
 1

Challenges in Using an Economic Cost Model for
Software Engineering Simulation

Emily Oh André van der Hoek

Institute for Software Research
University of California, Irvine
444 Computer Science Building
Irvine, CA 92697–3425 USA

emilyo@uci.edu andre@ics.uci.edu

ABSTRACT
The common software engineering education method of
theory presented in lectures along with application of these
theories in an associated class project is insufficient, on its
own, to effectively communicate the complex, fundamen-
tal dynamics underlying real-world software engineering
processes. We are constructing a new approach to software
engineering education that is based on the use of an educa-
tional software engineering simulation environment. How-
ever, a major challenge in developing such an environment
lies in creating an accurate model of the real world upon
which the simulation is based. In order for the simulation
to be a successful educational tool, this model must be
based on an appropriate economic model, must consist of
the correct “fundamental laws” of software engineering,
and must encode them quantitatively into accurate mathe-
matical relationships, thereby correctly embodying and
portraying all of the various factors, dynamics, and cause-
and-effect relationships present in the real-world software
engineering process.

Keywords
Software Engineering Education, Simulation

1 GOAL
Given the ubiquitous nature of software in our society, it
should come as no surprise that the discipline of software
engineering has taken a prevalent role, both in academic
research and in industrial practice. In parallel, of course,
software engineering education has received significantly
increasing amounts of attention as well, evidenced by, for
example, a special track at the main conference on soft-
ware engineering [2], a separate conference dedicated to
software engineering education [18], the SWEBOK project
[4], special journal issues dedicated to the topic [1, 5], and
even the introduction of specialized software engineering
degrees [8, 15]. Clearly, all of these efforts are aimed at
creating an understanding of the issues involved in teach-
ing software engineering, as well as at sharing approaches

to further improve the way software engineers are edu-
cated.

Despite all of this attention, a remarkable difference re-
mains between the software engineering skills taught at a
typical university or college and the skills that are desired
of a software engineer by a typical software development
organization. At the heart of this difference seems to be the
way software engineering is introduced to students: gen-
eral theory is presented in a series of lectures and put into
(limited) practice in an associated class project. While at
first this seems to be a reasonable approach, practical, di-
dactic, and timing reasons necessarily lead to the fact that
such lectures and class projects often lack an in-depth
treatment of the following five issues critical to any real-
world software engineering project:

• Software engineering is non-linear.
• Software engineering often has multiple, conflict-

ing goals.
• Software engineering continuously involves

choosing among multiple viable alternatives.
• Software engineering involves multiple stake-

holders.
• Software engineering may exhibit dramatic con-

sequences.

In essence, all of these issues relate to the overall process
of software engineering, which is difficult to teach in lec-
tures, since it remains abstract, and difficult to teach in a
class project, since it requires a project of significant size
to highlight the issues. Nonetheless, educating students in
these issues is essential to creating a full understanding of
the depth and complicated nature of software engineering.

Simulation is a powerful training technique that has been
successfully used in many different settings. Before airline
pilots actually fly a plane, they extensively train in simula-
tors. Military personnel practice their decision-making and
leadership abilities in virtual-reality simulation environ-
ments. In each of these cases, simulation provides signifi-

mailto:emilyo@uci.edu
mailto:andre@ics.uci.edu

 2

cant educational benefits: valuable experience is accumu-
lated without the potential of the dramatic consequences
that may occur in case of failure. Moreover, unknown
situations can be introduced and practiced, experiences can
be repeated, alternatives can be explored, and a general
freedom of experimentation and “play” is promoted in the
training exercise.

Our research project is based on the hypothesis that simu-
lation can bring to software engineering education many of
the same benefits that it has brought to other domains.
Specifically, we believe that simulation is the ideal plat-
form upon which to teach the above issues. As compared
to lectures, simulation has the distinct benefit of showing
and teaching students cause and effect in a practical man-
ner: if they make a wrong decision in the simulation, it will
(hopefully) become clear to them because the simulation
environment will show them certain undesired effects. As
compared to a class project, simulation has the distinct
benefit of being much quicker: one does not have to wait
days, weeks, or even months to see the effects of a deci-
sion, since the simulation environment is able to operate at
a faster pace than real life. In essence, simulation allows a
practical experience of the software process without the
additional, distracting burden of having to produce project
deliverables.

In order to be an effective educational tool, simulation
must be based on a model that accurately embodies the
dynamics of the real world process it represents. For a
software engineering simulation in particular, this accuracy
is attained by successfully communicating each of the five
fundamental issues mentioned previously. An interesting
observation to make is that these issues generalize to other
domains. In particular, many of the general economic cost
models introduced in previous versions of the EDSER
workshop seem to be applicable. However, a number of
difficulties arise in adopting such cost models for our pur-
poses. In this paper, we highlight some of these difficulties
and identify some avenues of addressing them.

2 ARCHITECTURE
Our simulation environment provides the user with a
game-like experience: all output is presented in a graphical
user interface, which realistically portrays all of the char-
acters, surroundings, artifacts, causes and effects of deci-
sions, and other various details present in a real world
software engineering environment. As such, our environ-
ment is similar to games like SimCity and The Sims, and
builds on many of their lessons learned in providing the
desired level of functionality while maintaining a graphical
and entertaining environment in which users can learn ef-
fectively. Perhaps the most important of these lessons is
the fact that, while the user controls the game through the
perspective of a single character, other characters behave
autonomously and typically interfere with the user in
achieving their goals 100 percent. Our simulation envi-

ronment employs this tactic as well: while a user may con-
trol, for example, the character of a project manager, the
simulation environment may direct that some of the em-
ployees check in sick periodically, or are not as productive
as they should be, or spend too much time at the coffee
machine talking.

Like any other simulation environment, our educational
software engineering environment is based on the basic
simulation process shown in Figure 1. At each step in the
simulation, input to the simulation engine consists of
commands provided by the user of the simulation. The
simulation engine uses this input, along with the simula-
tion model and the current state of the model, to, step-by-
step, calculate the state of the simulation as it progresses.
The output is then provided to the encompassing simula-
tion environment, which graphically displays the result.

Figure 1: Basic Simulation Process.

3 MODEL
A simulation model consists of a set of mathematical and
logical relationships that, collectively, represent the rules
underlying the behavior of the real-world process it em-
bodies. Any simulation environment is driven by such a
model, and our simulation environment is no exception to
this rule. In fact, its accuracy and effectiveness in achiev-
ing its educational purpose strongly depends on the charac-
teristics of this underlying model. Because of this impor-
tance, the creation of the model is a rather challenging
process. Specifically, four major questions need to be re-
searched regarding the requirements, design, implementa-
tion, and operation of the model.

What kind of model is needed? Given the five character-
istics of software engineering (non-linear, multiple con-
flicting goals, multiple viable alternatives, multiple stake-
holders, and dramatic consequences) it is clear that the
software engineering process can be viewed as a constraint
satisfaction problem. To model this kind of problem, a
generic mathematical model can be adopted, but several of
the approaches developed to model aspects of software
engineering with an economic cost model apply as well.
As such, we are faced with the question of which model
(or integrated set of models) to use to drive our simula-
tions. Two of the most important requirements are that the
model is incremental and modular. Incrementality is

model model
state

input output
simulation

engine

 3

needed such that the model can be used on a step-by-step
basis, rather than as a “prediction” kind of model that only
allows a single run-through (e.g., COCOMO [6], or a
probabilistic model [16]). Modularity is needed because
we plan to develop many different simulations, which,
over time, we expect to integrate in large-scale simula-
tions. Thus, it is required that the partial models we de-
velop can be integrated with relative ease.

What are the “fundamental rules” of software engineering
and how / from where can they be discovered? Like any
other discipline, software engineering has many underlying
empirical rules. For example, it is well known that adding
people to a project that is already late typically makes that
project later, due to the increased necessity for communi-
cation between personnel. Our simulation environment
aims to provide a real-world experience and, thus, its
model must be solidly rooted in such real-world phenom-
ena. Unfortunately, the set of rules of software engineer-
ing is published in a wide variety of media (software engi-
neering journals and conferences, computer-supported
collaborative work journals and conferences, books, trade
literature, etc.) and no single source exists in which all are
compiled. Therefore, one of the challenges in creating an
accurate model lies in researching, identifying, and com-
piling a list of the fundamental rules of software engineer-
ing.

How can the “fundamental rules” of software engineering
be encoded into an executable model? Once we have
chosen a particular kind of model, several questions about
the parameterization of the model follow: What are the
constraints and the variables whose values must obey those
constraints? What are the constants that influence the val-
ues of those variables? What are the equations that em-
body the cause and effect rules determining the behavior of
the model? How are the (often conflicting) overall goals
of software engineering and the individual goals of each
entity involved in the simulation encoded into the model?
As an example, consider the following simulation scenario
that illustrates the software engineering “law” which says
that skipping the design phase leads to highly problematic
integration:

The developers proceed directly from the re-
quirements phase to implementation, skipping the
design phase completely. When they begin to in-
tegrate, the error rate of the software skyrockets,
the quality of the software drops dramatically,
and each developer’s mood plummets. They must
spend several months (while the cost meter is
ticking away) integrating all of the different de-
velopers’ pieces of code before the system works.

Expressed qualitatively, this situation is easily described
and well understood. However, in order to make this sce-
nario executable in a simulator, a quantitative representa-
tion of its behavior, including mathematical equations de-

scribing the relationships between all of the different vari-
ables and factors involved, is needed. For instance, ex-
actly how many person-months longer does development
take when the design phase is skipped? Precisely how
many more bugs are present in a piece of software that was
developed without a design phase than one that was thor-
oughly designed before it was implemented? How much
does each developer’s motivation actually drop as the re-
sult of such a situation, and how, in turn, does this affect
the resulting productivity of the team? In essence, an exact
schema with which to evaluate the precise cost of each
action the player can take must be adopted. We intend to
leverage information from sources such as COCOMO [6]
in creating models that are as close to the real world as
possible, neither overplaying nor underplaying the effects
portrayed in the simulation.

How does the model work? A simulation used for edu-
cation in particular needs to guide the player in implicit
ways in regards to such issues as what steps to take, which
decisions to make, and which choices are available for
each decision. It also needs to have the ability to initiate
the actions of characters in the game that are not controlled
by the user, accept input from the user, and somehow bal-
ance the interaction between the two. Two challenges lie
in accurately and efficiently incorporating this requirement
into the actual execution of the model. First, it requires that
our model make provisions not only for the overall behav-
ior of the process, but also for the independent behaviors
of each individual entity involved in the process. More-
over, the model must consider the interactions between
these entities on both an individual basis and in terms of an
overall net effect. A model with these capabilities is quite
different from cost models introduced so far. Thus, careful
evaluation of existing models, as well as considerable ex-
tension to one or more of these models, will be required to
achieve the necessary functionality.

4 RELATED WORK
This research draws from several related areas, most nota-
bly software engineering education, process simulation,
games, and economic cost models for software engineer-
ing. This section briefly discusses the contributions in each
area that are relevant to the construction of our simulation
environment

Software Engineering Education
It is clear that educational methods in software engineering
are still very much dominated by the traditional model of
teaching theory in a series of lectures and putting that the-
ory into (limited) practice in an associated class project.
Pressured by industry to deliver students who are more in
tune with recent advances and new technologies, as well as
students who are more adept at understanding the difficul-
ties involved in the software process, numerous variations
on this basic method of software engineering education
have been developed [7, 10, 14]. Several of these ap-

 4

proaches have incorporated simulation, the most advanced
of which is represented by SESAM, a simulation environ-
ment for software engineering education that has been ap-
plied in classroom settings [11]. However, compared to the
research we propose, SESAM is limited in functionality.
First, SESAM’s play is linear in nature, following, in or-
der, each step of the software life cycle. Second, SESAM
is text-based and lacks any kind of “fun” graphical user
interface. Third, the models developed to date are limited
and are typically based on only a few different roles and
rules of interaction. Fourth, a player can only play the role
of a project manager—no controls are provided for any of
the other (simulated) characters. Despite these drawbacks,
SESAM’s models do provide a source of some well-
documented rules of software engineering, and its simula-
tion engine may be reusable for our needs.

Process Simulation
Many software process simulations have been developed
and used to analyze the characteristics and behavior of the
process being modeled and to predict the effects of process
changes [3, 13]. These all operate according to the same
basic philosophy of creating a model of a real-world proc-
ess, choosing a set of input parameters, running the model,
and examining the outputs together with traces of the
simulation to understand the workings of the environment.
Despite the fact that these simulations are passive in that
they run without interruption until finished, the models and
the rules underlying those models are pertinent to our
simulations since they share the purpose of modeling real-
world phenomena.

Games
Simulation games represent a tremendous source of ex-
perience that can be leveraged in creating models for an
educational software engineering simulation environment.
A class of games that is particularly relevant is the one
derived from the so-called “adventure games” of the olden
days—now represented by such popular games as Sim-
City, The Sims, Escape from Monkey Island, Myst, Ultima
Online, various MUDs and MOOs, and many others. In
these games, players work towards achieving certain,
sometimes conflicting goals, by living their “virtual lives”
in such a way that they must make tradeoffs in choosing to
work towards certain goals while ignoring others, much
like the process of software engineering.

These games also illustrate many examples of good and
effective design that can be used in our simulation envi-
ronment. They are fun to play, encourage experimentation,
usually have an excellent graphical user interface, have
immediate as well as time-delayed cause and effect rela-
tionships, and bring the player into unexpected, unknown
situations that need to be resolved. Moreover, the models
upon which these games are based exhibit all of the de-
sired characteristics required for our educational software
engineering simulation environment:

• They are non-linear. Multiple events happen at the
same time; one must frequently interrupt certain ac-
tivities to tend to others; and generally playing the
game in the same way every time will not lead to the
same results, due to the presence of several random
factors in the simulated characters and events.

• They involve multiple, conflicting goals. As ex-
plained previously, the games involve optimizing mul-
tiple goals that sometimes interfere with each other.
Player’s actions inherently weigh certain goals as
more important than others, and generally lead to cer-
tain goals that are attained and others that can only be
partially fulfilled.

• They allow for the exploration of alternatives. All
games allow a player to save the state of the game, in
effect providing a checkpoint ability that can be lever-
aged to explore different directions without commit-
ting oneself—simply returning to the saved state al-
lows for exploration of a different alternative.

• They generally involve multiple stakeholders. In
some games, these stakeholders are represented by the
different players that each try to optimize their own
results. In other, single-user games, the stakeholders
are provided by the game simulation. For example,
SimCity has unions and Green Party representatives
that the player must keep happy in making decisions
regarding city planning.

• They exhibit dramatic consequences. Although not
real, the graphical illustration of these dramatic conse-
quences (which range from the player actually being
killed, to buildings being destroyed by natural disas-
ters, to dirty houses being invaded by rats) has a pro-
found impact on the player.

Thus, since these game models exhibit the desired charac-
teristics of our simulations, we intend to leverage these
kinds of models in the creation of our environment.

Economic Cost Models for Software Engineering
Several economic models of the software engineering
process, based upon such concepts as Net Present Value
[12], financial portfolio analysis [9], and Return on In-
vestment [17], have been developed and applied to evalu-
ate various aspects of software development projects.
These have all been created mainly for the purposes of
either facilitating more accurate software project planning,
supporting managers in making decisions about software
projects, or predicting the effects of process changes. Each
of these models accomplishes its purpose by estimating
overall net measurements of the process, such as develop-
ment time, cost, and quality.

The obvious relevancy of this domain to our research lies
in our intended adoption of one of these models as a basis
upon which to create our simulation model. However,

 5

these models in their current state do not fit the needs of
our simulation environment, namely, an incremental nature
of operation, the capacity to be decomposed into partial
models, and the ability to recognize individual entities and
their interactions with each other. Nevertheless, it is ex-
pected that investigation of these models will yield valu-
able knowledge that can be used in the creation of our
simulation model, and that by incorporating and extending
one of more of these models, one suitable for our needs
can be developed.

5 CONCLUSION
We are constructing a new approach to software engineer-
ing education that integrates software process simulation,
simulation games, and economic software engineering cost
models into an educational software engineering simula-
tion environment. This environment addresses the prob-
lems inherent in the current methods of software engineer-
ing education by effectively teaching students the com-
plex, yet fundamental issues and dynamics that underlie
the software engineering process.

We have begun to take the first steps in building this envi-
ronment by performing an extensive survey of software
engineering journals, conference proceedings, workshop
proceedings, and books, as well as literature from other
related disciplines, in order to collect the fundamental rules
of software engineering. It is this set of rules that will form
the basis for our simulation model. Challenges lie ahead in
encoding these rules into an executable model, choosing a
particular kind of simulation model, and tailoring the simu-
lation to meet the specialized, educational requirements for
this particular environment. We believe the economic cost
models introduced in previous versions of EDSER can
contribute significantly to addressing these challenges.
However, as demonstrated in this paper, their application
is not as straightforward as one would ideally like. None-
theless, it is our belief that adapting one of these cost mod-
els is more efficient and will lead to better results than
simply building a simulation model from scratch.

REFERENCES
1. The Journal of Systems and Software. Vol. 49. 1999:
Elsevier Science Inc.

2. Proceedings of the 22nd International Conference on
Software Engineering. 2000: ACM.

3. Abdel-Hamid, T., Lessons Learned from Modeling the
Dynamics of Software Development. Communications of
the ACM, 1989. 32(12): p. 1426-1438.

4. Bagert, D.J., et al., Guidelines for Software Engineering
Education Version 1.0. 1999, Carnegie Mellon Software
Engineering Institute: Pittsburgh, Pennsylvania.

5. Balci, O., Annals of Software Engineering. Vol. 6. 1998:
Baltzer Science Publishers.

6. Boehm, B.W., et al., Cost Models for Future Software
Life Cycle Processes: COCOMO 2.0. 1995, University of

Southern California.

7. Boehm, B.W., et al., A Stakeholder Win-Win Apprach to
Software Engineering Education, in Annals of Software
Engineering, O. Balci, Editor. 1998, Baltzer Science Pub-
lishers. p. 295-321.

8. Boldyreff, C., The University of Durham BSc in Soft-
ware Engineering and Proposed MEng in Software Engi-
neering: A Position Paper, in Proceedings of the Thir-
teenth Conference on Software Engineering Education and
Training, S. Mengel and P.J. Knoke, Editors. 2000, IEEE
Computer Society. p. 189.

9. Butler, S., et al., The Potential of Portfolio Analysis in
Guiding Software Decisions, in Proceedings of the First
Workshop on Economics-Driven Software Engineering
Research. 1999.

10. Dawson, R., Twenty Dirty Tricks to Train Software
Engineers, in Proceedings of the 22nd International Con-
ference on Software Engineering. 2000, ACM. p. 209-218.

11. Drappa, A. and J. Ludewig, Simulation in Software
Engineering Training, in Proceedings of the 22nd Interna-
tion Conference on Software Engineering. 2000, ACM. p.
199-208.

12. Erdogmus, H., Comparative Evaluation of Software
Development Strategies Based on Net Present Value, in
Proceedings of the First Workshop on Economics-Driven
Software Engineering Research. 1999.

13. Madachy, R., System Dynamics Modeling of an Inspec-
tion-Based Process, in Proceedings of the Eighteenth In-
ternational Conference on Software Engineering. 1996,
IEEE Computer Society.

14. Mayr, H., Teaching Software Engineering by Means of
a "Virtual Enterprise", in Proceedings of the 10th Confer-
ence on Software Engineering. 1997, IEEE Computer So-
ciety.

15. McCracken, M., et al., A Proposed Curriculum for an
Undergraduate Software Engineering Degree, in Proceed-
ings of the Thirteenth Conference on Software Engineering
Education and Training, S. Mengel and P.J. Knoke, Edi-
tors. 2000, IEEE Computer Society. p. 246-255.

16. Padberg, F., A Probabilistic Model for Software Pro-
jects, in Proceedings of the 7th European Engineering
Conference held jointly with the 7th ACM SIGSOFT Sym-
posium on Foundations of Software Engineering. 1999,
ACM. p. 109-126.

17. Raffo, D., J. Settle, and W. Harrison, Estimating the
Financial Benefit and Risk Associated with Process
Changes, in Proceedings of the First Workshop on Eco-
nomics-Driven Software Engineering Research. 1999.

18. Ramsey, D., P. Bourque, and R. Dupuis, Proceedings
of the Fourteenth Conference on Software Engineering
Education and Training. 2001: IEEE Computer Society.

	ABSTRACT
	Keywords

	GOAL
	ARCHITECTURE
	MODEL
	RELATED WORK
	Software Engineering Education
	Process Simulation
	Games
	Economic Cost Models for Software Engineering

	CONCLUSION
	REFERENCES

