
Versioned Software Architecture

André van der Hoek, Dennis Heimbigner, and Alexander L. Wolf

Software Engineering Research Laboratory
Department of Computer Science

University of Colorado
Boulder, CO 80309 USA

{andre,dennis,alw}@cs.colorado.edu

Abstract

In this position paper we introduce a novel use of software
architecture. Rather than following the traditional focus on
design, we propose to use the notion of versioned software
architecture to support other activities in the software life
cycle. In particular, we are investigating how the activi-
ties of configuration management and software deployment
can benefit from the availability of an explicit architectural
representation that is enhanced with versioning capabilities.
Below, we present some of the initial results of this inves-
tigation. We motivate our research into versioned software
architecture, present some usage scenarios in the context
of configuration management and software deployment, and
conclude with an outlook at the future work that remains
to be done.

1 Introduction

The ability to accurately describe the high-level design of a
software system is at the heart of the discipline of software
architecture. Much research has gone into developing archi-
tecture description languages (ADLs) in which a design can
be precisely captured.1 Although a large number of ADLs
have been created, the set of features commonly found in
these languages is fairly stable, and it can be expected that
the modeling capabilities of the various languages will con-
verge sometime in the future.

Additional research has been concerned with the veri-
fication of particular properties of an architecture once it
has been created. Methods exist that, for example, can ver-
ify whether an architecture is free of deadlock [1] or whether
an architecture eventually reaches a certain desired state [2].
Other ADLs lend themselves to the detection of inconsisten-
cies among components that have been put together in an
architecture. Architectural mismatches, such as competing
threads of control, have been uncovered this way [3].

Our research takes software architecture in a rather dif-
ferent direction. As opposed to focusing on design, we in-
tend to leverage existing ADLs and their analysis methods

1For a survey of existing ADLs, see [6].

to support other activities in the software life cycle. In par-
ticular, we are developing an abstraction, versioned soft-
ware architecture, to support the activities of configuration
management and software deployment. This abstraction is
similar to software architecture in that it allows the mod-
eling of components, interconnections, behaviors, and con-
straints. Additionally, though, it models the existence of
multiple versions of these elements and, indeed, of architec-
tures themselves.

Figure 1 illustrates the role that the abstraction plays in
supporting the activities of configuration management and
software deployment. Both activities still manage the arti-
facts that they create, but do so in terms of versioned soft-
ware architecture. This raises the level of abstraction with
which the configuration management and software deploy-
ment activities are carried out, reduces overall modeling ef-
fort throughout the life of a system, and reduces the context
switching that typically occurs between these two activities.

In the remainder of this position paper we first moti-
vate why we have chosen versioned software architecture as
our organizing abstraction. We then present some example
scenarios that we intend to support, and conclude with an
outlook at the future work that remains to be done.

2 Motivation

Versioned software architecture combines the concepts of
software architecture and versioning. We have chosen to
use this combination as our abstraction for a number of rea-
sons. Let us first consider the reasons for choosing software
architecture as part of the abstraction.

• Architecture adds structure to process. Both the ac-
tivities of configuration management and software de-
ployment require knowledge about the structure of the
system upon which they operate. Consider, for exam-
ple, the ability to identify the components of a system
that need to be redeployed when the system has been
modified, or the ability to version components as op-
posed to individual source files. To be able to carry
out these activities in terms of architectural structure
matches the actual software process much closer than
the typical low-level support that is embodied in most
existing tools.

• Software architecture description languages model
other information about a system besides its struc-
ture. This information can be exploited for configura-
tion management and software deployment purposes.



ExecutablesSource Files

Versioned Software Architecture

DeploymentConfig. Mgmt.

Figure 1: Versioned Software Architecture.

In particular, component behavior, component con-
straints, and architectural constraints can be leveraged
to ensure the consistency of a particular system con-
figuration. Especially when a system configuration is
selected out of a set of versions of components, or when
components need to be dynamically replaced in a con-
tinuously running system, the ability to verify archi-
tectural consistency of the system before the actual,
potentially damaging action is taken, is important.

• Architectural information is incorporated in new lan-
guages that are invented to support configuration man-
agement and software deployment. Most notably,
PCL [7], a language for system modeling that origi-
nated in the configuration management discipline, and
the Software Dock [4], a generic framework that sup-
ports software deployment, have adopted constructs to
model the structure of a system. These constructs are
similar to the ones commonly found in ADLs. This
mere fact suggests that a common, architectural ab-
straction can be used as a basis for supporting these
activities.

These reasons illustrate that software architecture by itself
would significantly enhance the activities of configuration
management and software deployment. However, the addi-
tion of versioning to software architecture has the potential
to advance these activities even further. Consider the fol-
lowing three arguments.

• Architectures evolve. As a system evolves, so does its
architecture. Even though the architecture is meant
to be relatively stable, this cannot always be guaran-
teed. In particular, if the architecture not only mod-
els the top-level design of a system, but also incorpo-
rates lower-level design choices, it can be expected to
change. These changes need to be managed by track-
ing and managing multiple versions of an architecture.

• A single architecture can exist in multiple variants.
Different hardware platforms, the availability of dif-
ferent subsystems, and the existence of optional com-
ponents all may require different solutions for a single
system. These solutions all have to be captured in the
software architecture. Consequently, the variability of
this architecture has to be managed.

• The activities of configuration management and soft-
ware deployment can benefit from an understanding of

the difference among multiple versions of an architec-
ture. Consider a deployment system that only deploys
and updates those components of a system that have
changed, or a configuration management system that,
based on the difference between two revisions of an
architecture, only recompiles the minimum number of
components. A versioned software architecture con-
tains the information that is needed to support such
activities.

It is for these reasons that we have chosen our abstraction
to be the combination of software architecture and version-
ing. We are currently working on an implementation of the
abstraction, which is based on Darwin [5] and its ability to
specify constraints and behaviors as labeled transition sys-
tems [2].

3 Usage Scenarios

Although we have not yet constructed a configuration man-
agement or software deployment system that is based on the
concept of versioned software architecture, we already have
identified some of the desired and novel capabilities that are
facilitated by the use of versioned software architecture in
these domains. Below, we present a number of scenarios
that highlight these capabilities.

Component-based workspace management. A typical use
of a configuration management system is one in which the
set of source files that constitute a system is broken down
into smaller groups that, in essence, represent system com-
ponents. Often, this is a manual process for which lit-
tle support is provided. Consequently, the initial partition
tends to become out of date as the architecture of a sys-
tem changes. An explicit architecture-based configuration
management system cannot only automatically create an
initial set of views that represent each component in the
system, but also update the views when the system archi-
tecture changes by repartitioning the source files.

Architecture-aware implementation verification. Not only
does an architecture-based configuration management sys-
tem allow the progression of changes from an architecture to
the system that it manages, the reverse can also be achieved.
In particular, when components are checked in after changes
have been made, the configuration management system can
verify whether the changes that have been made to the com-
ponent represent architectural changes. Specifically, if new



connections are created, a developer can be notified that
these changes are architectural changes that tend to have
a rather significant impact. Even if the developer accepts
the changes, the actual architecture of the system can be
updated. Architectural erosion can be reduced in this way.

Minimal recompilation. Architectural connections can also
be used to improve the build process. In particular, through
analysis of component behaviors and connections it is pos-
sible to determine which source files need to be recompiled.
Consider, for example, two components that each use some
of the services provided by the other. Any change in the
interface of one of the components usually leads to the re-
compilation of the source files of both. However, if behav-
ioral analysis determines that the second component is not
influenced by the change to the interface of the first one,
the source files of the second component do not have to be
recompiled and an optimization in recompilation effort is
achieved.

Consistency verification of a selection. Another kind of
optimization can be achieved even before the build process
takes place. Typically, a selection of particular versions of
components is chosen as a system configuration to be con-
structed. Using architectural constraints and behaviors, the
consistency of the selection can be verified. This is impor-
tant, because the build process does not necessarily fail if an
inconsistent configuration is selected. Even careful testing
might not reveal the existence of a problem, and an erro-
neous system could be delivered to a customer.

Consistency verification of component updates. The con-
sistency of a system needs to be verified in another setting
as well. When components of a system out in the field are
updated with new versions, architectural behaviors and con-
straints can be used to verify whether the new component
versions are compatible with the existing set of components.
Once again, this ability is important because it prevents a
number of faults that could result from the insertion of an
incompatible component in a continuously executing critical
system.

Minimal component update. Typically, the update of a
system to a newer version requires a complete removal of the
old version followed by a complete install of the new version.
A deployment system that operates in terms of versioned
software architecture is capable of calculating, in terms of
components and connections, the difference between the old
and new system versions. This difference can be used to
only transfer and reinstall the components that are really
needed. In essence, binary, component-based patches can
be constructed and deployed.

Coordinated distributed deployment. A rather compli-
cated problem is the coordinated deployment of a system to
a distributed set of sites. Consider, for example, an insur-
ance company that deploys new client software to its agents
that has to be coordinated with an update of its server soft-
ware. Typically, custom scripts have to be created to sup-
port such cases. A software architecture contains some of
the information that a deployment system can leverage in
the creation of standardized scripts to generically solve this
problem. Of course, these scripts have to be tailored to spe-
cific cases, but at least a generic basis for a solution can be
created.

4 Conclusions

In this position paper, we have laid out our plans to develop
and use the abstraction of versioned software architecture.
Although we believe the abstraction is useful in supporting
other activities as well, our initial goal is to investigate how
the activities of configuration management and software de-
ployment can be enhanced. To this extent, we are planning
on creating example configuration management and software
deployment systems that demonstrate the scenarios we have
presented.

Obviously, our solution heavily relies on the existence of
a mapping, not only among the components in an architec-
ture and the source files that implement the architecture,
but also among the components and the executables that
eventually will contain them. Besides the development of a
representation for versioned software architecture, creating
a solution to this mapping problem will be one of the first
activities that our research will address.

Acknowledgements

This work was supported in part by the Air Force Material
Command, Rome Laboratory, and the Defense Advanced
Research Projects Agency under Contract Numbers F30602-
94-C-0253 and F30602-98-2-0163. The content of the infor-
mation does not necessarily reflect the position or the policy
of the Government and no official endorsement should be in-
ferred.

References

[1] R. Allen and D. Garlan. A Formal Basis for Architectural
Connection. ACM Transactions on Software Engineering
and Methodology, 6(3):213–249, July 1997.

[2] S.C. Cheung, D Giannakopoulou, and J. Kramer. Ver-
ification of Liveness Properties Using Compositional
Reachability Analysis. In Proceedings of the Sixth Eu-
ropean Software Engineering Conference, number 1301
in Lecture Notes in Computer Science, pages 227–243,
New York, New York, September 1997. Springer-Verlag.

[3] D. Compare, P. Inverardi, and A.L. Wolf. Uncovering
Architectural Mismatch in Dynamic Behavior. Science
of Computer Programming, 1999. To appear.

[4] R.S. Hall, D.M. Heimbigner, A. van der Hoek, and A.L.
Wolf. An Architecture for Post-Development Configura-
tion Management in a Wide-Area Network. In Proceed-
ings of the 1997 International Conference on Distributed
Computing Systems, pages 269–278. IEEE Computer So-
ciety, May 1997.

[5] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Spec-
ifying Distributed Software Architectures. In Proceed-
ings of the Fifth European Software Engineering Confer-
ence, number 989 in Lecture Notes in Computer Science,
pages 137–153, New York, New York, September 1995.
Springer-Verlag.

[6] N. Medvidovic and R.N. Taylor. A Framework for Clas-
sifying and Comparing Architecture Description Lan-
guages. In Proceedings of the Sixth European Software
Engineering Conference, number 1301 in Lecture Notes
in Computer Science, pages 60–76, New York, New York,
September 1997. Springer-Verlag.



[7] E. Tryggeseth, B. Gulla, and R. Conradi. Modelling Sys-
tems with Variability using the PROTEUS Configura-
tion Language. In Software Configuration Management:
ICSE SCM-4 and SCM-5 Workshops Selected Papers,
number 1005 in Lecture Notes in Computer Science,
pages 216–240, New York, New York, 1995. Springer-
Verlag.


