
Differencing and Merging within an Evolving Product
Line Architecture

P. Chen, M. Critchlow, A. Garg, C. Van der Westhuizen, A. van der Hoek

Department of Informatics
School of Information and Computer Science

 University of California, Irvine
 Irvine, CA 92697-3425 USA

{pchen,critchlm,agarg,cvanderw,andre}@ics.uci.edu

Abstract. Propagating changes from one place in a product line architecture
(PLA) to another is a difficult problem that occurs in a variety of settings.
Currently, no automated tools exist that help an architect in doing so, and
performing the task by hand in the face of a large PLA can be error-prone and
difficult. To address this problem, we have built a set of tools for automating
the process. Our approach breaks down into a two-step solution: (1)
automatically determining the difference between two selected (versions of) a
product architecture, and (2) automatically merging the difference back into a
different location in the original PLA. In this paper, we detail each of these two
steps and evaluate our solution on an example word processor PLA.

1 Introduction

Consider the following three scenarios that may occur in architecting a product line
architecture (PLA):

1. A series of changes have been made to one particular variant of a subsystem.
After the changes have been made, it turns out they are useful in some of the
other variants as well. The architect now wishes to take the changes and apply
them to those other variants [2].

2. In order to experiment with a new piece of functionality without interfering
with the main line of development, the architect creates a new branch and
implements the functionality on this branch first. It turns out that the
functionality can be incorporated, and the architect now wishes to move the
new functionality back into the main line of development [1].

3. To ensure accurate and responsive customer service, company policy requires
a product architecture to be maintained independently from the main PLA after
it has been deployed to a customer. During maintenance, however, the architect
makes some changes to the individual product architecture that would benefit
the overall PLA if they could be incorporated. The architect now wishes to
move those changes back into the PLA [4].

2 P. Chen, M. Critchlow, A. Garg, C. Van der Westhuizen, A. van der Hoek

A common concern throughout these scenarios is the need for the architect to be
able to propagate a set of changes within the realm of a single PLA, e.g., from one
place in the product PLA to another. Although it is possible to do this by hand, it may
not always be feasible (or desirable) when considering a PLA consisting of many
inter-related products that each comprise a large set of components. In such cases,
manually propagating changes is highly error-prone and labor-intensive.

In this paper, we describe our solution to this problem. Our approach centers on the
use of differencing and merging techniques that are specific to PLAs. In particular, we
have designed and implemented two automated algorithms: (1) a differencing
algorithm for determining the set of changes between two (versions of) a product
architecture selected out of an overall PLA, and (2) a merging algorithm with which
such changes are merged back into a different location in the PLA. The algorithms
complement Ménage, our design environment for managing the evolution of PLAs
[8], and enhance it with automated support for propagating changes throughout an
evolving PLA.

The remainder of this paper is organized as follows. Section 2 discusses our overall
approach. Section 3 defines our representation for capturing an architectural
difference and presents our differencing algorithm in detail. Section 4 describes the
merging algorithm, and illustrates how it can be used to propagate changes throughout
a PLA. Section 5 discusses our experience in using the algorithms. We conclude by
briefly discussing related work in Section 6 and discussing future work in Section 7.

2 Approach

Figure 1 illustrates our overall approach based on the third scenario discussed in the
introduction. First, a PLA is precisely defined (for instance, by using Ménage [8]).
This results in a PLA specification from which individual product architectures can
then be selected for delivery to customers (PA version 1). Based on customer
feedback, PA version 1 is changed and evolves into version 2, which is, once again
delivered to the customer. The changes turn out to be useful to some parts of the
original PLA as well, and now must be propagated into its specification. To do so, the
architect first uses the differencing algorithm to precisely determine the changes that
were made between PA versions 1 and 2. This results in an architectural “diff” file,
which can then be merged back into the product line in a specified location, resulting
in a new PLA that contains the new functionality.

We must make two observations regarding the process presented in Figure 1. First,
similar processes can be defined for the other scenarios discussed in the introduction.
Although the top line of process steps and specifications will be different, the same
differencing and merging algorithms will be used in exactly the same way to
propagate desired changes within the original PLA. The second observation regards
the generality of the process: the algorithms are not limited to differencing and
merging individual product architectures in which all variation points have been
resolved. Instead, they fully support operation over specifications that still may
contain “open” variation points.

Differencing and Merging within an Evolving Product Line Architecture 3

Figure 1. Overall Process for Scenario 3.

In our previous work, we developed differencing and merging algorithms that
operate on single software architectures [11]. These algorithms lay the basis for the
algorithms we discuss here, but they also exhibit a number of shortcomings that make
them unsuited for the context of PLAs. In particular, they rely on identifiers to
determine commonality; they do not handle type differences; they do not address
hierarchical substructures; and they only operate at the level of components and
connectors. In contrast, the algorithms we define in this paper adhere to the following
objectives:

• The algorithms do not rely on identifiers to establish commonality. Different
versions of a PLA will have parts that can be comprised of the same elements,
but those elements must have different identifiers since they can evolve
separately. As a result, our algorithms must base similarity on both the type
and structure of elements.

• The algorithms integrally address hierarchical substructure. Virtually every
PLA is composed in a hierarchical fashion; our algorithms should be able to
handle differences at each level.

• The algorithms are fine-grained. In particular, the algorithms do not operate at
the level of components as a whole, but are able to express subtle differences
in component interfaces, differences in the way links connect components and
connectors, and differences in mappings from high-level interfaces to
interfaces in a substructure.

Overall, then, we take a highly semantic approach. Rather than applying
semantically-neutral differencing and merging algorithms [10], we wish to be able to
operate and view changes in terms of architectural elements. Only then can an
architect easily understand the context of the changes and apply the algorithms
without having to make complex mental translations from changed lines of text to the
actual architectural elements that they describe.

4 P. Chen, M. Critchlow, A. Garg, C. Van der Westhuizen, A. van der Hoek

3 Differencing Product Line Architectures

The first step in our approach is to determine exactly which changes must be
propagated. For this purpose, we constructed a representation for capturing the
changes and implemented an algorithm for helping architects in automatically
calculating the changes as a difference between two particular selections out of a
PLA. Below, we discuss each in detail.

3.1 Difference Representation

Our existing work relies on the xADL 2.0 framework and infrastructure for
representing and accessing PLAs [5]. We have chosen to design our representation for
differences as an extension of the framework. In particular, we have extended the set
of XML schemas that define the xADL 2.0 language with a new schema for capturing
architectural differences. Figure 2 presents the structure of this schema. The schema is
defined as a recursive hierarchy of DIFFPART elements. Each DIFFPART corresponds
to a level in the architecture and describes the set of changes to that level as a set of
additions of new elements, a set of removals of existing elements, and (as a series of
lower-level DIFFPART elements) a set of changed elements.

Most of the representation is fairly straightforward, but we make the following
observations regarding the schema. First, we note that additions are either structural in
nature or type-based. Structural changes represent changes to the structure of a
component or connector type and determine the hierarchical composition of the type.
For instance, the difference in the structure of a component type could state that it
now includes an additional component and connector instance, as hooked up to the
remainder of the internal elements of the original component type. Type-based
differences concern the definition of a component or connector type, and include
changes in its signatures (definitions of which functionality it provides), changes in its
variation points (addition of new and removal of old variants), and changes in the
mapping from its signatures to its internal component and connector instances. By
separating structural changes from type-based changes, and capturing those changes
in terms of detailed modifications, our representation achieves a fine-grained level of
expressiveness that is semantically in sync with the remaining family of xADL 2.0
schemas to which it belongs.

The second observation pertains to the fact that each DIFFPART includes a
DIFFLOCATION to precisely identify the component or connector (type) to which the
associated differences belong. This allows the representation to capture hierarchical
changes, since each DIFFLOCATION identifies exactly which hierarchical part of a
PLA it addresses. Note that a DIFFLOCATION is relative to the DIFFPART in which it is
contained: this avoids having to use globally unique identifiers when differencing and
merging PLAs.

Finally, we observe that our representation supports the specification of changes in
variation points. For instance, the “optional” that can be added or removed represents
an optional element (with associated guard) in the PLA. Similarly, a “variant”
represents a changing alternative in the PLA (again, with associated guard) [8].

Differencing and Merging within an Evolving Product Line Architecture 5

Diff
Diff Part

Add

Diff Location

Diff Part

Structural Entity
Component
Connector
Link

Remove

Type Entity

Signature
Variant
Substructure

Interface
Optional

…

Sig. Intf. Mapping

Diff Location

…

[1]

[1]

[1]

[0 .. *]

[0 .. *]

[0 .. *]

[1]

Key:
Choice [] Cardinality

Diff
Diff Part

Add

Diff Location

Diff Part

Structural Entity
Component
Connector
Link

Remove

Type Entity

Signature
Variant
Substructure

Interface
Optional

…

Sig. Intf. Mapping

Diff Location

…

[1]

[1]

[1]

[0 .. *]

[0 .. *]

[0 .. *]

[1]

Key:
Choice [] Cardinality

Figure 2. Difference Representation.

3.2 Differencing Algorithm

A significantly simplified version of part of our differencing algorithm is presented in
Figure 3. The algorithm takes as input the xADL 2.0 specifications of two product
architectures that each may or may not have any variation points left (in essence, thus,
the algorithm is able to difference complete PLAs, although that is typically not a
very useful operation). In addition, it takes as input a starting point for each
specification. The starting point is necessary since it should be possible to generate
the difference between parts of a product architecture, since one does not always want
to have the complete difference. For instance, the feature that has to be propagated
back into the PLA may be at a lower level in the architecture and some unwanted
changes may have been made at a higher level in that same architecture. The starting
point allows an architect to hone in on just the feature they want to propagate and
ignore any of the other changes.

6 P. Chen, M. Critchlow, A. Garg, C. Van der Westhuizen, A. van der Hoek

Figure 3. Parts of Differencing Algorithm.

Note that a starting point is needed for both the original product architecture and
the new product architecture. As part of the evolution of the product architecture,
certain components may have been moved up or down to a different level. To be able
to directly compare those elements a starting point is needed in each of the product
architectures.

The difference algorithm operates by recursively iterating through all elements in
the original architecture that are reachable from the starting point and comparing them
with their corresponding elements in the new architecture. If an element does not exist
in the new architecture, the element was removed and the diff will contain a remove
instruction. Conversely, if an element exists in the new architecture that does not exist
in the old architecture, an addition is entered into the diff. When an element exists in
both the old and the new architecture, the algorithm compares the details of the
elements to achieve a fine-grained diff. For example, when a component instance
exists in both the old and new document, the difference algorithm verifies whether its
interfaces are the same, whether or not its optionality is the same (and, if optional,

Differencing and Merging within an Evolving Product Line Architecture 7

whether it has the same Boolean guards governing its optionality), and whether it is of
the same type. Only when all of these are exactly the same, the algorithm concludes
that the component instance has not changed; otherwise, instructions are placed in the
diff to account for the difference. The algorithm performs similar comparisons for all
other elements.

3.3 Differencing Example

Figure 4 introduces a simple example word processor PLA that contains an optional
component PRINT, a variant component SPELL CHECKER, and an optional variant
component GRAMMAR CHECKER. The component USER INTERFACE also has a
substructure that includes the components TOOLBAR and DISPLAY. For simplicity and
space reasons, the example ignores many details, such as, among others, connectors,
interfaces, signatures, and various mappings of interfaces. It is noted, however, that
the overall approach remains exactly the same.

In staying with scenario 3 as introduced in Section 1, imagine that the French
product architecture is selected as shown in Figure 5. The product architecture
includes the optional component PRINT, but does not include a GRAMMAR CHECKER.
Based upon customer request, the product architecture is modified to include
functionality for viewing pictures; this required the addition of two new components:
PICTURE DECODER and PICTURE DISPLAY (Figure 5). It is determined that it is useful
to include this functionality in the other variants of the product architecture,
necessitating a need to propagate the changes to the PLA shown in Figure 4. As a first
step in this process, the architect uses our implementation of the differencing
algorithm, resulting in a diff file. The diff file contains a root DIFFPART that contains
two parts: the addition of the component PICTURE DECODER and another DIFFPART,
which contains the addition of the component PICTURE DISPLAY to the component
USER INTERFACE.

Print

Dutch spell
checkerFrench spell

checkerEnglish spell
checker

Dutch spell
checkerFrench spell

checkerEnglish spell
checker

Dutch grammar
checkerFrench grammar

checkerEnglish grammar
checker

Dutch grammar
checkerFrench grammar

checkerEnglish grammar
checker

User Interface

Toolbar

Display

User Interface

Toolbar

Display

Figure 4. Example PLA.

8 P. Chen, M. Critchlow, A. Garg, C. Van der Westhuizen, A. van der Hoek

Figure 5. Original and Evolved French Word Processor.

4 Merging

Complementing the differencing algorithm is our merging algorithm. The merging
algorithm propagates a set of changes as captured in a diff file into a particular part of
a target PLA. As such, it takes the series of individual changes contained in the diff
file and applies each instruction in turn. The result, assuming the merge is successful,
is a new PLA in which the new functionality is now available.

Similar to the differencing algorithm, the merging algorithm takes as input a
starting point that describes where in the target PLA the differences must be applied.
Again, this allows selective merging into specific parts of the product line, as to not
disturb other parts.

Parts of the merging algorithm are shown in Figure 6. It operates by iterating
through the hierarchal instructions of a diff document and, at each step, adding all
elements that need to be added and removing all elements that need to be removed.
The algorithm does so by alternating over structural changes and type-level changes.
This is inherent to the underlying xADL 2.0 representation for PLAs. Since each
structural element is typed, the algorithm ensures that it updates all necessary types
when changes to a structural layer have been completed.

Clearly, due to the fine-grained nature of our algorithm, it is possible for conflicts
to occur during the merging of changes. Among many others, it is possible that the
algorithm attempts to remove a non-existing element, add an element that already
exists, and add to a substructure that no longer exists. In such cases, the algorithm
issues a warning message but continues the merging process. Our decision was to
make a best-effort attempt rather than simply abandoning merging altogether; often,
an architect will be able to correct merge problems relatively easily after the merging
algorithm has completed its actions (but see our future work plans in Section 7).

French spell
checker

User Interface

Toolbar

Display

Print Picture Decoder

Picture Display

French spell
checker

User Interface

Toolbar

Display

Print
French spell

checker

User Interface

Toolbar

Display

Print Picture Decoder

Picture Display

French spell
checker

User Interface

Toolbar

Display

Print Picture Decoder

Picture Display

French spell
checker

User Interface

Toolbar

Display

User Interface

Toolbar

Display

Print

Differencing and Merging within an Evolving Product Line Architecture 9

Figure 6. Parts of Merge Algorithm.

10 P. Chen, M. Critchlow, A. Garg, C. Van der Westhuizen, A. van der Hoek

To exemplify the operation of our merge algorithm, we apply it to the example of
Figures 4 and 5. After determining the set of necessary changes using our differencing
algorithm and merging those changes back into the original PLA, Figure 7 shows the
resulting PLA. We note that the two new components (shown in bold) are available in
each of the language variants of the PLA; any product architecture that is now
selected will include the components PICTURE DISPLAY and PICTURE DECODER.

Again, we note that the example omits many of the fine-grained details concerning
the operation of the algorithm. Space constraints prohibit us to show and discuss all of
them. We refer the interested reader to the algorithms themselves, which are publicly
available.

User Interface

Print

Dutch spell
checkerFrench spell

checkerEnglish spell
checker

Dutch spell
checkerFrench spell

checkerEnglish spell
checker

Dutch grammar
checkerFrench grammar

checkerEnglish grammar
checker

Dutch grammar
checkerFrench grammar

checkerEnglish grammar
checker

Toolbar

Display

Picture Decoder

Picture Display

Figure 7. Resulting PLA.

5 Evaluation

We tested the functionality of our algorithms by running them on a PLA for a
hypothetical entertainment system. The architecture contains 4 versions of the
entertainment system, each consisting of roughly 30 components and connectors with
a maximum hierarchical depth of four levels. The architectural layout of the
entertainment system is shown in Figure 8 as it appears in Ménage (our architectural
evolution environment).

Differencing and Merging within an Evolving Product Line Architecture 11

Figure 8. Entertainment System PLA.

Figure 9 illustrates the diff process with the two DISPLAY DEVICE variants. It can
be seen that the PLASMA DISPLAY component has no substructure, whereas the FLAT
SCREEN DISPLAY component contains an internal structure. The architect can run the
differencing tool on the two DISPLAY DEVICE variants ending up with a diff document
that describes the differences between the variants. Figure 10 shows the process of
merging the diff document (captured changes) into the PLASMA DISPLAY component.
The result of this merge is an evolved PLASMA DISPLAY component which now has
an internal structure.

This example and our other tests lead to two critical observations regarding our
algorithms. First, we note that they are efficient: both the differencing and merging
algorithm run in polynomial time and scale up to large PLAs. Second, we observed an
interesting effect of the merging algorithm: it is possible for a merge to have hidden
side-effects, namely when other parts of the PLA use the same elements that are being
changed. While this problem may occur during “traditional” merging of code, it is far
more likely to occur in PLAs because of the high levels of reuse and sharing of types.
We intend to upgrade our algorithms to issue a warning when this occurs, and intend
to update our design environment (Ménage) with a process that will check out
relevant elements such that side effects are avoided and impact is limited to individual
branches only.

12 P. Chen, M. Critchlow, A. Garg, C. Van der Westhuizen, A. van der Hoek

Figure 9. Diff Process.

Plasma Display Flat Screen Display

Diff Tool

Diff Document in XML

Plasma Display Flat Screen Display

Diff Tool

Diff Document in XML

Differencing and Merging within an Evolving Product Line Architecture 13

Figure 10. Merge Process.

6 Related Work

Our approach differs from other methods of differencing and merging [3,6,9,10] in
that it is semantic in nature. Our difference representation and algorithms are
specifically designed to deal with PLAs, and as such give us the distinct benefit of
being able to difference and merge hierarchical structures at a fine-grained level.
Other approaches are syntactic in nature and typically operate on text files [10]. At

Plasma DisplayDiff Document in XML

Merge Tool

Evolved Plasma Display

Plasma DisplayDiff Document in XML

Merge Tool

Evolved Plasma Display

14 P. Chen, M. Critchlow, A. Garg, C. Van der Westhuizen, A. van der Hoek

best, some semantics are built in, such as the differencing and merging tools for
HTML [6] and XML [9]. Even though our representation is a xADL 2.0 XML
Schema, neither of those approaches would work since it would not recognize related
changes in different parts of the document. We have, therefore, chosen for a less
generic approach that is more powerful and applicable to our situation (much like
other approaches in which semantics is important [7]).

7 Conclusion & Future Work

The differencing and merging algorithms presented in this paper can accurately
capture changes between different product architectures and propagate them back into
the originating PLA. This provides automated support for deriving new product
architectures that incorporate these changes—a property not present in previous work.
The strength of the algorithms lies in their ability to handle, at a semantic level, fine-
grained differencing and merging of hierarchically composed PLAs.

The approach presented in this paper makes a positive contribution to the
management of evolving PLAs; however, it is clear that further research is necessary
to explore related areas. While our approach allows for differencing and merging
within PLAs, the issue of differencing and merging across different PLAs remains to
be addressed. Moreover, we wish to create tools to visualize the process of
differencing and merging to provide architects with support for detecting and
resolving conflicts swiftly. Finally, we observe that our algorithms provide a
particular form of architectural refactoring support. We intend to further explore this
area in hopes of devising other, more advanced algorithms for this purpose.

Availability

Implementations of our algorithms can be downloaded from:

 http://www.isr.uci.edu/projects/archstudio/

Acknowledgements

The authors thank Eric Dashofy for his valuable contributions to the development of
this project. Effort funded by the National Science Foundation under grant numbers
CCR-0093489 and IIS-0205724.

Differencing and Merging within an Evolving Product Line Architecture 15

References

[1] T. Asikainen, T. Soininen, and T. Männistö. Towards Intelligent Support for Managing
Evolution of Configurable Software Product Families. Proceedings of the ICSE
Workshops SCM 2001 and SCM 2003 Selected Papers, 2003: p. 86-101.

[2] J. Bosch, Design and Use of Software Architectures: Adopting and Evolving a Product-
Line Approach. Addison Wesley, 2000.

[3] J. Buffenbarger. Syntactic Software Merging. Proceedings of the Software Configuration
Management: ICSE SCM-4 and SCM-5 Workshops Selected Papers, 1995: p. 153-172.

[4] P. Clements and L.M. Northrop, Software Product Lines: Practices and Patterns.
Addison-Wesley, New York, New York, 2002.

[5] E.M. Dashofy, A. van der Hoek, and R.N. Taylor. An Infrastructure for the Rapid
Development of XML-Based Architecture Description Languages. Proceedings of the 24th
International Conference on Software Engineering, 2002: p. 266-276.

[6] F. Douglis, et al., The AT&T Internet Difference Engine: Tracking and Viewing Changes
on the Web. World Wide Web Journal, 1998. 1(1): p. 27-44.

[7] J. Estublier. Defining and Supporting Concurrent Engineering Policies in SCM.
Proceedings of the Tenth International Workshop on Software Configuration
Management, 2001.

[8] A. Garg, et al. An Environment for Managing Evolving Product Line Architectures.
Proceedings of the International Conference on Software Maintenance, 2003.

[9] IBM, XML Diff and Merge Tool, http://www.alphaworks.ibm.com/tech/xmldiffmerge,
2002.

[10] T. Mens, A State-of-the-Art Survey on Software Merging. IEEE Transactions on Software
Engineering, 2002. 28(5): p. 449-462.

[11] C. Van der Westhuizen and A. van der Hoek. Understanding and Propagating
Architectural Changes. Proceedings of the Working IFIP Conference on Software
Architecture, 2002: p. 95-109.

