
Teaching Software Engineering Using Simulation Games

Emily Oh Navarro, Alex Baker, André van der Hoek
School of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425 USA

emilyo@ics.uci.edu, abaker@uci.edu, andre@ics.uci.edu

ABSTRACT
 A typical software engineering course fails to teach its
students many of the skills needed in software development
organizations. Because lectures and class projects alone
cannot adequately teach about the software process, we have
developed a pair of games in which the process is simulated,
giving students an opportunity to practice it firsthand.
Problems and Programmers is an educational software
engineering card game and SimSE is an educational
computer simulation of the software process.

Keywords: software engineering education, educational
games, software engineering simulation, simulation games

INTRODUCTION
 A large difference exists between the software
engineering skills taught at a typical university and the skills
that are desired of a software engineer by a typical software
development organization [3, 5-7]. This problem seems to
stem from the way software engineering is typically
introduced to students: general theory is presented in lectures
and put into (limited) practice in an associated class project.
Although both lectures and projects are essential, they lack a
practical, in-depth treatment of the overall process of
software engineering. In particular, lectures allow only
passive learning, and the size and scope of class projects are
too constrained by the academic setting to exhibit many of
the fundamental characteristics of real-world software
engineering processes.
 To address this problem, we have been in the process of
researching, designing, building, and experimenting with two
game-based simulation tools for teaching software
engineering: Problems and Programmers, a physical card
game that simulates a software engineering process; and
SimSE, a computer-based environment that allows the
creation and simulation of software engineering processes.
Both allow students to “virtually” participate in a realistic
software engineering process that involves real-world
components not present in class projects, such as teams of
people, large-sized projects, critical decision-making,
personnel issues, multiple stakeholders, budgets, planning,

and random, unexpected events. Moreover, the rapid and
flexible nature of simulation allows experiences to be
repeated, different situations to be introduced and practiced,
and promotes a general freedom of experimentation and
“play” in the training exercise. The remainder of this paper
further details these two educational simulation tools.

PROBLEMS AND PROGRAMMERS
 Problems and Programmers is organized as a turn-based
competitive game, in which two players take on the roles of
project leaders in the same company. They are both given the
same project and aim to complete it as quickly as possible.
The player who completes the project first is the winner.
However, players must balance several competing concerns
as they work, including their budget and the client’s demands
regarding the reliability of the produced software. There are
several possible approaches to the game’s challenges, and
different players will apply different strategies as they see fit.

A distinct advantage of the competitive nature of
Problems and Programmers is the fact that it encourages
interaction. Because different players will follow different
strategies, more than one approach will be demonstrated in a
game. This allows players to not only evaluate their own
strategy, but also to compare and discuss strategies followed
by others. As a result, players learn from each other, which
enhances the educational value of Problems and
Programmers.

As shown in Figure 1, Problems and Programmers follows
the waterfall lifecycle model. While we experimented with
allowing players to choose a lifecycle model, the specific
rules required were shown to add more complexity than value
to the game. As it stands, the waterfall model is the one that
students will be most familiar with and still demonstrates
nearly all of the principles that we were striving for.

Each turn, players choose a single phase and are then able
to work on their project’s requirements, design,
implementation or integration accordingly. While all of these
options are available throughout the game, players will
quickly learn that the rules of the game are set up to
encourage following the waterfall lifecycle model as closely
as possible. For example, choosing the requirements phase

late in the game will cause a player to lose some of their
design progress. This represents the fact that as requirements
change, a program’s design will need to be updated or
reworked.

Figure 1. Different phases in Problems and Programmers.

Game Play Summary
 In this section we will describe the game’s play from
beginning to end and briefly go over the choices and lessons
presented to the players.
 Players start by drawing five cards from the game’s main
deck. Here they will find three types of cards: concepts,
programmers and problems. Examples of each of these are
shown in Figure 2. Concept cards represent decisions that a
player may make regarding their approach to the project. For
example, the Reusable Code concept card allows for a free
code card to be added, while a Walkthrough card allows for
unclear requirements cards to be reworked.
 Programmer cards, meanwhile, are the player’s
workhorses and are necessary to write, inspect and fix code.
They have a skill level that determines the amount of work
they are able to do in a turn, as well as a personality that
determines how well they follow software engineering
practices, how well they work with others, and just how
friendly they are. These factors must be weighed, along with
the programmer’s salary and subsequent budget impact,
when deciding which programmers to hire.
 Finally are problem cards, which are at the heart of

Problems and Programmers’ game play. These are cards that
are played by one player against the other. If the receiving
player meets the condition on the card, they must suffer the
consequences described. For instance, the Misinformed
Design card can be played on a player with at least one
unclear requirement and causes them to lose both a design
card and two code cards. Many other problem cards exist that
highlight all kinds of problems such as not dedicating enough
time to requirements specification or hiring irresponsible
programmers. Through such situations, players are able to get
specific lessons with each card and will learn not only what
software engineering pitfalls to avoid, but also the specific
consequences of failing to do so.
 Once players have had a chance to look over their cards,
a project card is chosen, which represents the project that
both players will be striving to complete. A project card
specifies a project in terms of its complexity, length, quality,
and budget (see the Payroll Controller system project card
example in Figure 2). The complexity and length are
parameters defining the nature of the application to be
developed. Complexity influences the amount of progress
each player can make during the implementation phase (the
higher the complexity, the less code each programmer can
produce per turn) and length defines the size of the
application to be developed as the number of code cards that
must eventually be integrated to form the application.

The quality and budget represent other stakeholders in the
process. Quality represents the customer’s demands and
defines the number of code cards that will be inspected for
bugs. The player that is first in completing the integration
process and succeeding in having all inspected code cards be
bug free, wins the game. Finally, budget represents the
development organization and constrains the project in how
many programmers can be hired.

Together with the overall need to be the first to complete a
project in order to win the game, the four parameters of a
project capture the typical tension that exists between time
(need to win the game), quality (must pass the acceptance test
inspections), and money (cannot exceed the budget). The
game, thus, illustrates two more important lessons regarding
the software process: it always involves multiple stakeholders
and must balance multiple, conflicting goals at the same time.
 Once a project has been chosen, the game can begin. On

Figure 2. Examples of a project card, programmer card, problem card, and concept card.

each of their turns, a player goes through the following steps:
1. Allow your opponent to play a problem card on you,

if they have one that you are vulnerable to.
2. Draw cards.
3. Choose one phase and take action as appropriate.
4. Play any programmer and concept cards.
5. Discard any unneeded cards.

 This turn structure keeps cards moving from the deck, to
players’ hands and into play and the discard pile as the
players choose. It is also arranged specifically to make the
turnover of concepts and programmers difficult. If players are
using up their entire budget, for example, they cannot fire
programmers to free up money until the end of their turn. At
this point they have missed their chance to hire any new
programmers until next turn, and those programmers will not
be able to act until the turn following that. This represents the
real-world situation in that it takes time for programmers to
get used to the environment and the program at hand.
 The most important step of each turn is the third “take
actions” step. The exact sequence of events in this phase will
depend on the lifecycle phase that the player chooses. It is in
this phase that work actually gets done, and where students
will make decisions about how to approach their software
engineering project. We will now discuss the different
actions that may be taken by a player when they choose each
of the possible software lifecycle phases.
 In completing their project, players play cards based on
the waterfall lifecycle model, playing cards in areas from left
to right as they move through the lifecycle phases. Most
players will start by choosing the requirements phase,
allowing them to work on their project’s requirements. This
means that they are able to create a column of requirements
cards, each card representing a unit of work they have spent
making their requirements document thorough and complete.
When working on design, players place cards in a column to
the right of this, in a similar manner to the requirements
cards.
 Having more cards in these columns represents more
thorough documentation, but players must also be concerned
about the clarity of their work. Both requirements cards and
design cards are drawn at random from a “documentation”
deck. Some documentation is marked “unclear”, in which
case the player must spend extra time to replace these cards
or risk being vulnerable to certain problem cards. A variety
of problem cards exist that only affect players who have less
than a certain number of requirements or design cards, or
only affect players who have too many unclear requirements
or design cards. Thus, players will learn that spending more
time getting their documentation to be thorough and clear
will save them from having problems later on in the project.
 Once they feel that their documentation is complete,
players will want to work on implementing their project. To
the right of the design cards, programmer cards are laid out in
a row. Each turn that a player chooses to work on
implementation allows them to use their programmers to
meticulously create good code, more quickly create poor
code, inspect code or fix bugs. A programmer’s coding

progress is represented by code cards, which are placed face-
down above the programmer used to create them. In order to
reveal these code cards, programmers must inspect their
code. Doing so allows the code cards to be flipped over,
revealing whether or not the code contains any bugs. Bugs
can then be fixed by the player’s programmers.
 By using these actions in different combinations, players
are able to code in a variety of coding styles. A programmer
can be made to slowly produce good code and inspect it,
fixing bugs as they are found. On the other hand, a
programmer can create large sections of rush code and then
inspect them all at the end. However, the rules are set up to
encourage strategies with more real-world validity.
 Once all of the code needed for a project is finished,
players may choose the integration phase to consolidate one
programmer’s code per turn. This means that the greater the
number of total programmers who worked on a project, the
longer it will take for the program to be tied together. Finally,
a player may submit their project to the customer. As long as
the code they have created does not contain too many bugs,
this player is the winner! However, if the customer is
dissatisfied, the player may yet still have work ahead of
them, a setback that could cost them the game. Thus, players
will be forced to reconcile their need to complete their
project quickly with the need to complete high-quality
documentation and code.

Evaluation

 We conducted an experiment in which 28 undergraduate
software engineering students were recruited to play
Problems and Programmers once or twice and asked to fill
out a questionnaire stating their impressions of the game.
Most of these questions asked for a numerical answer on a 1
to 5 scale. In general, students’ feelings about the game were
favorable, as shown in Table 1.

Question 1 2 3 4 5

How enjoyable is it to play? 6 13 9

How difficult/easy is it to play? 3 10 12 3

How well does it reinforce knowledge? 6 9 6 6

How well does it teach new knowledge? 7 8 6 3 4

How well does it teach the software process? 1 4 8 12 3

Incorporate it as standard part of SE course? 1 6 3 12 6

As an optional part? 1 5 4 10 8

As a mandatory part? 1 6 8 11 2

Table 1. Questionnaire results.

 On average, students found the game quite enjoyable to

play (4.1 rating out of 5) and relatively easy to play (3.5).
They also felt that it was moderately successful in reinforcing
software engineering process issues taught in the introductory
software engineering course they had taken (3.5) and equally
successful in teaching software engineering process issues in
general (3.4). Perhaps most indicative is the 3.7 average
score for the question as to whether the game should be

incorporated as a standard part of a software engineering
course, clearly a vote of confidence by the students who
participated in the experiment.
 Students were also asked to answer some open-ended
questions about the game. Their responses to these questions
also reflected their positive feelings about Problems and
Programmers. Regarding the enjoyability of the game, some
students remarked:

“Because this game is fun, I think students will tend to learn
more. It’s interesting how such a card game can teach one
about software engineering concepts.”

“[I like] the various strategies you can employ. I guess this
speaks to the depth of the game.”

Concerning how well the game teaches software engineering
process issues, students commented:

“Consequences are more drastic than mentioned in class. We
could clearly see this in the game.”

“You need to put the time into earlier phases (design) or else
it will come back to get you.”

 Although responses were positive for the most part, it is
clear that some aspects of the game need to be improved. For
instance, several students felt that the requirements and
design phases of the game were boring. Clearly, more
breadth needs to be added to this part of the game play,
possibly in the form of new types of problems that can be
played during these phases. Moreover, many believed that
the learning curve for the game was too steep. Perhaps the
instruction process can be streamlined or the game made
simpler to alleviate this problem. Most importantly, students
generally felt that the game was not very successful in
teaching new software engineering process knowledge that
was not introduced in class. While reinforcing concepts
taught in lecture is a useful benefit in and of itself, the tool
would be even more valuable if it could also introduce new
knowledge. An investigation will be required to determine
whether this can be done by incorporating more software
engineering process issues into the game (running the risk of
adding further difficulty to learning the game), making the
existing ones more obvious, or a combination of the two.

Future Work
 Currently in development are an online, computer-based
version of Problems and Programmers that will allow
students to play against each other over the Internet, as well
as a re-designed version of the physical card game. This new
version will represent the software process in a very different
way, but will be easier to learn and still teach a wide variety
of lessons. Once this version of the game is completed, we
plan to perform similar experiments to the one we conducted
for the initial version of the game, in order to evaluate the
benefits and drawbacks of each version.

SIMSE
 SimSE is a computer-based simulation environment for
teaching the software engineering process, and is a single-
player game in which the player takes on the role of project
manager of a team of developers. The player must manage
these employees to complete a particular (aspect of a)
software engineering project. Management activities include,
among others, hiring and firing, assigning tasks, monitoring
progress, and purchasing tools. As in Problems and
Programmers, following good software engineering practices
will generally lead to positive results while blithely ignoring
these practices will lead to miserable failure in completing
the project.
 The user interface of SimSE is fully graphical,
displaying a “virtual” office in which the software
engineering process is taking place, including typical office
surroundings (e.g., desks, chairs, computers, meeting rooms),
employees, customers, and project information (e.g., budget
and time), as well as representations of software engineering
artifacts (e.g., requirements documents, design documents,
and source code) that include such information as that
artifact’s completeness, correctness, and other similar
qualities. Information about the status of individuals is
provided through automatic pop-up “bubbles” over the heads
of individuals (for example, to express surprise in response to
a player’s action) and through explicitly querying an
individual (for example, to ask how busy they are or how
happy they are with their salary). Players use information
gleaned from these sources to make decisions and take
actions, driving the software engineering process to complete
a project within budget, schedule, and at or above the
customer’s desired quality requirement.
 Because many different schools of thought exist about
software engineering, and the educational needs and
objectives of different instructors vary, the models of the
software process that execute within SimSE must be
customizable. Therefore, an integral part of SimSE is a model
builder that an instructor can use to specify the particular
software engineering process that he or she wishes to teach,
including the graphical representations to be used in the
simulation. A customized simulation that the students can
play is then generated.

Architecture
 Figure 3 illustrates the architecture of SimSE. Models
are created using a model builder that allows the specification
of: 1) major entities in the simulation, i.e., employees,
artifacts, projects, tools, and customers; 2) the actions, or
activities that these entities can participate in (e.g., codes,
integrates, reviews the requirements document, takes a
break); 3) the rules that specify the effects of these actions on
the rest of the simulation (e.g., for every clock tick that
occurs during coding, the size of that piece of code increases
by the additive productivity of all the employees working on
it; the energy level of all of these employees also decreases
by 5%); 4) the graphical representation of each of the major
entities in the simulation; and 5) the entities that the game is

to start with, or the start state. Rules specify both predictive
[1, 2, 9] aspects (as magnitudes of causal effects) and
prescriptive [4, 8] aspects (as allowable next steps). Based
upon a particular choice of model, a generator interprets the
model and automatically generates code for a state
management and a rule execution component that are
inserted into the generic simulation environment, such that
the student can practice the situations captured by the chosen
model.

Figure 3. SimSE Architecture.

 The simulation loop itself operates in the following
manner: The clock drives the simulation by emitting ticks at
equal time intervals. At every clock tick, the rule execution
component checks which actions are currently executing by
querying the state management component. It then executes
the rules associated with these actions, and in turn propagates
the effects of these rules on the entities and actions in the
state management component. After this update is completed,

the clock then signals the user interface to update the display.
The user interface then queries the state management
component and updates itself to reflect the current state.
 In addition to these standard simulation components, the
educational nature of SimSE also requires the addition of a
unique component: SimSE’s explanatory tool. This feature
will provide a student with the ability to, at any time, request
a visual trace of events. This trace will contain a time-ordered
log of all inputs provided, the levels of the various meters as
they progressed over time, and indicators as to which rules
were triggered at which point in time. Additionally, the trace
will indicate the length of time and impact for each rule
triggered. In making the rules and cause-and-effect
relationships clearly visible, students can compare different
traces to evaluate their performance and determine which
approaches lead to success and failure for different models.

Current Status
 SimSE is a work in progress. To date, a proof-of-
concept, non-graphical prototype version of SimSE has been
built that displays information about employees, artifacts,
projects, tools, and customers in tables and textual messages,
and is built on a specific model of the software engineering
process. The user interface for this prototype is shown in
Figure 4. The topmost table contains information about the
employees, including their name, energy level, pay rate,
current activity, and productivity. Below that is the artifact
status table, which displays each artifact’s completeness,
size, correctness, number of known errors, integration status,
and authors. Underneath this is a bar that shows the project

Figure 4. SimSE Non-graphical Prototype User Interface.

status, namely, time and budget. Players use the area beneath
this to assign tasks to employees by choosing the employee
and the task from drop-down menus. The player can also step
through the simulation by either specifying a number of clock
ticks to step through, or by choosing to step through the
simulation until the next message appears. The bottom
section of the interface is the message window, in which
employees “say” what they are doing and “answer” the
player’s inquiries about their activities and the artifacts they
are working on. Players are also notified of various events
through this window, such as “virtual” network failure or
introduction of added requirements by the customer. Finally,
players can also use menu bar options to view employee
qualifications, hire and fire employees, and manage tools.
 The customizable, fully graphical version of SimSE is
currently in development. The model builder is nearing
completion and, in parallel, development of the code
generator has begun. Once completed, we will be evaluating
SimSE by conducting experiments similar to the one for
Problems and Programmers.

CONCLUSIONS
 Both Problems and Programmers and SimSE attempt to
address the lack of software engineering process education
present in the typical software engineering course by
providing students with a practical, high-level experience of a
realistic software engineering process in an engaging manner.
We plan to continue work on more sophisticated versions of
each game, incorporate both games into actual software
engineering courses in the coming year, and further evaluate
their effectiveness, refining them accordingly.

REFERENCES

[1] Abdel-Hamid, T. and S.E. Madnick, Software Project

Dynamics: an Integrated Approach. 1991, Upper Saddle
River, NJ: Prentice-Hall, Inc.

[2] Boehm, B., Abts, C., Brown, W., Chulani, S., Clark, B.,
Horowitz, E., Madachy, R., Reifer, D., and Steece, B,
Software Cost Estimation with COCOMO II. 2000, New
Jersey: Prentice Hall.

[3] Callahan, D. and B. Pedigo, "Educating Experienced IT
Professionals by Addressing Industry's Needs." IEEE
Software, 2002. 19(5): p. 57-62.

[4] Cass, A.G., et al., "Little-JIL/Juliette: A Process
Definition Language and Interpreter." In Proceedings of
the 22nd International Conference on Software
Engineering. 2000: Limerick, Ireland. p. 754-757.

[5] Conn, R., "Developing Software Engineers at the C-130J
Software Factory." IEEE Software, 2002. 19(5): p. 25-
29.

[6] Ludi, S. and J.S. Collofello, "An Analysis of the Gap
Between the Knowledge and Skills Learned in Academic
Software Engineering Course Projects and Those

Required in Real Projects." In Proceedings of the 2001
Frontiers in Education Conference. 2001.

[7] McMillan, W.W. and S. Rajaprabhakaran, "What
Leading Practitioners Say Should Be Emphasized in
Students' Software Engineering Projects." In
Proceedings of the Twelfth Conference on Software
Engineering Education and Training, H. Saiedian,
Editor. 1999, IEEE Computer Society. p. 177-185.

[8] Noll, J. and W. Scacchi, "Specifying Process-Oriented
Hypertext for Organizational Computing." Journal of
Network and Computer Applications, 2001. 24(1): p. 39-
61.

[9] Raffo, D., Modeling Software Processes Quantitatively
and Assessing the Impact of Potential Process Changes
on Process Performance, in Graduate School of
Industrial Administration. 1996, Carnegie Mellon
University: Pittsburgh, PA.

AUTHOR BIOGRAPHIES
Emily Oh Navarro received her B.S. in Biological Sciences
and her M.S. in Information and Computer Science from the
University of California, Irvine in 1998 and 2003,
respectively. She is currently pursuing a Ph.D. in computer
science at UC Irvine, focusing on developing game-based
simulation tools for software engineering education. She is
the lead developer on the SimSE project and has also
contributed to the design and evaluation of Problems and
Programmers. She has been a GAANN fellowship recipient
for the past 2 years and is also an ARCS scholar.

Alex Baker is currently working towards a PhD in
Information and Computer Science at the University of
California, Irvine. He received his B.S. in Information and
Computer Science from UC Irvine in 2002. He is the primary
designer of Problems and Programmers, and continues to
develop card and board games for teaching software
engineering. His research interests include software design
techniques, software engineering education and application
of games to software engineering.

André van der Hoek is an assistant professor in the
Informatics Department of the School of Information and
Computer Science, and a faculty member of the Institute for
Software Research, both at the UC Irvine. He holds a joint
B.S. and M.S. degree in Business-Oriented Computer
Science from the Erasmus University Rotterdam, the
Netherlands and a Ph.D. degree in Computer Science from
the University of Colorado at Boulder. His research interests
include configuration management, software architecture,
product line architectures, configurable distributed systems,
and software engineering education. He was chair of SCM-
10, and is co-author of the Configuration Management
Impact report. He is on the program committee for ICSE
2004, ICSE 2005, and FSE-12, and has contributed to the
development of Problems and Programmers.

