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Abstract 
 

Software product line architectures (PLAs) have 
been widely recognized as a successful approach in 
industrial software development for improving 
productivity, software quality and time-to-market. In 
this paper, we focus on the usage of a PLA for a quite 
different purpose, namely, handling privacy 
constraints in web personalization. To provide 
personalized services such as customized 
recommendations, a personalized website collects 
users’ personal data, which in turn stirs up various 
privacy concerns. We aim at reconciling the benefits of 
web personalization with privacy constraints that come 
from users themselves as well as from privacy 
legislations and regulations that apply to a given user. 
We propose a dynamic, privacy-enabling 
personalization infrastructure and conceive it as a 
PLA. This infrastructure allows for dynamically 
selecting and instantiating personalization 
architectures that provide personalized services to 
each individual user and comply with the prevailing 
privacy constraints. 

  
 
1. Introduction and overview 
 

Software product line architectures (PLAs) have 
gained a lot of momentum in industrial software 
development because of their benefits in improving 
productivity, software quality and time-to-market [3, 5, 
8]. In this paper, we show that PLAs can also be used 
for a quite different purpose, namely handling privacy 
constraints in web personalization.  

Personalized (or user-adaptive) systems are 
applications that take individual characteristics of their 
current users into account and adapt their behavior 

accordingly. For doing so, they collect considerable 
amounts of personal data about the user and "lay them 
in stock" for possible future adaptation. This has 
proven to be very beneficial for computer users in 
several application areas including education and 
training (e.g., [9]), online help for complex PC 
software (e.g., [26, 35]), dynamic information delivery 
(e.g., [4]), provision of computer access to people with 
disabilities (e.g., [23]), and information retrieval 
systems (e.g., [33]).  

Recently, personalization technologies have been 
successfully introduced on the World Wide Web 
where they are mostly used for customer relationship 
management [24]. The single most important way to 
provide value to customers is to know them and serve 
them as individuals. Customers need to feel they have 
a unique personal relationship with the business. 
Current web personalization examples include 
customized content (e.g., personalized finance pages or 
news collections), customized recommendations or 
advertisements based on past purchase behavior, 
customized (preferred) pricing, tailored email alerts, 
and express transactions [16]. A number of studies 
show that personalization has provided benefits for 
both online customers and vendors [21, 31].  

However, personalization benefits are offset by 
privacy concerns [13, 16, 22, 36]. Web users are not 
only concerned about their privacy (e.g., about being 
tracked online), but already counteract (e.g., by leaving 
websites that require registration information or by 
entering fake registration information). 

Since personalized websites collect personal data, 
they are also subject to privacy laws and regulations if 
the respective individuals are in principle identifiable. 
A review of nearly 30 international privacy laws [7] 
shows that if privacy laws apply to a personalized 
website, they often not only affect the data that are 



collected by the website, the way in which the data is 
transferred, and to which party it is transferred, but 
also the methods that may be used for processing them 
(and consequently the components that embed such 
methods). For instance, the German Teleservices Data 
Protection Act [14] mandates personal data to be 
erased immediately after each session except for very 
limited purposes. This provision would affect the use 
of those machine learning methods where the learning 
takes place over several sessions.  

We primarily focus on the data processing step of 
web personalization where numerous personalization 
methods can be applied to derive additional 
assumptions about users. It is important to note that for 
many personalization goals, more than one method can 
be used, each differing in their data and privacy 
requirements and often their anticipated accuracy and 
reliability. 

From a personalization point of view, we ask the 
research question: how can personalized web-based 
systems maximize their personalization benefits, while 
at the same time being compliant with the privacy 
constraints that are currently in effect (such as the 
aforementioned  privacy laws, industry and company 
regulations, and privacy preferences of the current 
user)? Our vision is to provide personalized privacy 
management where the personalization process is 
tailored to each individual user’s privacy constraints.  

A review of several existing approaches show that 
they all fail to provide a flexible, systematic and 
scalable solution for the enforcement of users’ 
potentially different privacy constraints. Inspired by 
the idea of treating software as a product line to 
support software variability from design-time to 
invocation-time to run-time [19] and several other 
works in the field of dynamic architecture and run-time 
architecture evolution [18, 27, 29], we propose a 
dynamic, privacy-enabling personalization 
infrastructure. Particularly, we propose to leverage the 
concept of product line architecture to model the 
variability that exists in the privacy and personalization 
domain and to use dynamic selection of particular 
architectural instances to tailor the product line 
architecture to the specific needs of a particular user. 
The infrastructure, thus, utilizes the privacy constraints 
that apply to each individual user to dynamically select 
and instantiate a personalization architecture that 
provides personalized services to each user. The result 
is a flexible approach that not only helps in addressing 
the complexity of building personalized systems, but 
also strongly supports their evolution: as new privacy 
and personalization concerns arise, they can be 
modularly added to the product line architecture. 

The main contributions of this paper are the 
following:  

1. A novel application of PLAs to address a 
practical and complex socio-technical problem 
– balancing privacy and personalization. 

2. A demonstration of a PLA-based solution that 
particularly relies on run-time variability to 
bring the benefits of PLA-based modeling to 
the dynamic setting of personalized web-based 
systems. 

In the remainder of this paper, we first discuss 
several existing approaches to the problem of taking 
users’ potentially differing privacy constraints into 
account (Section 2). We then present our PLA-based 
approach (Section 3), a detailed example with our 
prototype system (Section 4), and finally our 
conclusions and planned future work (Section 5). 
 
2. Existing approaches 
 
     Because specialized infrastructures for building 
systems that cater to the privacy constraints of 
individual users do not yet exist, websites that aim at 
addressing this problem currently have to use simple 
escape strategies which we list below. 
     
2.1. Pseudonymous interaction  
 

This approach allows users to remain anonymous 
with regard to the personalized system and the whole 
network infrastructure, whilst enabling the system to 
still recognize the same user in different sessions so 
that it can cater to her individually [25]. At first sight, 
this seems to be a panacea because in most cases, 
privacy laws do not apply any more when the 
interaction is anonymous. However, anonymity is 
currently difficult and/or tedious to preserve when 
payments, physical goods and non-electronic services 
are being exchanged; this solution harbors the risk of 
misuse; and it hinders vendors from cross-channel 
marketing (e.g. sending a products catalog to a web 
customer by regular mail). Moreover, users may still 
have additional privacy preferences (e.g., they do not 
want to be profiled even when it is only done 
pseudonymously), which this approach does not take 
into account. 

 
2.2. Largest permissible common subset  
 

Ideally, this approach means that only those 
personalization methods that satisfy all privacy laws 
and regulations are used. The Disney website, for 
instance, observes both the U.S. Children’s Online 



Privacy Protection Act (COPPA) as well as the 
European Union Directive [15]. This solution is likely 
to run into problems if more than a very few 
jurisdictions are involved, since the largest common 
subset of permissible personalization methods may 
then become very small. 

 
2.3. Different country/region versions 
 

In this approach, personalized systems have 
different country versions, each of which uses only 
those personalization methods that are permitted in the 
respective country. If some countries have similar 
privacy laws, their versions can be combined using the 
above-described largest permissible common subset 
approach. For example, IBM’s German-language 
pages comply with the privacy laws of Germany, 
Austria and Switzerland [30], while IBM’s U.S. site 
meets the legal constraints in U.S. As with the largest 
permissible common subset approach, this approach 
also has difficulty scaling as soon as the number of 
countries/regions, and hence the number of different 
versions of the personalized system, increases. 

 
2.4. P3P 
 

The Platform for Privacy Preferences (P3P) [11] 
enables websites to express their privacy policies in a 
standard format that can be retrieved automatically and 
interpreted by user agents. Client-side agents can then 
inform users about the sites’ privacy policies and warn 
them when they deviate from previously-specified 
preferences. P3P does not enforce privacy policies nor 
does it support different policies for different users. By 
itself, it is therefore not an answer to the need for 
privacy tailored to different user constraints. However, 
several proposals for individual negotiation of P3P 
policies have been made [6, 32]. The results of such 
negotiations could become the input to our own 
approach. 

 
2.5. Summary 
 

Pseudonymous interaction bypasses the 
applicability of privacy laws and regulations at a price 
of tedious operation, but does not provide sufficient 
support for dealing with users’ own privacy concerns. 
The largest permissible common subset approach and 
different country/region versions do not scale up well 
and cannot address users’ individual privacy 
preferences either. P3P helps websites communicate 
their privacy policies to users, but does not support 
different policies for different users. In a nutshell, none 

of them fulfills our vision of personalized privacy 
management. They all fail to provide a flexible, 
systematic and scalable solution with enforcement of 
privacy constraints that may differ between users.  

 
3. Our PLA-based approach 
 

Our goal is to achieve maximum personalization 
benefit while at the same time satisfying the prevailing 
privacy constraints, particularly as they both apply at 
the individual user level. In this section, we describe 
how we approach the problem in the context of 
personalized system design, introduce our PLA-based 
personalization infrastructure and its underlying 
privacy-enabling mechanism, and summarize the 
benefits of our approach. 

 
3.1. User Modeling Server 

  
Most personalized systems employ a user modeling 

system, usually in a client-server fashion, leading to 
the presence of a User Modeling Server (UMS). A 
UMS stores and represents user characteristics and 
behavior, integrates external user-related information, 
applies user modeling methods to derive additional 
assumptions about the user, and allows multiple 
external user/client adaptive applications to retrieve 
user information from the server in parallel [24].  

For many personalization goals, more than one user 
modeling method can be used, each differing in their 
data and privacy requirements and often their 
anticipated accuracy and reliability. For example, a 
personalized website could use incremental machine 
learning (that discards all raw data after the end of a 
session) to provide personalization to web visitors 
from Germany1, while it can use possibly more 
accurate one-time machine learning with data from 
several sessions to provide personalization to web 
visitors from the U.S. who are not subject to the same 
privacy constraints. 

Since UMSs are the central repository for personal 
information in personalized systems and the loci of 
personal data processing, our solution focuses on 
turning a UMS into a product line architecture with 
which we address privacy and personalization issues.  

                                                           
1 This is not yet a complete solution, though, since the 

German Teleservices Data Protection Act also mandates 
that profiling requires the use of pseudonymous or the 
consent of the user. 



 
Figure 1. Our dynamic privacy-enabling personalization infrastructure 

 
3.2. Our dynamic privacy-enabling 
personalization infrastructure 

  
Figure 1 shows a high level overview of our 

privacy-enabling personalization infrastructure. It 
consists of external user-adaptive applications (e.g., a 
personalized shopping site), a Selector, and a UMS 
that includes a Directory Component and a pool of 
user modeling components (UMCs). External 
personalized applications can query the UMS for 
existing user information so as to provide personalized 
services to their end users, and can supply additional 
user information to the UMS. 

In our solution, we implement the UMS as a PLA. 
Doing so allows us to take advantage of commonality 
among different needs for privacy and personalization, 
provide an infrastructure that solves the problem in a 
generic fashion, and allow dynamically updating 
different privacy and personalization strategies in a 
modular fashion – not requiring the entire rebuilding 
of the UMS. 

The Directory Component is essentially a repository 
of user models, each of which stores and represents not 
only the characteristics, behavior, and inferences about 
each user, but also their potentially different individual 
privacy constraints. The UMC Pool contains a set of 
UMCs, each of which encapsulates one or more user 
modeling methods (e.g., collaborative filtering [33]) 
that are utilized in making additional inferences about 
users based on existing user data. Each UMC forms an 
optional element [20] guarded by a Privacy Boolean 
Expression (PBE; see Section 3.3) in the PLA.   

A particular personalization architecture containing 
only those UMCs that are allowed to operate under a 
user’s prevailing privacy constraints (see Section 3.4) 

can be selected from the PLA by the Selector, and then 
be instantiated to provide services as a UMS for the 
respective user to the external personalized 
applications. Moreover, in order to maximize the 
benefits of personalization, the Selector can further 
select the UMCs with the optimal anticipated 
personalization effects among those that are currently 
permissible based on a designer-specified preferred 
order. 

It is important to stress that if two or more users 
have the same set of privacy constraints they will share 
a single personalization architecture. This reusability is 
especially critical to making our solution scalable. 

 
3.3. Modeling privacy impacts on UMCs  

 
A Privacy Boolean Expression (PBE) captures 

whether its associated UMC is allowed to operate 
under a set of identified privacy concerns. A PBE is a 
logic combination of Privacy Boolean Variables 
(PBVs), which are defined during a manual analysis of 
the impacts of potential privacy concerns on a UMC. If 
the PBE is resolved to be true, then the associated 
UMC will be selected in the resulting personalization 
architecture; otherwise, the UMC will not be included.   

For example, assume that a UMC employs one-time 
machining learning combined with a clustering 
technique to generate personalized music 
recommendations for a user.  It analyzes both the 
user’s browsing history over several sessions in a 
personalized online music store and her demographic 
data such as gender, address and occupation. Table 1 
shows the PBVs that have been defined to capture the 
potential privacy concerns in this scenario, and the 
resulting PBE.  

 



3.4. Expressing privacy constraints  
 

 Privacy constraints that apply to a user can be 
privacy laws and regulations that are in effect as well 
as the user’s own personal privacy preferences. Those 
privacy constraints are expressed in name-value pairs 
and used as bindings for the Boolean guards associated 
with each UMC. We call them Privacy Constraint 
Bindings (PCBs). 

For example, we may have a German user who did 
not mention any personal privacy preferences. 
Nevertheless, if she is in principle identifiable, the 
German Teleservices Data Protection Act would apply. 
Table 2 summarizes the user’s privacy constraints and 
their respective PCBs.  

During the evaluation of the PBE in Table 1, each 
PBV will be bound to its PCB (those in Table 2) for 
this German user in this combined example. If such a 
binding does not exist, we set the default binding to be 
true. We thus take a “prohibitive approach” – the 
practice (tracking user in this example) not explicitly 
forbidden by the prevailing privacy constraints is 
included. Note that the UMC will not be selected 
because its PBE is resolved to be false given the PCBs. 
 
3.5. Dynamic selection process  
 

The Selector monitors the start and end of user 
sessions via bind and unbind operations of the external 
applications onto the UMS. When the Selector detects 
the start of a user session, it initiates a Privacy Context 
Detection process that will collect all the active 
privacy constraints and then generate corresponding 
PCBs. A similar process will be carried out whenever 
during a user session the Selector learns about new or 

changed privacy requirements (which for all practical 
purposes will stem from user preferences since privacy 
laws and regulations are unlikely to change during a 
session). 

Table 1. The Privacy Boolean Expression of the example User Modeling Component in 
Section 3.3, and its constituent Privacy Boolean Variables  

 

The PCBs are fed into the Selector that will carry 
out a PLA selection process. Firstly, the PBEs of all 
UMCs are evaluated based on the given PCBs, to 
determine whether or not these UMCs may be included 
in the personalization architecture for the current user 
session. Secondly, a binary Privacy Constraint 
Satisfaction (PCS) vector is constructed whose nth 
element represents whether or not the nth UMC may be 
used. The Selector checks whether a run-time system 
instance with such a PCS already exists. If so, the 
Selector will assign the user session to the existing 
run-time system instance that has the same PCS. If not, 
the Selector will perform PLA Pruning that 
automatically removes any disallowed components 
from the architecture, and then the Selector instantiates 
a new run-time system instance for the user session. 
Figure 2 presents the pseudo-code of the above 
process. 

 
3.6. Benefits of our approach 
 

Personalized privacy constraints enforcement: 
the personalization process is tailored to satisfy and 
enforce each individual user’s privacy constraints.  

Flexibility: UMCs can be easily plugged in or 
removed from the UMC Pool at design time; different 
personalization architectures (including various 
compositions of UMCs) can be dynamically selected 
and instantiated at run time.  

Reusability:  if two or more users have the same set 
of privacy constraints, they will share a single 
personalization architecture. 

PBVs Definition Corresponding privacy concern 
combining_profile combining pseudonymous usage data with 

personally identifiable demographic data  
PBV1 

keeping_n_sessions_data keeping usage data across sessions PBV2 
tracking_user  monitoring user browsing behavior  PBV3 

combining_profile && keeping_n_sessions_data && tracking_user PBE 
 

Table 2. The Privacy Constraint Bindings applying to the example user in Section 3.4 
 

PCBs Expression Corresponding privacy constraint 
combining_profile = false German law prohibits combining user profiles retrievable 

under pseudonyms with data relating to the bearer of the 
pseudonym 

PCB1 

keeping_n_sessions_data = false German law mandates personal data to be erased immediately 
after each session except for very limited purposes 

PCB2 

 



 
Figure 2. Dynamic selection process 

 
4. A detailed interaction example 

 
In this section we describe a prototype system we 

built for proving the concept.  
 
4.1. The example scenario  
 

 Let us assume that UniversalFriends.com is a 
website run in the USA, by a signatory of the U.S. 
Network Advertisers Initiative (NAI) [28]. The goal of 
this website is to bridge physical distances between 
people and to foster world-wide friendships through 
information technology. It provides personalized 
services to help customers make friends worldwide. 
Upon registration, users will be asked to choose a 
pseudonymous user ID along with a password, and to 
disclose some information about themselves (e.g., their 
hobbies). They will be given some space on the 
UniversalFriends web server to create their own 
homepages. The system will recommend a 
personalized list of likely friends based on a user’s 
characteristics, and will automatically send invitations 
for pairwise virtual meetings.  

We have three hypothetical users, Alice, Cheng and 
Bob. Table 3 describes their characteristics. 

 The UniversalFriends web server relies on our 
privacy-enabling personalization infrastructure to infer 
information about users in order to recommend 

potential friends. Table 4 and Table 5 show the types 
of input data and the available inference methods, 
respectively. Table 6 summarizes the usage of data and 
inference methods for each user modeling component.  

Table 3. Our hypothetical users The Selector monitors the start and end of user sessions: 
 

On bind (start):  
Privacy Context Detection: 

Collect active privacy constraints; 
Generate variable bindings (PCBs); 

PLA selection, based on PCBs: 
Evaluate Boolean guards (PBEs) for UMCs; 
Construct a new PCS vector V; 

IF there already exists an identical PCS THEN  
 Assign the user session to the existing  
         run-time system instance, say instancei; 

instancei . numSessions ++;  
       ELSE 

       PLA Pruning: 
Prune out UMCs whose PBEs are 
resolved to FALSE; 

Instantiate a new run-time system instance,  
say instancen+1 for the user session; 
instancen+1 . numSessions = 1; 

On unbind (end): 
       numSessionscurrent - -;  
       IF numSessionscurrent == 0 THEN 

 Kill run-time system instancecurrent;   
 

If new/changed user privacy preferences are detected, 
similar process starts as on bind. 

Name Current Personal privacy 
location preference(s) 

Germany None Alice 
China Dislikes being tracked Cheng 
USA None Bob 

 
Table 4. Types of input data 

 

Abbreviation Type of input data 
Demographic data such as age, 
gender, profession, education level  

Demo 

User-supplied data, e.g., a user 
indicates her levels of interests in 
different topics 

User_Supply 

UniversalFriends pages the user 
visited in the current session   

1_Session 

UniversalFriends pages the user 
visited across sessions 

N_Sessions 

 
Table 5. Types of inference methods 

 

Abbreviation Type of inference method 
Clustering techniques  Clustering 
Rule-based reasoning Rule-based 
Fuzzy reasoning with uncertainty Fuzzy 
Incremental machine learning Incremental 

ML 
One-time machine learning across 
several sessions  

One-time ML 

 
Table 6. UMCs pool 

 

UMC Data used Methods used 
UMC1 • Demo • Clustering  
UMC2 • User_Supply • Rule-based 
UMC3 • User_Supply • Fuzzy 
UMC4 • Demo • Rule-based  
 • User_Supply 
UMC5 • Demo • Fuzzy  
 • User_Supply 
UMC6 • User_Supply • Incremental ML 

 • 1_Session   
UMC7 • User_Supply • One-time ML 
  • N_Sessions  
UMC8 • Demo • One-time ML 
 • User_Supply • Fuzzy reasoning  

• N_Sessions 

 



4.3. Privacy-enabling personalization process  For example, UMC1 can recommend people in the 
same profession cluster. If a user indicates a high 
interest in a specific topic, UMC2 can infer that she 
would like to meet people with similar ratings for a 
topic; alternatively in this case, UMC3 can infer with 
95% confidence that she would like to meet people 
with similar ratings for the topic. 

 
The privacy constraints that apply to each of the 

three individual users and their implications to the 
UMCs are discussed below (due to limited space, the 
relevant PCBs and PBEs are not presented here, but 
one can define them like we did in Sections 3.3 and 
3.4):  

4.2. Interaction with the personalized system  For Alice, the German Teleservices Data Protection 
Act applies, with the following consequences:  

Users can interact with the system as follows: • UMC4, UMC5, UMC8 are illegal because the law 
prohibits combining user profiles retrievable 
under pseudonyms with data relating to the 
bearer of the pseudonym. 

1. Users log into UniversalFriends.com using 
their registered user names and passwords. 

2. The website gathers the users’ current privacy 
constraints including those imposed by privacy 
laws and regulations, and their own privacy 
preferences. Users can specify their privacy 
preferences and change them anytime during 
the interaction with the personalized system. 
For instance, if they feel a specific piece of 
privacy law or regulation is too strict to get 
otherwise much better personalization, they can 
give their consent to certain system actions that 
are otherwise prohibited (e.g., the storage of 
personal data across sessions). 

• UMC7, UMC8 are illegal because the law 
mandates personal data to be erased immediately 
after each session except for very limited 
purposes. 

Therefore, UMC4, UMC5, UMC7 and UMC8 cannot 
be used for Alice without her explicit consent.  

While no privacy law applies to Cheng, she has her 
own personal privacy preference, such as that she 
“dislikes being tracked”. Hence UMC6, UMC7 and 
UMC8 cannot be used because the system may not 
keep track of the pages she visits on 
UniversalFriends.com.  3. For every user, a summary webpage shows: 

a. their prevailing privacy constraints, For Bob from the United States, UMC4, UMC5 and 
UMC8 cannot be used according to the NAI self-
regulation [28] if he does not give consent on merging 
non-personally identifiable usage data with personally 
identifiable demographic data.  

b. a  recommendation list of potential friends, 
c. the selected UMCs used in producing the 

personalized service, and the excluded 
UMCs and the reasons for their exclusion 
(i.e., the specific privacy constraints).  Figure 3 illustrates the process of selecting and 

 
Figure 3. Privacy-enabling personalization process 



instantiating personalization architectures for each user 
according to their individual privacy constraints (as we 
explained in 3.5). Note that, in this case, three different 
architectural instances are instantiated, since each user 
has different privacy constraints. 
 
4.3. Implementation 
 

The  prototype system is currently composed of 
three basic components: a Context Detector, a Instance 
Manager, and a light version of ArchStudio [2] (to 
simplify matters, we did not yet include a Directory 
Component). Figure 4 illustrates a simplified view of 
the system structure.  

The Context Detector is the component which 
interfaces with a user’s web browser, collecting her 
privacy constraints and relaying them to the next 
component, the Instance Manager. The ArchStudio 
component is mainly used for its Selector, which 
generates the architecture descriptions (expressed in 
xADL 2.0 [12] and selected from an overall PLA 
description) for the personalization architectures, or 
“personalized system instances” tailored to each 
individual user based on their privacy constraints.  The 
Instance Manager is the central core of the system. It 
responds to the requests of the Context Detector and 
uses ArchStudio to build the personalized system 
instances.  

All three main components of the system are 
implemented in Java and communicate via the Java 
Remote Method Invocation (RMI) framework. Using 
this method, it is possible for the components to be 
distributed across more than one machine, but this is 
currently not the case. The Instance Manager and the 
RemoteControl subcomponent of ArchStudio extend 
the remote interface and sign their names to the RMI 
registry, allowing the Context Detector and 
ArchStudio to access the Instance Manager directly, as 
well as allowing the Instance Manager to invoke 
ArchStudio’s Selector functionality. 

Minor miscellaneous components of the system 
include BootstrapRevised (a modified version of the 
Bootstrapper from the orginal ArchStudio), which the 
Instance Manager uses to initialize architecture 
descriptions into running instances. In Figure 4, the 
stored architecture descriptions produced by 
ArchStudio are simply represented as a file directory 
located on the server machine. The web pages 
produced by the Context Detector are served via 
Apache Tomcat servlets, which are also able to make 
requests of the Instance Manager directly once a user’s 
system instance is produced.   

When each user first interacts with the system using 
their web browser, they will be prompted by the 
Context Detector for their privacy constraints. When 
submitted, these constraints are transferred to the 
Instance Manager as a new user request. They are 
packaged by the Instance Manager and posted to the 
ArchStudio Component for selection processing. Then 
a customized architecture is selected and its description 
is saved to a file. The Instance Manager, thereupon, 
receives a request to instantiate the newly completed 
architecture. It first analyzes the new architecture to 
construct a PCS Vector describing which UMCs are 
included in the description. This PCS Vector is 
compared with those of the currently running 
instances. If there is a match then no new instantiation 
takes place, but rather the found instance is used. If 
there is no running service instance that matches the 
new architecture description, BootstrapRevised is 
invoked to turn the architecture into a running service 
instance. This new service instance is assigned to the 
user, who may now access its functionality via requests 
to the Instance Manager. If the user’s privacy 
constraint information changes later on, the process 
may be begun again to produce a more appropriate 
service instance using the new constraints. 

 
Figure 4. System architecture 

 
5. Conclusion and future work 
 

Software product lines have been recognized as a 
software development paradigm that leads to 
improvements in terms of software cost, productivity, 
quality, etc. Relatively little research focuses on the 
potential of their use at runtime. In this article, we have 
shown that a PLA combined with runtime variability 
allows for an elegant solution to address the privacy 
issues in web personalization relating to the fact that 



privacy constraints may be different for each 
individual user.  

Of course, we do not claim this to be a complete 
solution to all privacy issues. Our approach focuses on 
the architectural aspects of user-tailored privacy 
provisioning but does not control (let alone enforce) 
what and how user data are collected by the different 
user modeling components.  

In [1], Ackerman pointed out a “social-technical 
gap” between human activities or decisions (inherently 
highly flexible and nuanced) and what we can support 
technically. This is the case in dealing with people’s 
privacy because no system can ever know all potential 
user privacy constraints in advance. One task of our 
future work is to conduct a user study by using our 
prototype system to solicit real-world users’ personal 
privacy preferences. Ensuring that our system can 
handle the most common privacy constraints greatly 
helps bridge the gap.  

While we currently use a set of Boolean variables to 
express identified privacy constraints, ultimately these 
constraints should be expressed in privacy constraint 
specification languages (such as APPEL [10] or EPAL 
[34]) or semantic web technologies [17].  

Last but not least, performance and scalability are 
of critical interests in practice. We need to determine 
empirically whether our system is able to manage 
architectures providing personalization services to 
hundreds of thousands of users from all over the 
world. Since the number of privacy jurisdictions is 
limited (currently to about 30 countries and 100 
states), we assume that many of our users will share an 
architecture. The resource-intensive architecture 
selection and instantiation process is therefore likely 
not to be invoked too often. This reusability is a key to 
performance and scalability, but its effects will need to 
be more thoroughly tested. 
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