
Emerging Design: New Roles and Uses for Abstraction
Christopher Van der Westhuizen, Ping H. Chen, and André van der Hoek

Department of Informatics
University of California, Irvine

Irvine, California 92697-3440, U.S.A.
+1 949 824 6326

{cvanderw, pchen, andre}@ics.uci.edu

ABSTRACT
Most abstractions in software engineering are used for one of two
purposes, either 1) for guidance, in which an abstraction created
up-front serves as a roadmap for the next activity, or 2) for under-
standing, in which an abstraction serves to explain the current
state of the system at a given point in time. In either case, the
abstraction tends to be static: once it has been created, it is not
updated very often. Our research distinguishes itself by develop-
ing a dynamic abstraction, emerging design, that both guides and
helps in understanding, while still able to fulfill new roles in the
development process. In this paper, we will focus on the follow-
ing three roles: (1) coordination: allowing developers to under-
stand how their work influences that of others and vice versa, (2)
detecting design decay: preventing unintended, undiscovered, and
unauthorized design changes, and (3) project management: know-
ing which parts of the code are stable, incomplete, or in flux.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
computer-aided software engineering, user interfaces; D.2.7
[Software Engineering]: Distribution, Maintenance, and En-
hancement – restructuring, reverse engineering, and reengineer-
ing; H.5.3 [Information Interfaces and Presentation]: Group
and Organizational Interfaces – collaborative computing, com-
puter-supported cooperative work.

General Terms
Design, Management, Documentation.

Keywords
Design, reverse-engineering, coordination, awareness, abstraction,
emerging design

1. INTRODUCTION
Software abstractions have long been used during software devel-
opment for two main roles: guidance and understanding. First, the

abstraction can be generated up front as a guide to a particular
activity (usually in the next phase in the lifecycle). Usage scenar-
ios, for example, are a kind of system abstraction that can be used
to help elicit further requirements as well as aid in developing the
system design [7,12,14]. Secondly, a developer can use an ab-
straction to help understand an implemented system. Reverse
engineering can be used to produce system models that aid devel-
opers in understanding the interactions that exist in a software
system [5].

Regardless of the purpose of the abstraction, the result is more
often than not a static document. The abstraction is static in the
sense that it only captures the snapshot at the time at which the
abstraction was generated. Unfortunately, continuous updating of
the abstraction as the system evolves is often a cumbersome task
and thus the abstraction is rarely updated. Therefore, an abstrac-
tion whose initial role was to guide system development cannot
be successfully used to understand the system should the abstrac-
tion and the system fall out of sync with one another.

Like other abstractions, design can be used up front to guide im-
plementation effort and assist in understanding an existing soft-
ware system. Since a design illustrates the interactions among the
various modules, the design can be used to assist in dividing up
the implementation effort along logical module boundaries [3].
Similarly, when developers need to modify a system during main-
tenance, they can study the design document in order to gain an
understanding of the high-level structure of the system and its
various interactions [11]. Design is also often a static representa-
tion, unable to evolve automatically with the system [15]. There
are a few noteworthy exceptions [1,10] that dynamically update
the design as the code evolves. This is a critical step in moving
from an abstraction that serves a singular role to one that can help
in both understanding and guidance.

In this paper we propose a new dynamic abstraction that not only
serves both roles of guidance and understanding, but also allows
us to explore new roles for abstraction. The additional roles that
we are most interested in exploring are:

1. Coordination. Allowing developers to be continuously
aware of how their code relates to other developers’
code. They can then see how their code depends on oth-
ers as the system evolves.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
ROA’06, May 21, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005…$5.00.

2. Detecting design decay. Highlighting where the imple-
mentation diverges from the original design.

3. Project management. Allowing one to understand: what
parts of the code are finished, what parts are incom-

plete, and in which tasks various developers are cur-
rently involved.

We call this new abstraction “emerging design,” and at its heart it
is essentially an up-to-date representation of the design as it exists
in the code. Whereas a conceptual design is a separate document
that is typically created by a small set of architects or designers
before any code is written, the emerging design is the incarnation
of that design in the code as implemented by all of the involved
developers. The emerging design comes into existence as the
developers implement each part of the code and will change auto-
matically as the code evolves. Furthermore, it can be overlaid on
top of the conceptual design, thus highlighting which portions of
the system have been implemented. We are currently integrating
the concepts of emerging design and conceptual design into an
Eclipse plugin called Lighthouse.

The paper is organized as follows. In Section 2 we explore how
emerging design fulfills the three roles of coordination, detecting
design decay, and project management. Section 3 looks at related
areas of work. Finally, we conclude and describe our future work
in Section 4.

2. APPROACH
The abstraction that we are introducing is emerging design, which
is an up-to-date representation of the design as it exists in the
code. As the individual developers change their code, every de-
veloper’s emerging design view is updated appropriately. The
view is updated in real-time without the need to check in the
changes into a versioning system. For instance, if a developer
adds a method to a class then the emerging design view will be
updated to reflect this change on all of the developer’s views.
Therefore, each developer is presented with an accurate represen-
tation of the system as it evolves.
Figure 1 presents an initial version of emerging design. Note that
the emerging design is very similar to a UML-class diagram in
that it has three major sections: class name, fields, and methods.
We chose UML class diagrams as the basis for emerging design
since their representation remains close to the source code. How-
ever, the emerging design diagram has been enhanced with evolu-
tion information. Emerging design uses arrows to indicate related
changes to the same code element. As can be seen in Figure 1,
there is an arrow leading from the first item, STORE, to the second
item, STORE, indicating that the class was deleted. A second arrow
exists leading again from the first occurrence of Store to a third

item, ONLINESTORE, indicating that the class was renamed. These
two changes were made in parallel since both arrows originated
from the first item, STORE. These parallel changes can indicate
potential conflicts that developers need to be aware of and correct.
Immediately, we see that the emerging design can fulfill the role
of understanding as it provides an accurate design representation
of the system at the current point in time. Although the emerging
design shown in Figure 1 does not support guidance in the sense
of dividing implementation effort, it is still able to guide the de-
velopers by providing the interfaces and modules that are cur-
rently available. This in turn helps developers by allowing them
to see which classes exist to be instantiated and which methods
can be called.
In the following subsections, we explore ways in which we can
augment the initial version of emerging design so that it can be
applied to the three new roles that we wish to explore, namely
coordination, detecting design decay, and project management.

2.1 Coordination
Imagine a situation in which two developers, John and Susan, part
of a larger team, have each been assigned a task that involves
changing some set of files. They each use the available configura-
tion management system to first populate their respective work-
space with the necessary files, and then begin to make their
changes. John finishes relatively fast, and checks his changes into
the repository. Susan takes a while longer, but eventually com-
pletes the task. When attempting to check in the result, however,
Susan finds that she made modifications that conflict with the
modifications by John. Some of the conflicts are within the same
files, others span different files but lead to compilation and testing
problems. While some of these conflicts can be resolved using an
automated merge tool, others must be resolved by hand, a time-
consuming and complicated task.

From the above scenario, one immediately notices that a critical
requirement for supporting coordination is awareness. Developers
should be aware of which other developers are contributing to the
project and what changes they are making (or have made) to the
code. Furthermore, it is useful for developers to be aware of
whether or not changes have been committed to the repository,
been checked out by other people, or are still in only the author’s
workspace.

Figure 2 shows the emerging design as enhanced with two addi-
tional columns containing coordination information. The first
column indicates the status of each specific change: whether the
change is any combination of (1) in my workspace, (2) in the
repository, or (3) in other people’s workspaces. A line is drawn
connecting all three dots when all the developers have checked
out the change. For example, the ADDITEM method exists in both
the repository and in some other developers’ workspaces, but has
not been checked out in the local workspace. On the other hand,
the PLACEORDER method exists in the repository, this local work-
space, and all other workspaces as denoted by the line connecting
all three dots.

The set of columns on the far right includes a picture for each of
the authors contributing to the class and also symbols denoting
what types of changes they have made. The three symbols used
are plus, minus, and triangle, and they represent addition, subtrac-
tion, and modification, respectively. Affixed to each of the change

OnlineStore
name:String

address:Address

address:URL

Store
Store

placeOrder(order:Order):void

getQuantity(item:String):int

scan(item:ID):boolean

scan(item:ID):boolean

addItem(item:Item):void

Class

.
Figure 1. Emerging Design

symbols is an arrow that, over time, rotates around in a clockwise
fashion. The position of the arrow indicates roughly how long the
associated change has been in effect. For example, when the AD-
DRESS field was first added by developer number one, an addition
symbol was added to that developer’s column. When the ADDRESS
field’s type was later changed to URL by the second developer
else, a modification symbol was added to that developer’s col-
umn. The arrow associated with the addition has rotated almost
entirely around, whereas the arrow associated with the modifica-
tion has not rotated very much. This signifies that the addition
took place a lot earlier than the recent modification of the field’s
type.

With these coordination mechanisms the developers in the sce-
nario would be able to immediately notice the changes that the
other developers were making. Therefore, when Susan notices in
the emerging design that the changes made by John may conflict
with her changes, they can quickly discuss and resolve the issues
before either of their changes are checked in. When Susan notices
that John checked in his changes, she knows that his code is ready
to be checked out and used by other developers. At this point
Susan can merge her code with John’s changes thus minimizing
any conflicts that she would otherwise introduce later. The sever-
ity of the conflict is reduced because the use of emerging design
breaks developer isolation and allows them to coordinate their
tasks in a timely fashion.

2.2 Detecting Design Decay
A second role of emerging design is to detect design decay. The
following scenario illustrates a problem that can result from de-
sign decay. Bob, part of a larger team, has been assigned a task
that involves making changes to a part of the system with which
he is relatively unfamiliar. Unfortunately, the original developer
of that part of the system has just left the company and is no
longer available for questions. However, Bob remembers that a
detailed UML design was made before the system was imple-
mented, including some notes on rationale for some of the struc-
tural decisions. Bob consults the design, happily finds the infor-
mation needed, and uses the configuration management system to
check out the necessary files into his workspace. Ready to work,
however, Bob finds that the design as studied can no longer be
found in the source code. Major elements are missing, other ele-
ments have changed, and no rationale is provided as to why this

happened and whether or not it happened intentionally or acciden-
tally. Bob is left to study the source code in detail to try and un-
derstand how to make his changes, an unfortunate situation.

As can be seen from the above scenario, a critical requirement for
addressing design decay is a mechanism for indicating whether or
not the current implementation matches the design and, if not,
where the deviation takes place (all assuming that an original
design is available). Figure 3 depicts the emerging design overlaid
on top of the original conceptual design. This overlay is shown by
color coding each item in the emerging diagram based on whether
or not it exists in the original design. If the item was not specified
in the conceptual design, the row will be shaded light red,
whereas the row will be shaded light green if the item is in the
original design. Finally, if an item in the original design has not
been implemented yet, it will keep the default background color
of yellow.

Based on the color coding, the developers can, at a glance, see if
the current implementation deviates from the originally specified
design and by how much. Additionally, in the case that design
deviations are knowingly performed by the developers, they are
able to annotate the emerging design with rationale explaining
why the deviations occurred. As can be seen in Figure 3, a devel-
oper used annotations to justify the choice for renaming the class.
Developers are then able to discuss the deviations and vote on
whether or not to keep the deviations. If the developers agree that
the deviations improve the overall system design they will be able
to automatically promote those agreed upon changes into the con-
ceptual design.

Through the use of emerging design, the developer is able to
quickly gain an understanding of the system’s current structure
and where the current implementation differs from the original
design. This saves the developer from having to carefully study
the code, which can be a time-consuming task, in order to find out
where to make their changes. In addition, had the original devel-
oper used emerging design in the first place, it is likely that he or
she would have kept the original design and the source code in
sync with one another by promoting deviations as they occurred.

2.3 Project Management
Finally, we envision that the emerging design can be applied in a
project management setting. Specifically, we are interested in

address:Address

address:URL

Store
Store

placeOrder(order:Order):void

getQuantity(item:String):int

scan(item:ID):boolean

scan(item:ID):boolean

addItem(item:Item):void

Class

OnlineStore
name:String

M
y

W
or

ks
pa

ce

R
ep

os
ito

ry

O
th

er
W

or
ks

pa
ce

s

Store
Store
OnlineStore
name:String

address:Address

address:URL

placeOrder(order:Order):void

addItem(item:Item):void

getQuantity(item:String):int

scan(item:ID):boolean

scan(item:ID):boolean

Class

Red

Red

Red

Red

Green

Green

Green

Green

Green

Yellow

Green

Renamed to match new
requirements: we are

moving into ecommerce.

Figure 3. Detecting Design Decay. Figure 2. Coordination Annotations.

tracking project progress and overcoming the difficulty seen in
the following scenario. A team of developers, working on a large
project, is having its status meeting to determine how things are
going. Each developer is asked to provide an update on their part
of the code resulting in comments such as “I just fixed a major
bug, and it seems the code is stable now,” and “I have progressed
significantly, and am about 90% done.” Overall, the team leaves
the meeting content and confident that they are almost done with
the project. The reality of it turns out to be quite different. They
did not see that two parts of the project had not been integrated as
needed, were overly optimistic with respect to the impact of some
agreed-upon design changes, and failed to recognize one part of
the code was very unstable and had been so over the past few
weeks. While useful, the meeting did not identify some critical
issues that are likely to cause problems down the road.

From the scenario described above, the critical requirement of
project management is project visibility. The developers should
be aware of what changes have been made (and when), as well as
which parts of the system still need to be implemented. All of
these features can be achieved via the combination of coordina-
tion information and overlaying the emerging design on top of the
conceptual design as seen in Figure 4 (in essence combining Fig-
ure 2 and Figure 3).

When emerging design is overlaid on top of the conceptual design,
it is possible to gauge which parts of the project have been com-
pleted and which have not. For example, if most of a class’ rows
are not shaded yet, it would mean that implementation on the
class is far from complete. Furthermore, recency indicators show
which parts of the code are still in flux. Code that has not been
modified for quite some time is likely to be more stable than code
which is currently undergoing changes. Lastly, since the emerging
design is an accurate reflection of the code, the impact of agreed-
upon design changes can be more easily analyzed.

2.4 Lighthouse
We are currently exploring the concepts of emerging design and
conceptual design in a tool called Lighthouse, a plugin for Eclipse
[4]. Lighthouse monitors a developer’s implementation through
the use of Eclipse listeners and correspondingly updates the
emerging design of that user and notifies other Lighthouse clients
of the change so as to keep everyone in sync. A distinguishing
feature of Lighthouse is that the visualization is updated without

the need for saving files or checking in and out the changes. This
provides all the developers with a real-time view of the develop-
ment as it evolves.

Class

Store
Store
OnlineStore
name:String

address:Address

address:URL

placeOrder(order:Order):void

addItem(item:Item):void

getQuantity(item:String):int

scan(item:ID):boolean

scan(item:ID):boolean

M
y

W
or

ks
pa

ce

R
ep

os
ito

ry

O
th

er
W

or
ks

pa
ce

s

Red

Red

Red

Red

Green

Green

Green

Green

Green

Yellow

Green

Figure 4. Project Management.

Our vision is to have a side-by-side view of the code and emerg-
ing design as shown in Figure 5. For the emerging design view to
be most effective it is imperative that developers have constant
awareness of changes being made to it. A single monitor setup
would be far from ideal since developers would have to con-
stantly perform context-switching from one application (such as
their development environment) to Lighthouse in order to see the
emerging design view. While the emerging design view is not in
focus, the developers could miss crucial real-time updates. To this
end we envision developers using a dual-monitor setup in which a
main monitor would have their primary coding environment and
an auxiliary monitor would be dedicated to Lighthouse. There-
fore, the developers are able to maintain peripheral awareness of
ongoing changes made to the project by the team members.

3. RELATED WORK
Our work is related to a number of areas including version con-
trol, coordination, and reverse engineering. While our proposed
approach illustrates how the system has evolved, it does not allow
developers to manage the versions (e.g. reverting back to a previ-
ous version). Since version control is not a focus of our work, in
this section we focus on the areas of coordination and reverse
engineering.
The coordination tool that is most similar to our work is Palantír
[13]. Palantír is able to provide real-time awareness of the files
that developers are changing and how severe those changes are
without requiring developers to first check in those changes. In
this respect, Palantír is similar to Lighthouse in that a developer’s
view contains information pooled together from all the other de-
velopers’ workspaces and not just one’s own. However, Palantír
differs from our work in that it provides a much lower-level ab-
straction mechanism, dealing with files, whereas our work utilizes
the higher-level abstraction of design.
Jazz [2] is another workspace awareness tool that is integrated
into Eclipse. It specifically provides information of which arti-

Figure 5. Side-by-Side View of Code and

Emerging Design.

facts are checked out, which are undergoing changes, and which
have been checked in. Additionally, Jazz provides presence
awareness of developers and chat facilities for communication
embedded within the IDE. Unlike Jazz, Lighthouse does not pro-
vide chat support and presence awareness for developers. How-
ever, where as Jazz uses files as the primary level of abstraction,
Lighthouse uses design as the abstraction.
There are a number of reverse engineering tools that are able to
generate a UML class diagram from the source code [1,6,10].
While some of these tools do not automatically update the class
diagram as the source code evolves, a number of them do, includ-
ing Omondo EclipseUML [10] and Green [1]. What these tools
provide is essentially an update-to-date design based on the local
source code without any annotations. Our work takes this idea a
step further in that the design generated is not just based on the
local source code, but the code of all the developers. Furthermore,
we annotate the design with evolution and coordination informa-
tion. Lastly, we are able to compare our abstraction against a
conceptual design provided by the developers so as to identify
where the source code differs from and agrees with the conceptual
design.
While Omondo EclipseUML and Green are not able to compare
the current design with an initial design, there are a number of
design differencing and merging tools available [8,16]. These
tools can be used to calculate the difference between a provided
model and an initial design in order to understand the evolution of
the system. Unlike emerging design, however, these tools are not
automated and require the developer to manually generate a
model and perform a diff.
The work that is most similar to ours is Gail Murphy’s work on
reflexion models [9]. With the reflexion models tool, a developer
is required to provide the tool with a high-level model of the sys-
tem as well as a mapping specifying how the model maps to the
source code. The tool then outputs a reflexion model that shows
where the engineer’s high-level model differs from and agrees
with the model of the source. This is similar to Lighthouse in that
it accepts an initial high-level design model that is then used to
identify differences between that model and the current source
code. Our notion of emerging design is different in that it does not
always require an initial high-level design to be effective. Without
a conceptual design, emerging design can still be used to aid in
coordinating developers’ efforts and, at the very least, provides
them with a design where previously there was none. Additionally,
emerging design is a continuously updated representation whereas
reflexion models are a one-time snapshot and, should the devel-
oper wish to understand the system at a later date, the developer is
required to recompute a new reflexion model.

4. CONCLUSION AND FUTURE WORK
In this paper, we presented the novel concept of emerging design,
which is a continuously-updating design representation of the
code. Whenever a developer changes part of his/her source code,
that change is propagated to everyone’s emerging design view.
Therefore, everyone maintains an accurate design representation
of the system without needing to check-in or check-out the
changes. We envision emerging design to not only be able to
satisfy traditional roles of abstraction, guidance, and understand-
ing, but also to support new roles such as coordination, detection
of design decay, and project management.

Currently we are working on the initial prototype of Lighthouse to
demonstrate the benefits of emerging design. While the prototype
will implement the emerging design as described here, there are
still a number of open questions to explore. For instance, what
would be the right “level” of abstraction for emerging design?
While we currently use UML class diagrams, we are planning to
investigate different levels of abstraction for emerging design,
such as software architecture and patterns. Another issue is the
scalability of the emerging design. Specifically how can we
display a large number of elements at once without overwhelming
the user with too much information. We plan to investigate a
number of user interface techniques such as fish eye view or
advanced filtering methods. Thirdly, what other kinds of
“coordination information” could we use to annotate the emerging
design in order for developers to more effectively coordinate? In
addition to the annotations that indicate what kinds of changes
were made and by whom, we plan to investigate such concepts as
“spheres of influence” that indicate that changing one part of the
code would have an influence on other classes, thus warning
developers of the potential impact of their change. Lastly, what
are the right kinds of interaction and coordination mechanisms to
present to the developers? Currently we plan to allow developers
to annotate design elements with comments, vote on changes, and
promote changes into the original design. We also intend to
investigate how we can push the abstraction much further and
incorporate configuration management functionality turning it
into a central coordination portal for all technical coordination
needs.

5. ACKNOWLEDGMENTS
This research has been funded by a 2005 IBM Eclipse Technol-
ogy Exchange grant, a 2006 IBM Technology Fellowship, and by
the National Science Foundation under grant numbers CCR-
0093489 and IIS-0205724. We would like to thank Anita Sarma
for her insightful input in the project as well as the rest of our
research group for their valuable feedback.

6. REFERENCES
[1] C. Alphonce and B. Martin. Green: A Pedagogically Cus-

tomizable Round-Tripping UML Class Diagram Eclipse
Plug-in. Proceedings of the Eclipse Technology Exchange
Workshop at OOPSLA, 2005.

[2] L.-T. Cheng, et al., Building Collaboration into IDEs. Edit ->
Compile -> Run -> Debug -> Collaborate? ACM Queue,
1(9): p. 40-50, December/January 2003-2004.

[3] C.R.B. de Souza, et al. How a Good Software Practice
thwarts Collaboration - The Multiple roles of APIs in Soft-
ware Development. Proceedings of the Foundations of Soft-
ware Engineering, 2004.

[4] Eclipse, Eclipse, http://www.eclipse.org
[5] D.R. Harris, H.B. Reubenstein, and A.S. Yeh. Reverse Engi-

neering to the Architectural Level. Proceedings of the Inter-
national Conference on Software Engineering, 1995: p. 186-
195.

[6] IBM, Rational Rose, http://www-
306.ibm.com/software/rational

[7] M. Jarke, X.T. Bui, and J.M. Carroll, Scenario Management:
An Interdisciplinary Approach. Requirements Engineering
Journal, 3(3-4): p. 155-173, 1998.

[8] A. Mehra, J.C. Grundy, and J.G. Hosking. A Generic Ap-
proach to Supporting Diagram Differencing and Merging for
Collaborative Design. Proceedings of the Automated Soft-
ware Engineering, 2005.

[9] G. Murphy, D. Notkin, and K. Sullivan. Software Reflexion
Models: Bridging the Gap between Source and High-Level
Models. Proceedings of the Third Symposium on the Foun-
dations of Software Engineering, 1995.

[10] Omondo, Omondo EclipseUML, http://www.omondo.com
[11] D.L. Parnas and P.C. Clements, A Rational Design Process:

How and Why to Fake It. IEEE Transactions on Software
Engineering, 12(2): p. 251-257, February 1986.

[12] C. Rolland, et al., A proposal for a scenario classification
framework. Requirements Engineering Journal, 3(1): p. 23-
47, 1998.

[13] A. Sarma, Z. Noroozi, and A. van der Hoek. Palantír: Rais-
ing Awareness among Configuration Management Work-
spaces. Proceedings of the Twenty-fifth International Con-
ference on Software Engineering, 2003.

[14] A. van Lamsweerde and L. Willemet, Inferring Declarative
Requirements Specifications from Operational Scenarios.
IEEE Transactions on Software Engineering, 24(12): p.
1089-1114, December 1998.

[15] K. Wong, et al., Structural Redocumentation: A Case Study.
IEEE Software, 12(1): p. 46-54, January 1995.

[16] Z. Xing and E. Stroulia. UMLDiff: An Algorithm for Object-
Oriented Design Differencing. Proceedings of the Automated
Software Engineering, 2005.

http://www.omondo.com/

	INTRODUCTION
	APPROACH
	Coordination
	Detecting Design Decay
	Project Management
	Lighthouse

	RELATED WORK
	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

