
University of California, Irvine 1

ICS 52: Introduction to Software
Engineering

Fall Quarter 2004
Professor Richard N. Taylor

Lecture Notes
Week 7 Integration Testing and Implementation Issues

http://www.ics.uci.edu/~taylor/ICS_52_FQ04/syllabus.html
Copyright 2004, Richard N. Taylor. Duplication of course

material for any commercial purpose without written permission is prohibited.

University of California, Irvine 2

V-Model of Development and Testing

Develop Acceptance Tests
Acceptance Test Review

Requirements Review
Develop Requirements Execute System Tests

Develop Integration Tests
Integration Tests Review

Design Review
Design Execute Integration Tests

Develop Unit Tests
Unit Tests Review

Code Review
Code Execute Unit Tests

University of California, Irvine 3

Integration Test Plan
 Ensures module implementations adhere to assumptions and interfaces as

designed
– Uncovering interactions that highlight problems with assumptions is

difficult
 Approach

– Combine more and more modules
– Use USES hierarchy

» Work up from level zero
 Use test harnesses to test each group of modules

» Work down from highest number
 Use stubs as mockups to test each group of modules

 Can be done during implementation effort

University of California, Irvine 4

Integration Test Example

Provided Interface

Main component
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Subcomponent
Required Interface

University of California, Irvine 5

Test Harnesses

Provided Interface

Subcomponent
Required Interface

Provided Interface

Test Harness
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Test Harness
Required Interface

University of California, Irvine 6

Test Harnesses

Provided Interface

Test Harness
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Subcomponent
Required Interface

University of California, Irvine 7

Stubs

Provided Interface

Main component
Required Interface

Provided Interface

Stub
Required Interface

Provided Interface

Stub
Required Interface

Provided Interface

Stub
Required Interface

University of California, Irvine 8

Stubs

Provided Interface

Main component
Required Interface

Provided Interface

Stub
Required Interface

Provided Interface

Stub
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Stub
Required Interface

Provided Interface

Stub
Required Interface

University of California, Irvine 9

Stubs

Provided Interface

Main component
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Stub
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Stub
Required Interface

Provided Interface

Stub
Required Interface

University of California, Irvine 10

ICS 52 Life Cycle
Requirements

phase
Verify

Design
phase
Verify

Implementation
phase
Test

Testing
phase
Verify

University of California, Irvine 11

Design/Implementation Interaction

Design
(previous lectures)

Implementation
(this lecture)

University of California, Irvine 12

A Good Design…
 …is half the implementation effort!

– Rigor ensures all requirements are addressed
– Separation of concerns

» Modularity allows work in isolation because components are independent of
each other

» Abstraction allows work in isolation because interfaces guarantee that
components will work together

– Anticipation of change allows changes to be absorbed seamlessly
– Generality allows components to be reused throughout the system
– Incrementality allows the software to be developed with intermediate

working results

University of California, Irvine 13

A Bad Design…
 …will never be implemented!

– Lack of rigor leads to missing functionality
– Separation of concerns

» Lack of modularity leads to conflicts among developers
» Lack of abstraction leads to massive integration problems (and headaches)

– Lack of anticipation of change leads to redesigns and reimplementations
– Lack of generality leads to “code bloat”
– Lack of incrementality leads to a big-bang approach that is likely to

“bomb”

University of California, Irvine 14

From Design to Implementation
o Choose a suitable implementation language
o Establish coding conventions
o Divide work effort
o Implement

o Code
o Unit tests
o Code reviews
o Inspections

o Perform integration tests

University of California, Irvine 15

Choose a Suitable Language
 4th Generation language

– Databases
– Visual Basic
– Forms

 “Real” programming language
– Java + Class Libraries
– C++/C + STL (Standard Template Library)
– Cobol
– Fortran

 Assembly language
– Machine specific

University of California, Irvine 16

Choose a Suitable Language
 Maintain the design “picture”

– Mapping of design elements onto implementation
– Module inside versus outside

» Does the language enforce a boundary?
» Interfaces!

– Explicit representation of uses relationship
» Just function calls?

 Error handling
– Return values
– Exceptions

University of California, Irvine 17

Establish Coding Conventions
 Naming

– Avoid confusing characters
» 1, l, L, o, O, 0, S, 5, G, 6

– Avoid misleading names
– Avoid names with similar meaning
– Use capitalization wisely -- and consistently

 Hungarian notation
– Example: pch (pointer to a character)
– pchFirst (pointer to the first element of an array of characters)
– mpmipfn

 Code layout
– White space / blank lines
– Grouping
– Alignment
– Indentation
– Parentheses

University of California, Irvine 18

Divide Work Effort
 Assign different modules to different developers

– Assignments can be incremental
– Assignments change

» Illness
» New employees
» Employees who quit
» Schedule adjustments
» Star programmers

 Interfaces are tremendously important
– “Contracts” among modules

University of California, Irvine 19

Coding
 FIRST MAKE IT WORK CLEANLY
 FIRST MAKE IT WORK CLEANLY
 FIRST MAKE IT WORK CLEANLY
 FIRST MAKE IT WORK CLEANLY
 FIRST MAKE IT WORK CLEANLY
 FIRST MAKE IT WORK CLEANLY
 FIRST MAKE IT WORK CLEANLY
 FIRST MAKE IT WORK CLEANLY
 FIRST MAKE IT WORK CLEANLY

University of California, Irvine 20

Code Optimizations
 Only make optimizations to a cleanly working module if absolutely necessary

– Performance
– Memory usage

 Isolate these optimizations
 Document these optimizations

Empirical evidence has proven that these optimizations
are rarely needed and that if they are needed, they are

only needed in a few critical places

University of California, Irvine 21

Defensive Programming
 Make your code robust and reliable

– Use assertions
– Use tracing
– Handle, do not ignore, exceptions

» Contain the damage caused
» Garbage in does not mean garbage out

– Anticipate changes
– Check return values

 Plan to be able to remove debugging aids in the final, deliverable version

Do not sacrifice any of these when facing a deadline

University of California, Irvine 22

Comments
 Self documenting code does not exist!

– Meaningful variable names, crisp code layout, and small and simple
modules all help…

– …but they are not enough
 Every module needs a description of its purpose
 Every function needs a description of its purpose, input and output

parameters, return values, and exceptions
 Every piece of code that remotely may need explanation should be explained

University of California, Irvine 23

Unit Tests
 Developer tests the code just produced

– Needs to ensure that the code functions properly before releasing it to
the other developers

 Benefits
– Knows the code best
– Has easy access to the code

 Drawbacks
– Bias

» “I trust my code”
» “I always write correct code”

– Blind spots

University of California, Irvine 24

Code Reviews (“Walk-throughs”)
 Developer presents the code to a small group of colleagues

– Developer describes software
– Developer describes how it works

» “Walks through the code”
– Free-form commentary/questioning by colleagues

 Benefits
– Many eyes, many minds
– Effective

 Drawbacks
– Can lead to problems between developer and colleagues

University of California, Irvine 25

Inspections
 Developer presents the code to a small group of colleagues

– Colleagues look for predefined types of errors
» Checklists

– Colleagues read code beforehand
– Moderator leads discussion

 Benefits
– Avoids personal “attacks”
– Effective

 Drawbacks
– Only verifies code with respect to a predefined list of problem areas

University of California, Irvine 26

Use the Principles
 Rigor and formality
 Separation of concerns

– Modularity
– Abstraction

 Anticipation of change
 Generality
 Incrementality

