
1

Émigré: Metalevel Architecture and Migratory Work

Paul Dourish and André van der Hoek

Dept. of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425 USA

{jpd,andre}@ics.uci.edu

Abstract. Migratory work extends traditional mobile work with an innate
awareness of, and adaptability to, both technical and social surroundings. We
are designing a technical framework, Émigré, that is based on the use of
architectural meta-level representations to support rapid development and
semi-automated run-time adaptation of migratory work applications.

1 Introduction

Not too long ago, for computer-based workers, moving outside the office meant leaving
work behind—regardless of whether such a move involved getting coffee down the
hall, attending a company meeting, visiting a customer in town, or traveling outside the
country. Rapid and major technological advances, however, lead to the use of laptops,
cell phones, pagers, Personal Digital Assistants, and many other electronic devices that
allow users to bring work and stay connected with the office at all times and all places.
Mobile computing has arrived; now the struggle is how to use it effectively.

Conventional approaches to mobile computing focus on eliminating boundaries by
delivering seamless access to information and computation wherever a user goes. The
motto of “any time, anywhere” is testament to this vision. Unfortunately, the vision of
complete seamlessness is an illusion. In part, this is a technical matter, caused by vari-
ations in processor performance, storage architecture, and network throughput; in part,
it is a social matter, reflecting the different forms of information needs and acceptable
practice in environments as diverse as offices, meeting rooms, cars, homes, and restau-
rants. These technical and social variations create clearly visible boundaries that current
mobile technology blithely ignores.

Rather than attempting to eliminate boundaries, our work focuses on accommodat-
ing boundaries. In contrast to mobile work, we focus on what we call migratory work –
activities that move from place to place, device to device, and environment to environ-
ment, adjusting to suit changing circumstances. Migratory work applications, then, dis-
tinguish themselves in their ability to adapt to their surroundings—not only in terms of
location, but also in terms of devices on which they operate, available infrastructure, ad-
ditional devices and applications usable in the vicinity, and social and organizational
settings. For example, consider the migration of an application from a person’s office
to a meeting room. The application must shift from an environment in which it executes
on a powerful desktop with a range of input devices and multiple high-resolution dis-

2

plays, to an environment in which it executes on a simple PDA with a stylus as the sin-
gle input device and a small text display as the only output device. Perhaps even more
importantly, the application must be sensitive to its context of use: in the office it has
the sole attention of the person and can behave rather intrusively, but in the meeting
room it has limited attention and must be as unobtrusive as possible.

These are the challenges that our work aims to address. The broad research question
we are tackling, then, is how a migratory work application can relate its current and
future behavior to the setting in which it is currently operating—thereby allowing an
application to effectively migrate from setting to setting and support its users in a man-
ner appropriate to each of those settings. Our hypothesis is that meta-level architectures
provide a convenient and effective approach for addressing this question. One common
problem of meta-level architectures, however, is the complexity of developing both a
base level and a meta-level representation, and maintaining the synchronization be-
tween them. We will address these problems by harnessing ongoing research into run-
time architectural description languages. Specifically, software architecture promotes
the use of explicit architectural models of components and connectors as part of the de-
velopment process. We intend to exploit these capabilities in investigating the use of
run-time architectural models as the basis for dynamic meta-level application control.

2 Background

2.1 Metalevel Representations
In traditional approaches to system design, each module offers a single interface to its
client modules, creating an abstraction barrier between clients and the modules’ imple-
mentations. This barrier confers many important benefits on the design, including port-
ability, compositionality, and reuse. However, it is also a source of problems. Abstrac-
tion barriers hide implementation decisions that may, in fact, be important for specific
clients (consider a virtual memory paging algorithm that is optimized for certain pat-
terns of memory use but can lead to disastrous behavior with other patterns of use). To
circumvent this problem, some systems now offer both a traditional interface through
which they can be used and a meta-level interface through which they can be examined
and controlled (Kiczales, 1992). In effect, through the meta-level interface, these sys-
tems offer a representation of their own behavior - a representation that can be manip-
ulated in order to adapt the system to different needs and different circumstances.

These kinds of meta-level representations, and the principle of computational re-
flection on which they are based, were originally explored in the area of programming
languages, although the same problems appear in many other areas of system design
(e.g., Dourish, 1996). However, specific meta-level representations have typically been
developed in an ad hoc fashion, in response to particular problems, but without a con-
sistent frame of reference or grounding in software design practice.

2.2 Architectural Description Languages
Our starting point for infrastructure design is our current work on architectural model-
ing languages (Dashofy et al., 2001). These languages allow system developers and de-

3

signers to construct models of system architecture - components, connectors, interac-
tions, etc. xADL 2.0, the language with which we have been working thus far, provides
us three important advantages over other ADLs. First, it models not just static architec-
tures, but also aspects of dynamic run-time configurations, which makes it ideal as a ba-
sis for dynamic adaptability; second, it provides basic functionality for modeling archi-
tectural variants, making it ideal for modeling the alternative run-time incarnations of a
migratory work application; and third, it is specified in XML, which makes it highly ex-
tensible and therefore suitable as a base modeling language to which we can add the
necessary constructs that are unique to modeling migratory work applications.

One important component of the infrastructure is the means by which the system
will sense aspects of its environment. A range of existing technologies provide support
for local and remote service discovery (e.g., Sun’s Jini), localized communication (e.g.,
BlueTooth), etc. Our intention is employ these existing solutions rather than to develop
novel sensing techniques. However, the model-based approach allows us to decouple
sensing from the use of this information, so that Émigré can incorporate novel mecha-
nisms for sensing and discovery as they become available.

3 Approach

Figure 1 introduces the overall architecture of Émigré. The architecture separates the
models, infrastructure, and application into three separate entities. The models are fur-
ther subdivided in models of potential variants in which an application can reside at run-
time, models of context, and models of the relationships and constraints that are present
among application variants and contexts. Separating the models into these three catego-
ries not only promotes a strong separation of concerns, but also promotes reuse of mod-
els among different migratory work applications.

The infrastructure is further subdivided in a basic middleware that supports mobil-
ity, a context manager, and a run-time reconfiguration component. The context manag-
er, which is aware of different application contexts, combined with the run-time recon-
figuration component, which is able to drive the reconfiguration of an application from
one variant into another by drawing from the pool of available adaptations, extends the
basic mobile middleware into a middleware that is suitable for migratory work.

Figure 1 Architectural outline.

4

4 Challenges and Directions

The work described here is at a very early stage. At the time of writing, we are engaged
in initial experiments integrating various infrastructure components to demonstrate the
use of xADL 2.0 as a metalevel representation. Further work will address the core chal-
lenges, which are to determine the effective bounds of the design space imposed by par-
ticular architectural models, and the appropriate design parameters that balance flexi-
bility against cost of development. This work is ongoing and we look forward to being
able to present it in the future.

However, even at this stage, we believe that some of the central insights that have
arisen and which motivate our design are potentially valuable for others working in this
area. Three of these are significant here.

The first is the separation of migratory from mobile work. Rather than respecting
the detail of the different settings and situations in which work must be conducted,
much research into mobility attempts to obscure that detail by fostering an attitude of
seamlessness and ubiquity. In contrast, our approach recognizes the inherently hetero-
geneous nature of different social and technical settings and attempts to incorporate that
heterogeneity into the interactive experience.

The second is the identification of the role for explicit metalevel representations.
The diversity of settings for migratory applications potentially leads to a combinatorial
explosion which renders the development problems intractable, as we attempt to deal
with the variety of applications, components, infrastructure demands and social factors.
The particular advantage of the metalevel approach is that it yields a basis for flexibility
which is at once principled and extensible. Using architectural description languages as
the metalevel “glue” further allows us to integrate this new approach into conventional
software development practice.

The third insight is that the problems of migratory work cannot be solved purely
from a software perspective or purely from an interaction perspective, but require a new
approach that brings these two concerns together. The relationship between software ar-
chitecture and design on the one hand and interaction and user experience on the other
is never stronger than in domains in which each is tested to the limit, as is the case in
most mobile applications. A unified and coordinated approach is absolutely essential.

Our current work with Émigré is an example of the integration of these three prin-
ciples. Our early experiences are positive, and we hope to encourage others to adopt the
principles and explore other parts of the design space.

References

[1] Dashofy, E., van der Hoek, A., and Taylor, R. 2001. A Highly-Extensible, XML-Based Ar-
chitectural Description Language. Proc.Working IEEE/IFIP Conf. Software Architectures
WICSA 2001. Amsterdam, Netherlands.

[2] Dourish, P. 1998. Using Metalevel Techniques in a Flexible Toolkit for CSCW Applica-
tions. ACM Trans. Computer-Human Interaction, 5(2), 109-155.

[3] Kiczales, G. 1992. Towards a New Model of Abstraction in Software Engineering. Proc.
IMSA Workshop on Reflection and Metalevel Architectures. Tokyo, Japan.

