises.

We have developed a research approach that entails the investigation and understanding of
representative socio-technical phenomena and conditions using multiple, comparative analysis
techniques. We will employ field study methods to examine each community, and case study
methods to examine and compare selected phenomena or conditions within and across
communities. These techniques are employed to increase the generalizability of the findings and
results we produce. Thus, our research purpose is primarily exploratory and observational, rather
than aimed at experimental testing of existing theory or orthodoxy.

3

C. Project Description
The research project we propose can be described in terms of our research objectives, related
research, our research approach and anticipated outcomes. Each of these is addressed in turn
following an introductory overview.

C.1 Background Overview
Our interest is to develop empirically grounded understandings of the social conditions, work
processes and practices, technical system configurations and organizational contexts that give
rise to open software [KS82]. "Open software", as epitomized by recent public attention to so-
called open source software, is said to represent a new or revolutionary approach for
communities to develop software systems that are intended to be shared freely, rather than
offered as commercial products [DOS99].

Early examples include the Berkeley Software Distributions ("BSD") of the Unix operating
system and related utilities [McK99], while more contemporary examples can be associated with
organizations like the Free Software Foundation [S99], the Apache Project [F99], and many
informal and formal enterprises surrounding the Linux operating system [T99]. Alternatively,
organizations like the Internet Engineering Task Force (IETF), the World-Wide Web Consortium
(W3C), the Open Science Project [OS00], and the National Institute for Standards and
Technology represent loosely-coupled (IETF, OSP) or institutionalized (W3C, NIST) enterprises
with interests in open software. These enterprises facilitate the development and sharing of
software specifications, privacy guidelines, data exchange protocols or notations, etc. This
diversity of organizations and interests are why we choose to draw attention to "open software"
rather than just "open source code" programs [cf. DOS99].

While there is a growing popular literature attesting to the success of open software, there is little
systematic empirical study that characterizes or informs questions such as: (a) how do such
communities self organize or coordinate to produce software? (b) what organizational forms are
commonly used to structure software development practices? (c) what social conditions, work
processes and practices, and organizational contexts constitute an open software community? (d)
how do such communities deal with problems arising in their software development practices?
(e) what kinds of changes do participants in a community seek to resolve such problems? At
present, we lack the scientific knowledge needed to answers to questions like these. Nonetheless,
scientific researchers and other participants in disciplines like Astrophysics, Genomics, Medicine
and Software Engineering appear motivated to adopt open software practices as a basis for
reducing the complexity and improving the reliability of software programs relevant to their
research domains. Thus, to the extent that science research communities seek to primarily follow
popular prescriptions and testimonials regarding the efficacy of open software, we cannot be
assured that their activities will be the most effective investment of their time, skill and related
resources, nor guarantee quality of the software they build.

We believe that a comparative empirical study of open software communities from socio-
technical perspective is required and appropriate. We believe that such a study must concurrently
examine both (a) the social arrangements, work processes and contexts from which open
software communities and artifacts arise, as well as (b) the technical information infrastructure
through which these communities and artifacts are articulated and shared. Studying either just the

4

social settings or the technical artifacts and information infrastructure in isolation, we believe,
would likely discount the significance of how the continual emergence of both is a jointly
situated socio-technical ecology. Why is this so?

Suppose we were to focus attention exclusively on the technical artifacts (e.g., source code
programs, documentation, and related Web site contents) as our basis for empirical inquiry. This
is something akin to the perspective appearing in popular treatments of open software.
Accordingly, this might lead to examining how open source software systems are technically
superior to proprietary, closed source, or "Cathedral"-like software systems because open source
software must pass the testing and engineering scrutiny that results from public reviews and
acceptance in a communal market or "Bazaar" [cf. DOS99]. However, what such a perspective
discounts or misses are the underlying social conditions, work practices, organizational processes
and institutional contexts that constrain/facilitate which open software artifacts, information
sharing practices and community information infrastructures will flourish, succeed, fail, or
transition to commercial endeavor. Conversely, to focus exclusively on the "social implications"
of open software movements and communities may only modestly inform how scientific
communities new to open software might best develop their domain-specific software systems,
utilities, documents, related information artifacts and community information infrastructures in
an effective (reliable) and efficient (complexity reducing) manner. Subsequently, a line of
inquiry that concurrently investigates, characterizes and models the configuration of technical
artifacts, social conditions and work processes, as well as the interleaved historical and
institutional contexts in which they are situated, is needed. Thus, we believe an empirically
grounded, socio-technical study of open software should be the most efficacious path to pursue.

As such, we propose to conduct a comparative study of open software communities, processes
and practices from a contemporary socio-technical perspective. Such a perspective follows an
emerging tradition of social, historical and ethnographic studies of science/technical work
juxtaposed against the technical artifacts or systems that result from such work [BHP89,BST97,
K-C97,KS82,L88,St93,SR96,Su87,W98]. However, though economic notions like the theory of
public goods [Sa54], collective action and the "free rider" problem [O71] may inform our
analysis, we are not primarily addressing economic issues or consequences associated with open
software. Nonetheless, such study the economic implications of open software is needed.

We plan to collect and analyze data using from two open software communities outside of
traditional scientific communities, as well as two scientific communities that have open software
activities underway. The two communities not directly involved in scientific research are the
Apache Project [F99] responsible world's most widely used Web server, and the Unreal
computer game world [U00]. In contrast, the two scientific communities are the high-energy
astrophysics community using the Chandra X-ray Observatory satellite [C00], and the loosely
defined Software Architecture research community [cf. SoAR00], supported by Darpa and other
research agencies. Our choice of these communities for study is explained later (cf. Section
C.4.1). Data will be collected using grounded theory techniques [GS67]. Our use of these
techniques includes structured interviews, participant observation, examination of
artifacts/products, Web-based survey questionnaires, and the like. We anticipate conducting
interviews a minimum of 10-20 participants from each community each year, supplemented with
Web-based questionnaire data from 10s-100s of participants dispersed across each community.

5

Data such as these will then be described, codified and represented in narrative, semi-structured,
and computational models in ways suitable for distribution and sharing on the Web.
Furthermore, we expect that data collection and analysis will be ongoing and iterative, with three
iterations (corresponding to one iteration per year for three years) being necessary and
appropriate for longitudinal study.

C.2 Objectives
We have two kinds of objectives to realize in the proposed effort, research objectives and
programmatic objectives. Each is described in turn.

C.2.1 Research Objectives
We have five research objectives. First, we seek to understand how open software communities
operate, what work processes and practices they use to produce and evolve software, and how
they build software that is reliable in their view. Second, we intend to develop such
understanding by conducting multiple field studies that give rise to case studies that can be
analyzed and compared within and across open software communities. This theme of
comparative analysis of field study and case study data/artifacts is also carried through our third
objective: to develop computational, semi-structured, and narrative models that support and
embody the comparative analyses we seek. Our approach to comparative analysis and model
development is designed to be iterative, incremental and longitudinal over a three year study.
Comparative analysis is a hallmark of qualitative field study [GS67] and case study [Y89]
research. It seeks to increase the generalizability of qualitative research results. It therefore
serves as the foundation for our fourth objective. This is to develop the foundation for an
empirically-grounded theory that characterizes, explains and begins to predict how open software
communities operate through alternative work structures, processes and practices to produce
reliable software systems for community participants. Our fifth/last research objective is to
produce and disseminate the anticipated results of our research in a number of outlets and venues
(cf. Section C.5).

Overall, the central thrust of our research objectives is to be exploratory and empirically
grounded. We do not seek to substantiate or refute existing normative models, theories or
frameworks for how open software communities should work, nor whether their processes,
practices and technical systems are consistent, complete or otherwise virtuous in some
engineering sense. Instead we are interested in eliciting, capturing, coding, modeling and
analyzing the collective actions of open software community members for how they produce,
sustain and evolve complex software systems, artifacts and their embedding community of
practice. Accordingly, such an interest is best addressed by a research team that is skilled in
social/organizational analyses of computing work environments, and knowledgeable about the
domains of software and software engineering. In being so prepared, we are therefore positioned
to jointly contribute to the growing base of science that is empirically informed by studies of
social and organizational processes, work practices, computer supported work environments, and
software engineering.

C.2.2 Programmatic Objectives
We recognize that NSF through its ITR initiative to which this proposal is directed has identified
a number of programmatic objectives. Our research effort addresses topics within the scope of

6

(a) Social and Economic Implications of Information Technology and (b) Software. Accordingly,
we can briefly address the kinds of programmatic objectives we seek in each area.

For Social and Economic Implications of IT, we identify four objectives that align with those in
the ITR Program Solicitation. First, we seek to understand the particular socio-technical values
that are embedded in the development processes and products of open software communities. We
seek to model and comparatively analyze the development and evolution of open software and
the communities that produce them. Third, we seek to understand how open software
technologies (or techniques) evolve to better meet the socio-technical requirements of disparate
communities. Fourth, we seek to understand how diverse communities of practice and sustain
the distributed and local use of information infrastructures and networks over a period of years
through an iterative, longitudinal study. While these objectives do not directly address the
economic implications of open software, we believe our programmatic objectives do nonetheless
represent an important step in understanding the socio-technical implications of open software.

For a Software perspective, we identify two objectives that align with those in the ITR Program
Solicitation. First, we seek to increase the scientific basis for software engineering through
empirically grounded, comparative field studies and comparative case studies of open software
development work structures, processes and practices. Second, we seek to characterize, explain
and model how open software communities build reliable software systems through the socio-
technical work structures and processes they enact within their community of practice.

Therefore, with these research and programmatic objectives in mind, we turn to describe related
research that informs our research approach.

C.3 Related Research
We find five areas of related research bear on the problem area and research approach we
propose. In each area, we highlight analytical themes we can explore through field study research
methods described in Section C.4.

C.3.1 Coordinating software production work
What is the best way for how to coordinate software production in an open software community?
From a social perspective, scholars like Kling inform us that cooperation and social control are
simultaneously at play in collaborative software development efforts [K94]. To help mitigate
against a tendency for hierarchical control, shared leadership has been proposed for use in open
software projects [F99]. However, whether this replaces hierarchy with oligarchy is unclear.
Similarly, both formal and informal communication modalities (e.g., via software review
meetings vs. email, respectively) are needed to coordinate software development [KS95].
Subsequently, one place where some form of cooperation, shared control, as well as formal and
informal communication are likely to be at play in an open software development project is in
software configuration management activities [cf. G96,NS87,NS97,NS99]. SCM addresses the
provision of software utilities and workplace procedures that seek to coordinate the
asynchronous modification of shared software code and artifacts [So95]. Subsequently, SCM
practices are a likely arena where socio-technical dynamics will come into readily observable
places and workspaces [G96,NS99]. In contrast, technology centric approaches stress the need
for explicit representations of links (or relations) between software development products,

7

organizational processes, information workspaces, and people to help coordinate distributed
software development projects [FW+98,MS90,MSM95,MS96,NS99]. Finally, other efforts
seeking to span the socio-technical spectrum suggest providing explicit representations and
support systems to help how participants analyze, diagnose, coordinate, and share experiences
in the repair of work processes that have failed or broken during their enactment
[MS93,S98,S99,NS97, SiMG99], as well as how they collective act to innovate (or redesign)
their work flow, content or experience in response to changing conditions, events or emerging
technical opportunities [cf. BS89,JS95,KS82,SN97,S00,S00b,VS99].

C.3.2 Organizational forms and work structures for developing open software
What is the most appropriate way for how to structure the organization of software development
work within an open software community? Starting with Conway's conjecture more than 30
years ago, does the structure of a software system (its architecture) reflect the organizational
form which produce it [C68]? If so, why? Following [KS82], if open software systems are a form
of social organization, developing such systems is tantamount to embodying a reflection or
image of the organization that produced them within the systems themselves. Is this any different
from saying that the "engineering project" is the most common organizational form for
coordinating software development work [S84,BS96]? Yes, in that multiple alternative
organizational forms exist for large projects [GHP99], while multiple shifting patterns of work
organization typify small group effort [BS89] or "extreme" [B00] development efforts. Similarly,
at the organizational level, can we determine whether open software projects are most frequently
organized as a joint venture [ID98], multi-organization network alliance [C99,KoL99,MF+98],
or virtual enterprise [FW+98,K99,NS99, SB98]? To address such concerns, we need to identify
and characterize the organizational forms or work structures that participants enact when
developing open software systems. Similarly, we need to address how/if such forms are embodied
in the software's architecture, as well as how/if they are implicitly embedded in open software
system-user behavior. Conversely, we need to examine how/if the architecture of open software
systems facilitates/constrains the organizational forms that emerge to produce and sustain them.

C.3.3 Information sharing and organizational memory in a community of practice
How does a participant in an open software community of practice determine who knows what,
where/how to seek shared information, or whom to seek for help, guidance or support [AH00]?
Communities of practice (or "social worlds" [BST97,St93]) are groups of people who share
similar goals, interests, beliefs and value systems [W98]. In pursuit of these goals and interests,
they employ common practices, work with the same tools, and learn how to express themselves
in a common language [BD91,LW91,GIK95]. As such,participants need to learn to recognize
and understand how community knowledge of work practices and shared artifacts is distributed
(among few or many), multivalent (of mixed provenance), situated and boundary spanning yet
heterogeneous, rather than centralized, coherent and functionally homogeneous [AH00,BST97,
LW91,SR96, Su87]. Further they must understand how such shared knowledge is transformed,
enacted and dispersed through recurring or emerging open software work processes
[AH00,BD91,CoB99, GIK95,SM97] artifacts and technical systems [MCM95,Sh91], rather than
simply cast in documents or procedural guidelines stored in shared online repositories.

8

C.3.4 Human-centered studies of computing-based work environments
For almost two decades, human-centered studies of computing-based work environments have
shown how computing system design is also a design for work practice and social organization
[e.g., BS89,KS82,Su87,Su95]. In contrast, the traditional approach in engineering design,
particularly within a software engineering approach [So95], is to treat the work practices of the
system developers, users and maintainers as ancillary, functional or rationally purposeful. Thus
the organizational, social and technological contexts that surround and embed software work
activities are generally unaccounted for and missing [cf. S84,JS95]. Subsequently, systems that
are successfully engineered from a traditional software engineering perspective can be
problematic to use or sustain. Part of the problem here is that software and system engineers lack
the ways, means, and perhaps ideological perspectives, for observing, experimenting with, and
representing the work practices of system users in different places and times [St93, Su95]. To
engineers, the work practices of system users are invisible or else are made opaque through
formal notations (e.g., source code, object-oriented design notations like UML) and informal
graphic diagrams (e.g., flow charts written on white boards). Instead, what if software developers
who design the open software-based work systems of users could design more effective systems
that increase the performance and amplify the experience of system users? Would such an
approach employ informal or formal representations of user work practices and socio-technical
contexts that were visible and transparent to community participants [BST97,L88,Su95]? If so,
what form do such representations take?

C.3.5 Computational modeling of organizational processes and work practices
Research directed at computational modeling and simulation of work practices is a relatively
new area of scientific study. Two related approaches are already apparent. First, the work of
Scacchi and colleagues [MS90,MS96,S98,S99,S00,SN97,VS99] and others [e.g., CPG98,CS00]
demonstrates the ability to model, analyze and simulate complex organizational processes that
are embedded within variety of social conditions, work flows, and technical system
configurations. Second, the work of Clancey and associates, from the former NYNEX Science
and Technology and presently at NASA Ames Research Center, focuses attention on the
problems of modeling and simulating the work practices of multiple interacting participants
[CS+96, SiC97]. Clancey and associates report that modeling and simulating work practices
differs from conventional approaches to AI and multi-agent systems. In simulating work
practices attention is focused on the representation of how knowledge is situated among work
tasks [cf. AM99], how distributed cognition arises in situated settings [cf. AH00], and how work
practices act as self-organizing systems. These concepts raise significant issues for viewing work
processes and practices as occurring in specific places, at certain times, within historical
circumstances, all as part of trajectories of work. Subsequently work practices do not resemble
the kinds of models associated with "workflow" systems, nor do work practices readily map onto
workflow enactment mechanisms or schemes. Instead, the challenge is to model how work
practices are situated, contingent and continually adapting in incremental, iterative and
longitudinal ways [L88,St93,Su87, Su95]. Subsequently, another emerging line of research has
begun to explore how to use Web-based hypertext (i.e., semi-structured) schemes to describe,
situate (in an information space [MSM95] and workplace), and explicitly relate data, analysis
and computational representations pertaining to the work structures, processes and practices that
arise in settings under study [VS99,S00b].

9

C.4 Research Approach
There are four primary activities in our proposed research effort. They are presented here in a
top-down style. First, we plan to conduct field studies in the four designated open software
communities. This is to facilitate comparative analysis in order to increase the generalizability of
our results. Second, we plan to identify and case studies of open software work structures,
processes and practices. This is also to facilitate comparative analysis in order to increase the
generalizability of our results along analytical dimensions. Third, we plan to model and analyze
each of the four communities in three ways. Our goal is to model and analyze selected work
processes and practices situated within local work structures using (a) computational models, (b)
semi-structured (Web-based) descriptions and interlinked artifacts, and (c) narrative descriptions.
Fourth, in order to incorporate an ongoing, longitudinal dimension into our study, we plan to
iteratively perform each of the other three primary activities each year. Accordingly, these four
activities are elaborated in more detail in the following sub-sections.

C.4.1 Comparative Field Studies
We plan to conduct ethnographic field studies of four open software communities using
qualitative research methods for collecting, organizing and categorizing our data [GS67]. We
will gather data from these communities using participant observation, structured interviews,
collection of open software artifacts, and Web-based survey questionnaires. In addition, we will
collect secondary materials like bibliographic materials and publications that may describe or
acknowledge the development, use or evolution of open software within each community. To
explain why and how we intend to proceed, we provide a set of questions and answers to better
motivate our choice. These follow.

Why do ethnographic field studies of open software communities? Our research objectives
are exploratory and our focus is work-centered. We want to learn how the communities'
participants do their work, to what end, why they think it is important, what problems they incur,
what changes they desire, and so forth, in the participants own terms [cf. BST97,GS67,L88,St93,
Su87]. For example, how do community participants deal with the "free rider" problem described
by economists [O71]? Here, a free rider is someone who seeks to benefit from the collective
action of community members who build open software as a public good [Sa54], yet are able to
possess and use this good without directly contributing some resource, commitment of labor, or
reciprocity back to the community. Each of these communities we suspect has many such free
riders, yet their presence does not seem to undermine the viability of the community, as would be
inferred in classic analyses [O71]. In contrast, if open source code is not the only, nor the most
significant, public good at hand, then what might explain the ongoing persistence of such
communities? For example, if the primary public good that open software community
participants realize is socio-technical connectivity and communality [MF+98], then these
"network externalities" may emerge as a key variable that sustains and evolves these
communities. Thus, in order for us to understand and characterize the kinds of work structures,
processes and practices that we observe, we will employ ethnographic field studies using
qualitative research methods to explore open software communities.

Why do comparative field studies of multiple open software communities? We could choose
to study a single, large open software community (e.g., the Linux/GNU community with 1000's
of participants). However, we choose to study a comparative set of small communities (each with

10

10's to 100's of active participants). Variety and comparability rule our choice to study a set of
small communities. Similarly, to increase the depth, breadth and scope of our analysis, and to
increase the generalizability of our results, we benefit from a choice to study a set of four
comparable communities, instead of just one community.

Why study the four designated communities? Our research and programmatic objectives (cf.
Section C.2) lead us to explore (a) two academic research communities, and (b) two non-
academic development communities, as our choice for which communities to study. Each
community maintains a visible presence of Web-based software, artifacts, documents and other
materials. Thus, we have immediate access to these items as data and as public points of entry
into the community. Nonetheless, we can further describe these four specific communities as
follows:
� Why study the Chandra Science community? The CS community is based around

astrophysical observation and computer facilities at the Harvard-Smithsonian Observatory
for Astrophysics, MIT, and TRW in Cambridge, MA [C00]. This is an academic research
community whose development, use and evolution of open software for collecting, analyzing
and visualizing deep space X-ray observation data is primarily instrumental and practical.
Instrumental use of open software suggests that its development is a means to an end (i.e.,
develop open software that enables deep space X-ray astrophysics research), rather than a
focus on the end itself.

� Why study the Software Architecture research community? The SA community is an
invisible college of academic Software Engineering researchers working at universities
including CMU, Stanford, USC, UC Irvine, Colorado, UT Austin, Imperial College (UK),
and elsewhere [cf. SB98,SoAR00]. This is an academic research community whose
development, use and evolution of open software tools for modeling, analyzing, simulating
and compiling the architectural specification of software systems is primarily an exploratory,
experimental endeavor in software engineering. Exploratory and experimental development
of open software here suggests that such practice is both a means to an end (developing and
using these software tools enables this line of research work), and the end itself (building
software tools/artifacts is interesting and professionally rewarding to academic software
experts).

� Why study the Apache Project community? Apache (www.apache.org) is a globally
distributed software development project coordinated by a group of some 20 developers
[F99]. This is a non-academic development community (with some exceptions [F99]) whose
development, use and evolution of open software for the world's most popular Web servers is
instrumental and practical to most of its participants. However, it is also an exploratory,
experimental endeavor in globally distributed software engineering to other participants
[C99, FW+98,K99,NS99].

� Why study the Unreal computer game community? Unreal is a computer action game
(i.e., a "first person shooter") whose conceptual lineage spans earlier games like Quake,
Heretic and Doom, with another 20 new computer games as successors licensed to use its
engine. It is an open, extensible game environment built about a closed, proprietary game
engine developed by the firm, Epic Games Inc. [U00]. Nonetheless, it has many 100,000's
users and at least 100's of public developers and user groups who share game extension
software or content (e.g., textured 3D geometric models) through both a formally
orchestrated [cf. K00] and informal community of Web sites and network servers. It

http://www.apache.org/

11

represents a non-academic development community (dominated by young males, 12-30 years
old) whose development, use and evolution of open software for extending game play and
game content for a proprietary game engine is primarily instrumental, practical and a source
of personal enrichment (e.g. having fun playing new game variations).

Are these the only four open software communities to consider? No, but as a set, they do
display an interesting and contrasting set of characteristics. Also, we note two dimensions for
comparing the communities. First is the grouping of two academic, research-oriented
communities, and two non-academic, development-oriented communities. Second, the grouping
of two communities whose interest in open software is primarily instrumental, and two whose
interests are exploratory and experimental. Thus, with these two dimensions we have an initial
basis for comparative analysis across these designated communities. Beyond this, other plausible
open software communities that merit consideration for systematic study include the Internet
Engineering Task Force (IETF) [cf., DOS99], World-Wide Web Consortium (W3C), the
National Institute of Standards and Technology (NIST), the Internet privacy working group
(IPWG/P3P), and the Linux/GNU [T99,St99,DOS99] operating system environment community.
Why not study one of these? For IETF, we bring no prior experience or legacy of domain
competency. Thus getting familiar and knowledgeable about the domain would be time-
consuming and slow the research effort. The W3C and NIST primarily focus their efforts on the
development of software standards, rather than the development or evolution of open software.
Thus, they represent different kinds of communities that we are addressing. Similarly, the P3P
community is active in developing open privacy guidelines within the W3C community.
Ackerman is an active participant in this community, so access is in hand. However, the choice
to include P3P in this study would require modification of the comparative community research
design described earlier. Finally, the Linux/GNU community is now very large, and increasingly
populated with commercial enterprises, start-up firms backed by venture capital, and the like.
This community perhaps thus merits a separate study on its own, since it should be possible to
explore both the social and economic implications of the Linux/GNU operating system
environment.

How do we intend to collect field study and case study data? We will collect data through
participant observation, semi-structured interviews, artifact gathering, and Web-based
questionnaires. Participant observation of these communities may be direct (e.g., attending work
group meetings or practitioner conferences) and indirect (corresponding through email with
participants; follow distribution lists, examine Web sites [MA96]). This method requires the
research team members to first map out what they know about each community, and what
community-based resources or artifacts can be located on/off the Web. Following this, the team
can identify initial people to contact for interview in each community. For each of the four
communities, we can identify and locate (via email) these people. Follow-on interviews with
other community participants will then be determined through interaction and semi-structured
interviews with initial contacts, as well as through the initial coding and review of this data [cf.
GS67]. Our goal is to interview a total of 40-60 participants across the four communities each
year, at a minimum. Beyond this, Web-based questionnaires will be employed to solicit input or
feedback on emerging models from dispersed community participants. Note we are not claiming
that these surveys will follow an experimental research design intended to produce robust data
for extensive statistical or quantitative analysis. Instead, we will use convenience surveys as

12

indicators for remote community participants to voluntarily contribute their views on questions
that we will ask, which follow from initial analysis of our other primary data sources. These
weak indicator data may nonetheless shed light on the frequency and distribution (spatial,
temporal, or geographic) of events, situations, or conditions we discover from interviews and
observations. Similarly, these weak indicators may enable us to conduct crosscutting,
triangulation analyses that begins to reconcile qualitative and quantitative data in moving toward
the development of grounded theory [GS67,Y89].

How can we identify representative demographics of each community under study? A
community can be characterized in a number of ways. These include its membership (who's in,
who's not), extent of partially overlapping networks of relationships, mutual commitment and
generalized reciprocity among participants, an affinity of shared values and practices (including
shared experiences, histories, norm and incentive structures, processes, and problematic
situations), collective creation and distribution of collective goods, and persistence of the
community [H55]. Similarly, an open software community can be characterized in terms of the
number and geographic distribution of participants, frequency and kind of participation they
engage, community events that trigger differentiated participation, social processes or
mechanisms for integrating or discouraging the inputs from prospective new participants, etc.
We intend to use "free" questionnaire software/services readily available on the Web (e.g.,
www.zoomerang.com) to collect data such as these. Using these software/services it is possible
to rapidly create and deploy Web-based questionnaires that can collect and analyze (via
descriptive statistics) data as it is submitted. Our strategy here is to use this kind of questionnaire
(using privacy guards like login/user-id pseudonyms as personal identifiers) to conduct
convenience surveys targeted to members in a community. Acknowledged sponsorship from
NSF, as well as affinities established by our research team through participant observation in
face-to-face meetings and via email postings, will be employed to encourage Web-based
questionnaire completion, submission and feedback. In this regard, we will make the quantitative
results of our questionnaire open to community members, and subsequently observe whether
such feedback induces any changes in the community, as well as the form it takes. [cf. OS00].

How can we gain access to participants and artifacts in each community? Our research team
has established access with each of the four communities. Ackerman has access and periodic
interaction with participants in the Chandra Science community (see for example [AM99]).
Scacchi has access and periodic interaction with participants in the Software Architecture
research community through prior work [e.g., SB98] and through his participation at the UC
Irvine Institute for Software Research. He also accesses and engages the Unreal game
community through his NSF funded project on Enterprise Visualization. Ackerman has also
conducted field study in a computer game community [MA96]. Last, UCI ICS graduate students
[e.g., F99, FW+98] among others are participants in the Apache Project, and our research
assistants will have access and periodic interaction with them.

How can we collect and analyze open software artifacts from each community? Participants
in each of these communities make routine and extensive use of the Web to mediate their work,
and to store/share the products and artifacts of their work. Thus, we intend to characterize and
document these community resources and public artifacts as part of the data we seek to collect,
analyze, model and archive. This requires us to develop an inventory of the types and descriptive

13

forms used to collect and share information about software programs, artifacts, test data, etc.
within each community.

How can we identify the open software work structures, processes and practices that are
central to collective action in an open software community? To start, we prefer a broad view
of what work structures can be. In our view, work structures are not pre-defined forms or
patterns that exist independent of software development work. Instead, we prefer to view work
structures as a continually emerging composition (or recomposition [G98]) of teamwork
relations, patterns of work flow, resources arrangements that situate work activities and
constitute workplaces, as well as the larger institutional contexts in which communities
participate and operate. Work structures are thus a way of viewing how software development
workplace settings and resource arrangements facilitate and constrain who does what, where,
when, how and why, as well as with whom and with what.

Next, open software work processes denote classes or patterns of recurring work practices in a
setting [MS90,MS96,SM97]. Such processes may recur within a community in one/many spatio-
temporal places or dispersed cognitive-computational information spaces [cf. CoB99,MCM95,
Sh91]. Similarly, they may recur across more than one community. Processes differ from
practices at an analytical level of abstraction, in that work practices can be viewed as instances
of either recurring or emerging work processes, or as individual/collective actions (including
social discourse) toward situated events [P98]. This allows for work practices that may represent
unique or non-recurring processes, which then may be characterized or modeled as such [cf.
SM97,CS+96,SiC97]. From a traditional software engineering perspective [So95] such non-
recurring processes are not the subject of attention, nor a basis for providing automated
workflow or process enactment support. Nonetheless, in our study, we seek to identify and
characterize open software work structures, processes and practices as our units of analysis, as
well as to the participants, artifacts, resources, information infrastructures, historical
circumstances and institutional contexts that situate them, within and across four communities of
practice.

C.4.2 Comparative Case Studies
Through our discussion of related research in Section C.3, we identified five analytical
categories and highlighted a number of analytical themes we will use as lines of inquiry in our
field studies. These categories and themes are combined and condensed into the units of analysis,
as well as the units for comparison, in our study. Subsequently, a given exploration of one or
more unit of analysis situated within or across an open software community constitutes a case
study in our research approach [Y98]. For example, if we examine the processes and practices by
which the Chandra Science community modifies and repairs its open software (programs,
artifacts, documentation, email postings) for astrophysical data collection and visualization, this
would constitute a case study. Alternatively, if we address how the Unreal computer game
community disperses new "game levels" throughout its community of practice (via Unreal Web
sites, game and list servers), this would also denote a case study. Similarly, if we address how
either the Software Architecture community or Apache Project practices software engineering
design and testing methods (e.g., from textbook references, research publications, or ad hoc
locally grown sources) to realize what they consider reliable software, these too would be case
studies. Consequently, we then see that re-examining the units of analysis of a given case study

14

in one or more other open software communities would enable us to compare and contrast such
units through multiple comparative case studies. This means we can examine, compare and
contrast how each of the four communities, for example, (a) modifies and repairs its open
software, (b) communicates and disperses new open software components, or (c) designs and
tests open software systems in order to determine (or "define") their reliability.

Overall, we seek to conduct comparative case studies that identify and characterize common
open software work structures, processes, practices and artifacts arising (a) within a community,
(b) across communities, and (c) across analytical categories or empirically driven theoretical
samples [GS67], as we and other researchers have done before [e.g., BS89,GHP99,JS95, KS82,
S98]. Similarly, we seek to identify and characterize distinctive open software work structures,
processes, practices and artifacts arising (a) within a community, (b) across communities, and (c)
across analytical categories or empirically driven theoretical samples. Subsequently, our choice
for which analytical categories or theme to employ in one or more case studies will emerge from
a mixture of the initial maps of each community we develop, the data we sample and collect
from participant observation and structured interviews with people in each community, and
through individual/professional subject-matter interests of our research team members.

C.4.3 Modeling and Analysis
Each case study provides data for modeling and analysis. We anticipate developing three kinds
of models that represent the socio-technical work structures, processes and practices of open
software communities. Each kind of model employs a different representational medium or
notational form, though all such models can be published for access over the Web.

First, we plan to develop computational models and analyses that provide a formal representation
of selected open software work structures, processes or practices in a form that can be parsed,
analyzed or interpreted with computer-based tools [cf. MS90,MS96,SM97,S99].

Second, we plan to develop semi-structured models and analyses that allow us to explicitly
interrelate online case study data, artifacts, annotations and analyses to computational models
and descriptive narratives using knowledge-based modeling [MS96], Web-based mechanisms
[SN97] and hypertext techniques [NS99,VS99,S00b]. What makes these models semi-structured
is their combination of multiple heterogeneous notations, descriptions and computational models
of work structures, processes or practices that are cross-linked (or "hyperlinked") for exploratory
browsing and comparative analyses [cf. GS67,MSM95,Sh91].

Third, we plan to develop narrative models that articulate a story grounded in situated discourse
data to characterize, explain, or otherwise provide the participants' interpretation of the focal
work structures, processes, practices or other embedding situation(s) at hand [cf. AH00,BS89,
JS95,KS82,McA98,MA98,Su87]. The associated analyses will articulate, compare and contrast
alternative explanations and interpretations that are drawn from other case studies or from the
research literature.

Fourth, given the preceding three classes of models for describing and representing case study
data, we can then address issues pertaining to the comparative ability for one class of models to
more/less comprehensively portray the underlying socio-technical phenomena being modeled

15

and analyzed. This we believe is an important new step in addressing concerns that have been
raised in the literature regarding the relative efficacy of different narrative vs. computational
schemes for representing (or occluding) socio-technical work structures, processes or practices
[cf. Su95].

Finally, our task is to generalize from the previous sets of empirical grounded models in order to
develop, articulate and refine a meta-model of open software work structures, processes and
practices [MS96]. This is most easily done working from computational models [MS90,S99,
SM97]. Nonetheless, such a meta-model constitutes a kind of empirically grounded theory of
open software work structures, processes and practices that we seek to develop through this
research study.

C.4.4 Multiple Iterations for Longitudinal Analysis
We plan to engage, observe, collect and analyze data from each community for a three-year
project duration. We also plan to iterate study of each community each year, hence three
iterations. This means plan to conduct field studies each year that will focus on identifying,
exploring and revisiting locally significant work structures, processes or practices as case studies
that can be compared within or across field sites, over time. Similarly, it also suggests the need to
go back and re-interview participants in order to elicit their views on events or changing
conditions that have appeared in the interim. Beyond this, we plan to model and analyze the
work structures, processes and practices that correspond with those of each case study. In turn,
this may lead to the iterative modeling, comparative analysis and incremental refinement and
evolution of cases within or across the three study years. Collectively, these will enable us to
conduct a longitudinal study of open software communities, processes and practices in an
iterative, incremental and comparative manner.

C.4.5 Project staffing and resources
Our proposed research team consists of two senior research investigators (Ackerman and
Scacchi), assisted by two graduate research assistants. Both investigators have a history of prior
experience and publications in research projects that primarily employ ethnographic methods as
a basis for developing systematic understanding and/or empirically grounded theory. With two
investigators and two research assistants, we have the requisite staff needed to undertake
exploratory investigations, grounded theory research methods, data collection, analysis and
modeling in the four designated communities being studied. Each research team member will be
primarily responsible for leading the research effort in one community. Each team member will
provide research support (secondary data collection, review of collected artifacts, analyses and
models) from two other communities.

Based on prior experience, each project team member can interview, code and review data from
6 to 10 community participants in a person-week of effort (though such effort is not usually so
contiguous). Browsing, collecting, analyzing and interlinking open software artifacts, documents
or related bibliographic materials from each community can be done on an ongoing basis
throughout the project. Modeling, analysis and write-up of the socio-technical work structures,
processes and practices characteristic of each open software community is estimated at two-to-
four person weeks of effort, per model. Our goal is to produce four to eight models in narrative,
semi-structured and computational forms (i.e., 12 to 24 models) per project year. These models

16

will then be revised and refined through ongoing data collection and analysis, so 20-30 models
(or "cases") may ultimately be produced after three years of research effort, though half that
number would still constitute a substantial base of results.

C.5 Anticipated Research Outcomes
We anticipate six kinds of research outcomes will result from our proposed research effort.
These are identified in turn.

C.5.1 Models of Open Software Communities, Work Structures, Processes and
Practices
We will develop computational, semi-structured and narrative models that describe socio-
technical work structures, processes and practices associated with the production and evolution
of open software, as well as the communities of practice from which they emerge.

C.5.2 Develop Foundations for Empirically-Grounded Theory
We ultimately seek an empirically grounded theory that can characterize, explain and predict
(within limits) the socio-technical work structures, processes and practices that enable the
production and evolution of open software within the kinds of open software communities that
we study. Such theory must both draw on the various types of models we will develop, as well as
the underlying data and artifacts. Subsequently, the theory must serve as a meta-model that
covers the individual models [cf. MS96]. Additionally, others researchers not directly involved
in this project must be able to independently review, re-analyze and assess our theory to
determine whether alternative models or interpretations will contradict or refute those we have
made. Thus, our models and analyses will be published for remote access on the Web.

C.5.3 Dissemination of Selected Data
We plan to publish selected data and secondary materials that provide the base for our model
building and theory development, while maintaining the confidentiality and privacy of
participants interviewed during the field studies. This data can also serve as a resource for others
to employ to re-analyze, extend or refute our efforts, as the practice of grounded theory and
comparative case study encourages [cf. GS67,Y89].

C.5.4 Research Publications and Presentations
We plan to publish and present our models, theory and data in journal articles and international
conferences, symposia or workshops addressing audiences in the areas of social and
organizational informatics, computer-supported cooperative work environments, software
engineering, software development practice and experience, organizational and software
processes.

C.5.5 Research, Education and Community Interaction
The anticipated products from this research noted above will be integrated into graduate and later
undergraduate coursework at UCI, particularly in courses addressing software engineering,
computer-supported cooperative work, and social/economic implications of computing. In
addition, the models and publications we will develop are likely to be of interest to the corporate
affiliates of the UCI Institute of Software Research. Thus, we have the opportunity and the

17

situated audiences to both present and elicit feedback from regarding the emerging models and
results we develop during the period of this project.

C.5.6 Guidelines for Developing an Open Software Community
If our research effort is successful in meeting all of its research and programmatic objectives, it
should be possible to begin to articulate the practices and lessons that open software community
participants have learned. To be clear, emphasis here is on identifying the practices and lessons
learned in the terms that the participants assert are useful, rather than having us, the research
team, making such judgement on what works best. Our role is not to make such judgements,
rather our purpose is to help elicit, document, compare and share those from the participants in
different open software communities. Thus, our commitment here to produce such guidelines is
tentative, though there are plausible reasons for expecting that such advice will be sought by
readers and reviewers of our research results and publications.

C.6 Results from Prior NSF Supported Research
Mark S. Ackerman's (Co-PI) CAREER grant IRI-9702904 examines the organization of
networks of expertise, including ad-hoc networks. As part of this work, he conducted the
analysis of organizational memory [AH00]. In addition, a dissertation under his supervision has
examined how people seek expertise within a software company, uncovers mechanisms by
which expertise is found and transmitted in software environments [McA98].

Walt Scacchi (PI) has had no prior support from NSF since his days in graduate school in 1974-
1980. Beginning January 2000, Scacchi is funded as a Senior Scientist from the NSF SBIR
Program on a grant DMI-9960830 titled "SBIR Phase I: Enterprise Visualization" for the period
January-June 2000 to Bayfront Technologies Inc. in Costa Mesa, CA. This grant supports
Scacchi at 50% time. There have been no results published from this effort to date, though the
project is on schedule, and results will be documented and published in spring 2000. Otherwise,
Scacchi has been PI or Co-PI on 25 externally funded research contracts or grants from various
government agencies and commercial firms.

18

D. References
[AH00] M.S. Ackerman and C. Halverson. Re-examining an Organization's Memory.
Communications ACM, 43(1):58-64, January 2000.
[AM99] M.S. Ackerman and E. Mandel. Memory in the Small: Combining Collective Memory
and Task Support for a Scientific Community. J. Organizational Computing and Electronic
Commerce, 9(2-3):105-127, 1999.
[B00] K. Beck. Extreme Programming Explained, Addison Wesley Longman, Reading, MA
2000.
[BS89] S. Bendifallah and W. Scacchi. Work Shifts and Structures: An Empirical Study of
Software Specification Work, 11th. Intern. Conf. Software Engineering, Pittsburgh, PA, ACM
Press, 260-270, May 1989.
[BHP89] W.E. Bijker, T.P. Hughes and T.F. Pinch. The Social Construction of Technological
Systems : New Directions in the Sociology and History of Technology. MIT Press, 1989.
[BD91] J.S. Brown and P. Duguid. Organizational learning and communities-of-practice:
Toward a unified view of working, learning, and innovation. Organization Science, 2(1):40-57,
1991.
[BS96] G. Button and W. Sharrock. Project Work: The Organisation of Collaborative Design and
Development in Software Engineering. Computer Supported Cooperative Work, 5(4): 369-386,
1996.
[BST97] G. Bowker, S.L. Star, E. and W. Turner. Social Science, Technical Systems, and
Cooperative Work : Beyond the Great Divide, Lawrence Erlbaum, 1997.
[CPG98] K. Carley, L. Gasser, and M. Prietula (eds.), Simulating Organizations: Computational
Models of Institutions and Groups, MIT Press, 1998.
[C99] E. Carmel. Global Software Teams: Collaborating Across Borders and Time Zones.
Prentice-Hall, 1999.
[C00] Chandra Science Web Site, http://asc.harvard.edu/. Chandra Software Tools Information
Site: http://asc.harvard.edu/udocs/docs/docs.html, January 2000.
[CS00] A.M. Christie and M.J. Staley. Organizational and Social Simulation of a Software
Requirements Development Process, Software Process--Improvement and Practice, (to appear),
2000.
[CS+96] W.J. Clancey, P. Sachs, M. Sierhuis and R. van Hoof, Brahms: Simulating Practice for
Work Systems Design, Invited presentation at Pacific Knowledge Acquisition Workshop,
Sydney, October 1996.
[Co68] M.E. Conway. How do Committees Invent?, Datamation, 14(4):28-31, 1968.
[CoB99] S.D. Cook and J.S. Brown. Bridging Epistemologies: The Generative Dance between
Organizational Knowledge and Organizational Knowing. Organization Science, 10(4):381-400,
July 1999.
[DOS99] C. DiBona, S. Ockman and M. Stone (eds.), Open Sources: Voices from the Open
Source Revolution. O'Reilly & Associates Inc., Sebastol, CA 1999.
[F99] R.T. Fielding. Shared Leadership in the Apache Project. Communications ACM, 42(4):42-
43, 1999.
[FW+98] R.T. Fielding, E.J. Whitehead, K.M. Anderson, G.A. Bolcer, P. Oreizy and R.N.
Taylor, Web-Based Design of Complex Information Products. Communications ACM, 41(8):84-
92, 1998.

19

[GIK95] J.F. George, S. Iacono and R. Kling. Learning in Context: Extensively Computerized
Work Groups as Communities-of-Practice. Accounting, Management and Information
Technology. 5(3/4):185-202, 1995.
[GS67] B. Glaser and A.L. Strauss. The Discovery of Grounded Theory: Strategies for
Qualitative Research, Aldine, New York, 1967.
[G96] R. Grinter. Supporting Articulation Work Using Software Configuration Management
Systems. Computer Supported Cooperative Work, 5(4): 447-465, 1996.
[G98]R.E. Grinter. Recomposition: Putting it All Back Together Again. Proc. ACM Conference
Computer Supported Cooperative Work (CSCW '98). Seattle, Washington: November 14-18.
393-403.
[GHP99] R. Grinter, J.D. Herbsleb and D.E. Perry. The Geography of Coordination: Dealing
with Distance in R&D Work. Proc. ACM SIGGROUP Conf. on Supporting Group Work,
Phoenix, AZ, 306-315, November 1999.
[H55] G.A. Hillery. Definitions of Community: Areas of Agreement. Rural Sociology, 20:111-
123. 1955.
[ID98] A.C. Inkpen and A. Dinur. Knowledge Management Processes and International Joint
Ventures. Organization Science, 9(4):454-468, July 1998.
[JS95] A. Jazzar and W. Scacchi. Understanding the Requirements for Information Systems
Documentation, Proc. 1995 ACM Conf. Organizational Computing Systems, San Jose, CA,
ACM Press, 268-279, August 1995.
[K99] D.W. Karolak. Global Software Development: Managing Virtual Teams and
Environments. IEEE Computer Society Press, Los Alamitos, CA 1999.
[K00] A.J. Kim. Community Building on the Web: Secret Strategies for Successful Online
Communities, PeachPit Press, 2000.
[K94] R. Kling. Cooperation, Coordination and Control in Computer-Supported Work.
Communications ACM, 34(12):83-88, December 1994.
[KS82] R. Kling and W. Scacchi, The Web of Computing: Computer Technology as Social
Organization, in A. Yovits (ed.), Advances in Computers, 21, Academic Press, 3-85, 1982.
[K-C99] K.Knorr-Cetina. Epistemic Cultures: How the Sciences Make Knowledge. Harvard
University Press, Cambridge, MA 1999.
[KoL99] M.P. Koza and A.Y. Lewin. The Coevolution of Network Alliances: A Longitudinal
Analysis of an International Professional Service Network. Organization Science, 10(5):638-653,
1999.
[KrS95] R.E. Kraut and L.A. Streeter. Coordination in Software Development. Communications
ACM. 38(3):69-81. March 1995.
[L88] B. Latour. Science in Action : How to Follow Scientists and Engineers Through Society,
Harvard University Press, Cambridge, MA, 1988.
[LW91] J. Lave and E. Wegner. Situated Learning: Legitimate Peripheral Participation.
Cambridge University Press, Cambridge, 1991.
[MSM95] C.C. Marshall, F.M. Shipman and R.J. McCall. Making Large-Scale Information
Resources Serve Communities of Practice. J. Management Information Systems. 11(4):65-86,
1995.
[MO93] G. Marwell and P. Oliver. The Critical Mass in Collective Action : A Micro-Social
Theory. Cambridge University Press, 1993.

20

[McA98] D.W. McDonald and M.S. Ackerman. Just Talk to Me: A Field Study of Expertise
Location, Proc. ACM Conf. Computer Supported Cooperative Work (CSCW'98), Seattle, WA,
ACM Press, 315-324, 1998.
[MA98] J. Muramatsu and M.S. Ackerman. Computing, Social Activity and Entertainment: A
Field Study of a Game MUD. J. Computer Supported Cooperative Work, 7(1):87-122, 1998.
[McK99] M.K. McKusick. Twenty Years of Berkeley Unix: From AT&T-Owned to Freely
Distributable, in [DOS99], 31-46, 1999.
[MF+98] P.R. Monge, J. Fulk, M.E. Kalman, A.J. Flanagin, C. Parnassa and S. Rumsey.
Production of Collective Action in Alliance-Based Interorganizational Communication and
Information Systems. Organization Science, 9(3): 411-433, 1998.
[MS90] P. Mi and W. Scacchi, A Knowledge-Based Environment for Modeling and Simulating
Software Engineering Processes, IEEE Trans. Data and Knowledge Engineering, 2(3): 283-294,
September 1990.
[MS93] P. Mi and W. Scacchi, Articulation: An Integrative Approach to Diagnosis, Replanning
and Rescheduling, Proc. 8th. Knowledge-Based Software Engineering Conf., Chicago, IL, 77-85,
1993.
[MS96] P. Mi and W. Scacchi, A Meta-Model for Formulating Knowledge-Based Models of
Software Development, Decision Support Systems, 17(4): 313-330, 1996.
[NS87] K. Narayanaswamy and W. Scacchi. Maintaining the Configuration of Evolving
Software Systems, IEEE Trans. Software Engineering, 13(3):324-334, March, 1987.
[NS97] J. Noll and W. Scacchi. Supporting Distributed Configuration Management in Virtual
Enterprises. in R. Conradi (ed.), Software Configuration Management, Lecture Notes in
Computer Science, Vol. 1235, Springer-Verlag, New York, pp. 142-160, (1997).
[NS99] J. Noll and W. Scacchi. Supporting Software Development in Virtual Enterprises. J.
Digital Information, 1(4), February 1999. http://journals.ecs.soton.ac.uk/jodi/
[O71] M. Olson. The Logic of Collective Action, Harvard University Press, Cambridge, MA,
1971.
[OS00] The Open Science Project Web Site, http://www.openscience.org, January 2000.
[P98] M.F. Peterson. Embedded Organizational Events: The Units of Process in Organization
Science. Organization Science, 9(1):16-33, 1998.
[Sa54] P. Samuelson. The Pure Theory of Public Expenditure. Review of Economics and
Statistics, 36:387-390, 1954.
[S84] W. Scacchi. Managing Software Engineering Projects: A Social Analysis, IEEE Trans.
Software Engineering, 10(1):49-59, January 1984.
[S98] W. Scacchi, Modeling, Integrating and Enacting Complex Organizational Processes, in
[CPG98], 153-168, 1998.
[S99] W. Scacchi, Experience with Software Process Simulation and Modeling, J. Systems
and Software, 46(2-3): 183-192, 1999.
[S00] W. Scacchi. Redesigning Contracted Service Procurement for Internet-based Electronic
Commerce: A Case Study. J. Information Technology and Management, (to appear), 2000.
[S00b] W. Scacchi. Understanding Software Process Redesign using Modeling, Analysis and
Simulation. Software Process--Improvement and Practice, (to appear), 2000.
[SB98] W. Scacchi and B.E. Boehm. Virtual Systems Acquisition: Approach and Transitions.
Acquisition Review Quarterly, 5(2):185-216, 1998.
[SN97] W. Scacchi and J. Noll, Process-Driven Intranets: Life Cycle Support for Process
Reengineering, IEEE Internet Computing, 1(5):42-49, 1997.

21

[SM97] W, Scacchi and P. Mi. Process Life Cycle Engineering: Approach and Environment.
Intelligent Systems in. Accounting, Finance, and Management, 6:83-107, 1997.
[Sh92] B.R. Shatz. Building an Electronic Community System. J. Management Information
Systems, 8(3):87-107, 1992.
[SiC97] M. Sierhuis and W.J. Clancey, Knowledge, Practice, Activities and People, Paper
presented at the AAAI Spring Symposium on AI in Knowledge Management, 1997.
[SiMG99] C. Simone, G. Mark, and D. Giubbilei. Interoperability as a Means of Articulation
Work. Proc. Intern. Conf. Work Activities Coordination and Collaboration (WACC'99), San
Francisco, ACM Press, 39-48, February 1999.
[SoAR00] Software Architecture Research Web site, http://www.ics.uci.edu/pub/arch/. Also see
http://www.isr.uci.edu/events/wesas2000/.
[So95] I. Somerville. Software Engineering (Fifth Edition), Addison Wesley Longman, Reading,
MA 1995.
[St99] R. Stallman. The GNU Operating System and the Free Software Movement. in [DOS99],
53-72, 1999.
[SR96] S.L. Star and K. Ruhleder. Steps Toward an Ecology of Infrastructure: Design and
Access for Large Information Spaces. Information Systems Research, 7(1):111-134, March 1996.
[St93] A. Strauss, Continual Permutations of Action, Adeline De Gruyter, New York, 1993.
[Su87] L.A. Suchman. Plans and Situated Actions: The Problem of Human-Machine
Communication, Cambridge University Press, 1987.
[Su95] L. Suchman, Making Work Visible, Communications ACM, 38(9):56-64, 1995.
[T99] L. Torvalds. The Linux Edge. In [DOS99], 101-112, 1999.
[U00] Unreal World Web Sites: http://www.unreal.com, http://unreal.epicgames.com,
http://www.unrealized.com, http://www.unrealty.org, http://www.unrealengine.com, (plus 100
other sites), January 2000.
[VS99] A. Valente and W. Scacchi. Developing a Knowledge Web for Business Process
Redesign. Twelve Workshop on Knowledge Acquisition Modeling and Management, Banff,
Canada, October 1999. http://sern.ucalgary.ca/KSI/KAW/KAW99/papers.html
[W98] E.Wenger. Communities of Practice: Learning, Meaning, and Identity. Cambridge
University Press, 1998.
[Y89] R.K.Yin. Case Study Research: Design and Methods. Sage Publishers Inc, Newbury Park,
CA, 1989.

http://www.ics.uci.edu/pub/arch/

	A. Cover Page
	B. Project Summary
	We have developed a research approach that entails the investigation and understanding of representative socio-technical phenomena and conditions using multiple, comparative analysis techniques. We will employ field study methods to examine each communit
	C.1 Background Overview
	C.2 Objectives
	C.2.1 Research Objectives
	C.2.2 Programmatic Objectives

	C.3 Related Research
	C.3.1 Coordinating software production work
	C.3.2 Organizational forms and work structures for developing open software
	C.3.3 Information sharing and organizational memory in a community of practice
	C.3.4 Human-centered studies of computing-based work environments
	C.3.5 Computational modeling of organizational processes and work practices

	C.4 Research Approach
	C.4.1 Comparative Field Studies
	C.4.2 Comparative Case Studies
	C.4.3 Modeling and Analysis
	C.4.4 Multiple Iterations for Longitudinal Analysis
	C.4.5 Project staffing and resources

	C.5 Anticipated Research Outcomes
	C.5.1 Models of Open Software Communities, Work Structures, Processes and Practices
	C.5.2 Develop Foundations for Empirically-Grounded Theory
	C.5.3 Dissemination of Selected Data
	C.5.4 Research Publications and Presentations
	C.5.5 Research, Education and Community Interaction
	C.5.6 Guidelines for Developing an Open Software Community

	C.6 Results from Prior NSF Supported Research

	D. References

