

A Conflict Detected Earlier is a Conflict Resolved Easier

Anita Sarma and André van der Hoek

Department of Informatics
University of California, Irvine
Irvine, CA 92697-3425 USA
{asarma, andre}ics.uci.edu

Abstract

Open Source development is highly distributed and
parallel in nature. There are no definite boundaries, ei-
ther for people or from where they work. This high level
of parallel, distributed development leads to conflicting
changes made concurrently by different developers. Be-
cause OSS developers lack the kinds of informal coordi-
nation opportunities that collocation offers, OSS develop-
ers must rely on mailing lists, discussion groups, and
tools such as CM and bug tracking systems to try to man-
age their parallel efforts such that conflicts do not occur.
Unfortunately, these coordination mechanisms are not
adequate: it still regularly happens that parallel changes
interfere, either via direct overlap or indirect, semantic
conflicts. In this paper, we build upon our previous work
in raising awareness as a mechanism to support better
coordination among developers, and introduce a new
integration of our Palantír tool with Eclipse as well as a
new visualization of parallel work that we believe is espe-
cially useful in Open Source settings.

1. Introduction

Open Source development is highly distributed and by
its very nature a multi-person, team effort [1, 2]. One of
the key aspects of any Open Source project is that there
are no definite boundaries for people – who participates –
and for location – from where they participate. Although
there is typically a small group of core developers, other
developers enter and leave the project on will, and may or
may not contribute significant changes. Usually there are
no set release dates; the software is released when the
core group thinks that it is time. This development style is
very different from the traditional corporate development
style in which a predefined group of developers follows a
carefully-defined process to develop a software system
according to a predefined timeline. We make two obser-
vations regarding the style of OSS development as com-
pared to traditional software development.

1. It has been shown that collocation helps developers
in getting an idea about their co-developers work [3,

4] Coffee hour talks or just casual conversations
provide the context that helps developers gauge
such things as what problems their co-developers
are addressing and the schedules under which they
are operating. This context helps developers in in-
formally coordinating their efforts and code changes
[5].

2. It has also been shown that parallel development
leads to conflicting changes [6]. Some changes can
be resolved with the help of automated merge tools
[7], but when changes overlap or, worse, have se-
mantic aspects, they have to be manually resolved,
often a time consuming and costly effort.

From these two observations we can infer that Open
Source development, by its very nature of being distrib-
uted and involving parallel work, will lead to the presence
of conflicting changes that cannot be caught by the same
kinds of informal interactions as present in traditional
software development. OSS, in a way, is the epitome of
parallel development: anyone who is interested in a pro-
ject can work on anything that interests them at any point
in time.

To compensate, most OSS developers extensively use
such tools as e-mail, discussion lists, bug tracking tools,
and CM tools to “informally” coordinate their work with
ongoing and past activities. This clearly helps, and many
problems are avoided. However, it also is somewhat of an
undesirable situation as it is labor intensive, requires man-
ual action and interpretation, and typically is based on
“old” data – data about events that have already hap-
pened. Take CM systems, for instance. These systems
manage parallel work by partitioning work into isolated
workspaces. Developers make their changes in isolation
and periodically resynchronize their work with the con-
tents of the repository. This is done either by checking in
the files that they have modified, or by synchronizing the
files in a workspace with newer versions that other devel-
opers have committed to the repository. Conflicting
changes, thus, are discovered only after they have been
introduced. Some of these conflicts can be merged with
the help of automated tools [8], but in the event of over-

lapping changes (either directly, as in changes to the same
lines of code, or indirectly, as in changes that are in dif-
ferent parts of the code but semantically interfere) merge
tools fail or produce false results and the conflicts have to
be manually resolved [7].

The problem is that in current CM systems it is not
possible to get an overall picture of the extent of parallel
changes in different workspaces and how those changes
relate to each other. The isolation enforced by the CM
systems limits developers in knowing “what is going on”,
and thus takes away the information upon which they
could decide to have informal “online hallway conversa-
tions”.

To address this problem, we built Palantír, a CM
workspace awareness tool that deliberately breaks the
isolation of workspaces. Palantír operates by providing
developers with an at all times up to date picture of any
relevant changes in any of the parallel workspaces. The
availability of this information gives developers a chance
to be aware of “problematic” concurrent parallel activi-
ties, and coordinate with each other or even adjust ones
own activity based on this information. Developers can
detect potential conflicts as they are occurring.

In our previous work [9], we showed that Palantír can
easily be used to instrument existing CM systems with
awareness (we integrated Palantír with RCS [10], CVS
[11], and Subversion [12]; each integration was less than
1000 lines of code). Moreover, we concentrated on build-
ing a series of visualizations that each have different
properties of how conflicting changes are presented to the
developer [13]. In this paper, we concentrate on the appli-
cability of Palantír in the Open Source domain. In par-
ticular, we introduce a new view (which we call the full
project view) that presents a project-wide overview of all
workspaces and introduce our integration of Palantír with
Eclipse. The first helps in giving the core set of develop-
ers of an Open Source project an idea of all individual
efforts currently underway, the second demonstrates that
Palantír can be integrated into a representative develop-
ment environment and helps those developers using
Eclipse with a minimally obtrusive awareness mecha-
nism.

The remainder of the paper is organized as follows.
Section 2 discusses our previous work and the high-level
approach that Palantír follows. Next, we present the new
full project view in Section 3. Section 4 introduces the
integration of Palantír and Eclipse. We discuss related
work in Section 5, and conclude in Section 6 with an out-
look at our future work.

2. Palantír to Date

Palantír is based on the hypothesis that conflicts in
parallel development can be considerably reduced, both
in magnitude and number, by providing developers with

an insight into ongoing changes in parallel workspaces.
Instead of solely relying on the coordination mechanism
of CM systems (i.e., the process of checking in and
checking out artifacts, with or without a necessary merge
step), Palantír provides developers with information so
they can detect potential conflicts as they start occurring,
and can self-coordinate their activities to avoid them or
resolve them before they grow too large.

Palantír is not another CM system, but is a workspace
awareness tool that builds on top of existing CM facilities
and concentrates on the collection, distribution, organiza-
tion and presentation of relevant workspace information.
Palantír does not change the way developers interact with
the CM system (i.e., the commands with which they in-
teract with the CM system), but instead silently intercepts
activities and shares relevant information regarding those
activities.

We briefly discuss the components of Palantír below
(a full discussion of Palantír, its architecture, visualiza-
tions, and integration with several existing CM systems
can be found in [9]).

A workspace wrapper collects configuration manage-
ment activities and translates those to Palantír events.
These events are then distributed by the Siena event noti-
fication service [14], which we have adopted as our
mechanism of transmitting information from workspace
to workspace. Since different CM systems have different
access mechanisms, a workspace wrapper is designed
specifically for a particular CM system and must interface
with the existing mechanism of user interaction (for in-
stance, through wrapping existing commands or leverag-
ing the trigger capabilities present in some CM systems).

The internal state stores and organizes all events, the
relevant set of which are then extracted by the extractor
before being displayed by one or more visualization com-
ponents. Currently we have implemented four different
visualizations (ticker tape, tabular view, explorer view
and the fully graphical visualization), two of which are
presented in Figure 1. Each visualization shows, in its
particular form, specifically which artifacts are being
changed by which other developers. In addition, they pre-
sent a measure of severity of those changes: for each
change, Palantír calculates the percentage of the artifact
that has changed as a rough measure indicating “how
much” potentially interfering activity is occurring in an-
other workspace.

In the explorer view, shown in the left hand side of
Figure 1, the artifacts in the local workspace are shown
organized in the familiar form of an expandable tree. This
tree is enhanced with vertical bars indicating the severity
of ongoing and committed changes: the longer the bar,
the higher the severity of the change. Although not visible
in this black and white view, changes are color coded to
distinguish changes in a local workspace from changes in
other, “remote” workspaces.

 The fully graphical visualization, shown on the right
hand side of Figure 1, presents a developer with a hierar-
chical “3-dimensional” stackable view of an artifact and
its constituents (in this case version 1.1 of the folder
home/word”). Each constituent artifact may itself contain
other artifacts and each artifact in the view may be pre-
sent and being changed in multiple workspaces (as indi-
cated by stacks of artifacts). Color-coding separates dif-
ferent workspaces. For instance, the stack for the artifact
“/home/word/edit” indicates that Ellen, Pete, and Mike
each have a version of the artifact in their workspace.
Pete and Mike each have version 1.0 in their workspace,
and their changes are still in progress as indicated by the
question mark. Ellen, on the other hand, already has
checked in a new version of the artifact (as indicated by
the exclamation mark), resulting in her having version 1.1
in her workspace. The severity of ongoing and committed
changes is shown by the vertical blue lines: the taller the
bar, the higher the severity.

3. Full Project View

Thus far, the visualizations of Palantír have been
geared towards individual developers. Each visualization
only shows concurrent changes that relate to artifacts that
are in the “local” workspace. We realize that only having
such self-centered views is a limitation and that, benefits
exist to having an overarching view of all parallel activi-
ties. In particular, we believe project managers in regular
corporate settings as well as core programmers in Open
Source settings can benefit from having a view in which
all concurrent workspaces are shown and potential con-
flicts among workspaces are displayed. The needs of pro-
ject managers are different: they need both a high level
and detailed view of parallel activity to better handle task
management. Similarly, core developers in open source

projects can benefit from knowing who is working on
what, what changes may be forthcoming for future inte-
gration cycles, and generally steer developers who are
working on related projects towards each other.

We are currently building a new visualization for see-
ing the entire project at a glance. This visualization, an
early prototype of which is shown in Figure 2, provides
an overview of changes in all the workspaces. In particu-
lar, it lays out all the workspaces in the project in a circle.
If there is any overlap of work in any pair of workspaces
(as defined by changes to the same files), this overlap is
indicated with the presence of a line between the two
workspaces. The higher the overlap, the thicker the lines
appear. In order to avoid cluttering the visualization, the
manager can set a threshold for viewing the overlaps. For
example, one may want to only see overlaps that are
greater than 40%.

Anyone using the full project view can zoom into any
of the workspaces to view the changes in that workspace.
Specifically, zooming brings up the Palantír explorer
visualization discussed in the previous section. Double
clicking on a developers name in the visualization fully
opens that developers’ workspace in a separate window.
This allows easy exploration of conflicts, by showing
workspaces side by side. Managers can guide a project;
core developers can point novices to things they may
have missed or are doing wrong. In turn, novices can use
the view as a rudimentary kind of “expertise” browser
[15], in the sense that they can see who is working on
what parts of the code.

A particularly interesting feature of the full project
visualization is that it allows the user to go “back in
time”. By using the “time” slider at the bottom of the
window, it is possible to view the level of conflict at
regular past intervals. This helps managers and any other
party using the visualization to gain an understanding of

Figure 1. Explorer Visualization and Fully Graphical Visualization.

how a project evolves and the level of parallel conflicts
during that evolution.

We are currently still in the building stages of the pro-
ject management view, but have high hopes that it will be
one of the most informative views of Palantír yet – it can
be used by anyone, and provides interesting information
at both a high and a very detailed level.

4. Eclipse Integration

So far Palantír has been independent of any develop-
ment environment and runs as a separate application. On
the one hand, integration with a particular development
environment is not good, as different developers have
different preferences and integration with a particular
editor limits the use of Palantír. On the other hand, when
a developer is deep into programming they might not
switch to any other applications until their task is done to
avoid any kind of distraction. Thus, in the case of
Palantír, the developer might be missing out on important
information during that time. To avoid this context switch
between the editor and Palantír, we have integrated
Palantír with Eclipse, a Java development environment.
We are aware that different developers have different
preferences and Eclipse may not be the editor of choice of
all developers. The purpose of our integration is therefore
to demonstrate that it is possible to easily integrate
Palantír into a development environment; we hope other
integrations can be as simple as this one.

We decided to integrate Palantír with Eclipse specifi-
cally because Eclipse is itself an Open Source product
geared towards OSS development. Since its initial release
Eclipse has become increasingly popular as the Java edi-
tor of choice. Additionally, our choice was guided by the
fact that Eclipse has been designed such that adding new
functionality is relatively easy; it’s plug-in facility is very
powerful and the number of extension points is great.

Our integration is provided through a new Palantír
perspective in Eclipse, similar to the already existing Java
perspective. Shown in Figure 3, the perspective lays out
all the artifacts present in the local workspace in an ex-
pandable tree view. Each artifact is annotated on the left
hand side with a small red triangle denoting the cumula-
tive severity of changes made by other developers: the
higher the cumulative severity, the larger and redder the
triangle. On the right hand side of the artifact name, the
numerical value of the cumulative severity is listed in text
as well. A similar mirror image of a blue triangle is used
to denote the impact of the changes.1 This view presents
only cumulative values, developers should use the other
Palantír visualization for in-depth investigations.

Note that the Palantír-Eclipse integration recalculates
the severity of changes every time a file is saved: this
allows Palantír to share up-to-the-minute details regarding
activities in other workspaces.

5. Related Work

To date, CM systems have very limited awareness ca-
pabilities. Existing CM tools usually require explicit man-
ual action to break the isolation of workspaces, and even
then information that is provided is old – not current and
up-to-date directly from the workspace. Other than
Palantír, few tools attempt to bridge CM and Computer-
Supported Collaborative Work in raising awareness for
users of CM systems. Jazz [16] is a collaborative tool
built within the Eclipse IDE that shows the status of arti-
facts in other workspaces (artifact has been checked out
and/or committed). Night watch [17] builds on the CVS
watch facility, and notifies developers by email when an
artifact in which they are interested has been changed by
others. State Tree Maps [18] is an awareness widget that
shows which artifacts have been modified locally or re-
motely and which artifacts have been checked-in into the
repository. Compared to these tools, Palantír has two ad-
vantages: it provides a measure of severity, and it pro-
vides the full project view.

6. Conclusions

Palantír is based on the hypothesis that enhancing CM
systems with awareness allows developers to have an
improved insight into potentially conflicting parallel ac-
tivities. The hope is that developers will use this insight to
self-coordinate, in effect making earlier the point at which

1 We intend to build not just a measure of severity, but
also a measure of change impact – one to measure “how
large” a change is, the other to measure “how much I
should care” about the change.

Figure 2. Project View Visualization.

Figure 3. Eclipse Integration.

a conflict is detected and thereby reducing the amount of
effort involved in addressing it.

We are currently finishing up the Eclipse integration
and full project view. Our next steps in the project are to
put Palantír in use, first in a class project in which we will
have a large group of students all be part of a single team;
and then in actual real-world settings as we release and
deploy Palantír to the Open Source community itself.

7. Acknowledgements

We thank Ryan Yasui, Roger Ripley and Ksatria Wil-
liams for their contributions to Palantír.

Effort funded by the National Science Foundation un-
der grant numbers CCR-0093489 and IIS-0205724.

8. References

 [1] Raymond, E.S., The Cathedral & the Bazaar: Musings on
Linux and Open Source by an Accidental Revolutionary.
2001: O'Reilly,.

[2] Erenkrantz, J.R. and R.N. Taylor. Supporting Distributed
and Decentralized Projects: Drawing Lessons from the
Open Source Community. in Proceedings of 1st Workshop
on Open Source in an Industrial Context. Oct, 2003. Ana-
heim, California.

[3] Dourish, P. and V. Bellotti. Awareness and Coordination
in Shared Workspaces. in ACM Conference on Computer-
Supported Cooperative Work. 1992.

[4] Gutwin, C. and S. Greenberg. Workspace Awareness for
Groupware. in CHI'96 Conference Companion on Human
Factors in Computing Systems. 1996.

[5] Grinter, R.E., Supporting Articulation Work Using Soft-
ware Configuration Management Systems. Computer Sup-
ported Cooperative Work, 1996. 5(4): p. 447-465.

[6] Perry, D.E., H.P. Siy, and L.G. Votta, Paral-
lel Changes in Large-Scale Software Devel-
opment: An Observational Case Study. ACM
Transactions on Software Engineering and
Methodology, 2001. 10(3): p. 308-337.

[7] Mens, T., A State-of-the-Art Survey on Soft-
ware Merging. IEEE Transactions on Software
Engineering, 2002. 28(5): p. 449-462.

[8] IBM, XML Diff and Merge Tool. 2002.

[9] Sarma, A., Z. Noroozi, and A. van der Hoek.
Palantír: Raising Awareness among Configuration
Management Workspaces. in Twentyfifth
International Conference on software
Engineering. 2003. Portland, Oregon, USA.

[10] Tichy, W.F., RCS, A System for Version Control.
Software - Practice and Experience, 1985. 15(7): p. 637-
654.

[11] Berliner, B. CVS II: Parallelizing Software Development.
in USENIX Winter 1990 Technical Conference. 1990.

[12] Tigris.org, Subversion.

[13] Sarma, A. and A. van der Hoek. Visualizing Parallel Work-
space Activities. in IASTED International Conference on
Software Engineering and Applications (SEA). 2003. Ma-
rina Del Rey, California.

[14] Carzaniga, A., D.S. Rosenblum, and A.L. Wolf, Design
and Evaluation of a Wide-Area Event Notification Service.
ACM Transactions on Computer Systems, 2001.

[15] Mockus, A. and J. Herbsleb. Expertise Browser: A Quanti-
tative Approach to Identifying Expertise. in 2002 Interna-
tional Conference on Software Engineering. 2002.

[16] Cheng, L.-T., et al. Jazzing up Eclipse with Collaborative
Tools. in 18th Annual ACM SIGPLAN Conference on Ob-
ject-Oriented Programming, Systems, Languages, and Ap-
plications / Eclipse Technology Exchange Workshop. 2003.
Anaheim, CA.

[17] O'Reilly, C., P. Morrow, and D. Bustard. Improving Con-
flict Detection in Optimistic Concurrency Control Models.
in Proceedings of the Eleventh International Workshop on
Software Configuration Management. 2003. Portland, Ore-
gon.

[18] Molli, P., H. Skaf-Molli, and C. Bouthier. State Treemap:
an Awareness Widget for Multi-Synchronous Groupware.
in Seventh International Workshop on Groupware. 2001.

